310 lines
8.0 KiB
Markdown
310 lines
8.0 KiB
Markdown
## 内核的数据类型
|
||
|
||
### 基本数据类型
|
||
|
||
我们写了两个小的模块来测试实际数据类型和内存对齐的长度。
|
||
|
||
内核基本数据类型
|
||
|
||
|
||
|
||
C语言类型(int)
|
||
|
||
char、short、int、long long在不同的平台上大小不变。
|
||
|
||
long、ptr(指针)平台不同其大小不同,但二者的大小始终相同。
|
||
|
||
char的符号问题:
|
||
|
||
大多数平台上char默认是signed,但有些平台上默认是 unsigned。
|
||
char i = -1; 大部分平台上i是-1,有些平台上是255。
|
||
应该使用:signed char i = -1; unsigned char i = 255;
|
||
确定大小的类型(u32)
|
||
|
||
u8、u16、u32、u64、 s8、s16、s32、s64是Linux内核确定大小的类型。
|
||
__u8等式linux用户态确定大小的类型。(头文件linux/types.h)
|
||
|
||
uint8_t、uint32_t是新编译器支持的C99标准确定大小的类型,可以跨平台。
|
||
特定内核对象的类型(pid_t)
|
||
|
||
进程标识符使用pid_t类型,而不使用int,屏蔽了实际的数据类型中任何可能的差异。
|
||
特定内核对象的类型,打印时,不太好选择printk或printf的输出格式:
|
||
|
||
1. 一些平台上排除的警告,在另一平台上可能会出现(size_t在一些平台上是unsigned long,在一些平台上是unsigned int)。
|
||
|
||
2. 将其强制转换成可能的最大类型,然后用响应的格式打印输出。
|
||
字节序
|
||
|
||
大端、小端
|
||
|
||
数值0x01020304,内存从低到高依次存储:04 03 02 01 为小端。 存储顺序反过来为大端)
|
||
|
||
数值0x00000001,内存从低到高依次存储:01 00 00 00 为小端。
|
||
|
||
转换函数
|
||
|
||
u32 __cpu_to_be32(u32); /* 把cpu字节序转为大端字节序 */
|
||
|
||
u32 __be32_to_cpu(u32); /* 把大端字节序转为cpu字节序 */
|
||
u32 __cpu_to_le32(u32); /* 把cpu字节序转为小端字节序 */
|
||
u32 __le32_to_cpu(u32); /* 把小端字节序转为cpu字节序 */
|
||
在头文件<linux/byteorder.h>中
|
||
|
||
|
||
时间间隔
|
||
|
||
使用HZ代表一秒。
|
||
|
||
不能假定每秒就1000个jiffies。
|
||
|
||
与msec毫秒对应的jiffies数目总是msec*HZ/1000。
|
||
|
||
页大小
|
||
|
||
页大小为PAGE_SIZE个字节,而不是4KB。
|
||
|
||
分配16KB的空间临时存储数据,如下:
|
||
|
||
|
||
以上,只是基本数据类型中最简单的一部分,绝大多数都是细节问题,要注意。
|
||
|
||
#### 基本数据类型的长度
|
||
|
||

|
||
|
||
|
||
#### 对齐数据类型长度
|
||
|
||

|
||
|
||
|
||
#### types.h 中的重要数据类型
|
||
|
||
```
|
||
typedef __u32 __kernel_dev_t;
|
||
|
||
typedef __kernel_fd_set fd_set;
|
||
typedef __kernel_dev_t dev_t;
|
||
typedef __kernel_ino_t ino_t;
|
||
typedef __kernel_mode_t mode_t;
|
||
typedef unsigned short umode_t;
|
||
typedef __u32 nlink_t;
|
||
typedef __kernel_off_t off_t;
|
||
typedef __kernel_pid_t pid_t;
|
||
typedef __kernel_daddr_t daddr_t;
|
||
typedef __kernel_key_t key_t;
|
||
typedef __kernel_suseconds_t suseconds_t;
|
||
typedef __kernel_timer_t timer_t;
|
||
typedef __kernel_clockid_t clockid_t;
|
||
typedef __kernel_mqd_t mqd_t;
|
||
|
||
typedef _Bool bool;
|
||
|
||
typedef __kernel_uid32_t uid_t;
|
||
typedef __kernel_gid32_t gid_t;
|
||
typedef __kernel_uid16_t uid16_t;
|
||
typedef __kernel_gid16_t gid16_t;
|
||
|
||
typedef unsigned long uintptr_t;
|
||
|
||
#ifdef CONFIG_HAVE_UID16
|
||
/* This is defined by include/asm-{arch}/posix_types.h */
|
||
typedef __kernel_old_uid_t old_uid_t;
|
||
typedef __kernel_old_gid_t old_gid_t;
|
||
#endif /* CONFIG_UID16 */
|
||
|
||
#if defined(__GNUC__)
|
||
typedef __kernel_loff_t loff_t;
|
||
#endif
|
||
|
||
/*
|
||
* The following typedefs are also protected by individual ifdefs for
|
||
* historical reasons:
|
||
*/
|
||
#ifndef _SIZE_T
|
||
#define _SIZE_T
|
||
typedef __kernel_size_t size_t;
|
||
#endif
|
||
|
||
#ifndef _SSIZE_T
|
||
#define _SSIZE_T
|
||
typedef __kernel_ssize_t ssize_t;
|
||
#endif
|
||
|
||
#ifndef _PTRDIFF_T
|
||
#define _PTRDIFF_T
|
||
typedef __kernel_ptrdiff_t ptrdiff_t;
|
||
#endif
|
||
|
||
#ifndef _TIME_T
|
||
#define _TIME_T
|
||
typedef __kernel_time_t time_t;
|
||
#endif
|
||
|
||
#ifndef _CLOCK_T
|
||
#define _CLOCK_T
|
||
typedef __kernel_clock_t clock_t;
|
||
#endif
|
||
|
||
#ifndef _CADDR_T
|
||
#define _CADDR_T
|
||
typedef __kernel_caddr_t caddr_t;
|
||
#endif
|
||
|
||
/* bsd */
|
||
typedef unsigned char u_char;
|
||
typedef unsigned short u_short;
|
||
typedef unsigned int u_int;
|
||
typedef unsigned long u_long;
|
||
|
||
/* sysv */
|
||
typedef unsigned char unchar;
|
||
typedef unsigned short ushort;
|
||
typedef unsigned int uint;
|
||
typedef unsigned long ulong;
|
||
|
||
#ifndef __BIT_TYPES_DEFINED__
|
||
#define __BIT_TYPES_DEFINED__
|
||
|
||
typedef __u8 u_int8_t;
|
||
typedef __s8 int8_t;
|
||
typedef __u16 u_int16_t;
|
||
typedef __s16 int16_t;
|
||
typedef __u32 u_int32_t;
|
||
typedef __s32 int32_t;
|
||
|
||
#endif /* !(__BIT_TYPES_DEFINED__) */
|
||
|
||
typedef __u8 uint8_t;
|
||
typedef __u16 uint16_t;
|
||
typedef __u32 uint32_t;
|
||
|
||
#if defined(__GNUC__)
|
||
typedef __u64 uint64_t;
|
||
typedef __u64 u_int64_t;
|
||
typedef __s64 int64_t;
|
||
#endif
|
||
|
||
/* this is a special 64bit data type that is 8-byte aligned */
|
||
#define aligned_u64 __u64 __attribute__((aligned(8)))
|
||
#define aligned_be64 __be64 __attribute__((aligned(8)))
|
||
#define aligned_le64 __le64 __attribute__((aligned(8)))
|
||
|
||
/**
|
||
* The type used for indexing onto a disc or disc partition.
|
||
*
|
||
* Linux always considers sectors to be 512 bytes long independently
|
||
* of the devices real block size.
|
||
*
|
||
* blkcnt_t is the type of the inode's block count.
|
||
*/
|
||
#ifdef CONFIG_LBDAF
|
||
typedef u64 sector_t;
|
||
typedef u64 blkcnt_t;
|
||
#else
|
||
typedef unsigned long sector_t;
|
||
typedef unsigned long blkcnt_t;
|
||
#endif
|
||
|
||
/*
|
||
* The type of an index into the pagecache.
|
||
*/
|
||
#define pgoff_t unsigned long
|
||
|
||
/*
|
||
* A dma_addr_t can hold any valid DMA address, i.e., any address returned
|
||
* by the DMA API.
|
||
*
|
||
* If the DMA API only uses 32-bit addresses, dma_addr_t need only be 32
|
||
* bits wide. Bus addresses, e.g., PCI BARs, may be wider than 32 bits,
|
||
* but drivers do memory-mapped I/O to ioremapped kernel virtual addresses,
|
||
* so they don't care about the size of the actual bus addresses.
|
||
*/
|
||
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
|
||
typedef u64 dma_addr_t;
|
||
#else
|
||
typedef u32 dma_addr_t;
|
||
#endif
|
||
|
||
typedef unsigned __bitwise__ gfp_t;
|
||
typedef unsigned __bitwise__ fmode_t;
|
||
typedef unsigned __bitwise__ oom_flags_t;
|
||
|
||
#ifdef CONFIG_PHYS_ADDR_T_64BIT
|
||
typedef u64 phys_addr_t;
|
||
#else
|
||
typedef u32 phys_addr_t;
|
||
#endif
|
||
|
||
typedef phys_addr_t resource_size_t;
|
||
|
||
/*
|
||
* This type is the placeholder for a hardware interrupt number. It has to be
|
||
* big enough to enclose whatever representation is used by a given platform.
|
||
*/
|
||
typedef unsigned long irq_hw_number_t;
|
||
|
||
typedef struct {
|
||
int counter;
|
||
} atomic_t;
|
||
|
||
#ifdef CONFIG_64BIT
|
||
typedef struct {
|
||
long counter;
|
||
} atomic64_t;
|
||
#endif
|
||
|
||
struct list_head {
|
||
struct list_head *next, *prev;
|
||
};
|
||
|
||
struct hlist_head {
|
||
struct hlist_node *first;
|
||
};
|
||
|
||
struct hlist_node {
|
||
struct hlist_node *next, **pprev;
|
||
};
|
||
|
||
struct ustat {
|
||
__kernel_daddr_t f_tfree;
|
||
__kernel_ino_t f_tinode;
|
||
char f_fname[6];
|
||
char f_fpack[6];
|
||
};
|
||
|
||
/**
|
||
* struct callback_head - callback structure for use with RCU and task_work
|
||
* @next: next update requests in a list
|
||
* @func: actual update function to call after the grace period.
|
||
*
|
||
* The struct is aligned to size of pointer. On most architectures it happens
|
||
* naturally due ABI requirements, but some architectures (like CRIS) have
|
||
* weird ABI and we need to ask it explicitly.
|
||
*
|
||
* The alignment is required to guarantee that bits 0 and 1 of @next will be
|
||
* clear under normal conditions -- as long as we use call_rcu(),
|
||
* call_rcu_bh(), call_rcu_sched(), or call_srcu() to queue callback.
|
||
*
|
||
* This guarantee is important for few reasons:
|
||
* - future call_rcu_lazy() will make use of lower bits in the pointer;
|
||
* - the structure shares storage spacer in struct page with @compound_head,
|
||
* which encode PageTail() in bit 0. The guarantee is needed to avoid
|
||
* false-positive PageTail().
|
||
*/
|
||
struct callback_head {
|
||
struct callback_head *next;
|
||
void (*func)(struct callback_head *head);
|
||
} __attribute__((aligned(sizeof(void *))));
|
||
#define rcu_head callback_head
|
||
|
||
typedef void (*rcu_callback_t)(struct rcu_head *head);
|
||
typedef void (*call_rcu_func_t)(struct rcu_head *head, rcu_callback_t func);
|
||
|
||
/* clocksource cycle base type */
|
||
typedef u64 cycle_t;
|
||
|
||
```
|
||
|
||
|
||
#### list.h |