This commit is contained in:
zmr961006
2017-04-25 09:55:19 +08:00
parent 7f8fa1fc81
commit 7607150f36
7 changed files with 467 additions and 2 deletions

View File

@@ -1 +1,101 @@
## 中断处理 ## 中断处理
首先,关于中断和异常的概念,可以参考我的博客,或者等后边的同学进行补充,我们不再这里赘述。我们尽可能的讨论一些进阶的东西。
### /proc 接口
如图:我们可以在/proc/interrupts 中看到我们系统中安装的中断。
![d](./image/res.png)
可以看到我的电脑是有4个CPU 其实是双核4线程看来内核是以执行流的来作为CPU的计数标准。
第一列是IRQ中断号最后一列是中断的名称中间是每个CPU处理中断的计数。
我们可以发现即使我的个人PC并没有运行太多的服务和程序但是CPU0明显还是处理的中断更多这是LINUX内核为了最大化缓存的本地性质。
接着我们来看看/proc/stat 文件。
这个文件中记录的是系统活动的底层统计信息,包括从系统启动到现在系统接受的中断数量。
![ss](./image/ddd.png)
可以看到这是一个使用位图的表达方式。
### 中断接口
请求中断线 && 中断描述符:
```
/**
* struct irqaction - per interrupt action descriptor
* @handler: interrupt handler function
* @name: name of the device
* @dev_id: cookie to identify the device
* @percpu_dev_id: cookie to identify the device
* @next: pointer to the next irqaction for shared interrupts
* @irq: interrupt number
* @flags: flags (see IRQF_* above)
* @thread_fn: interrupt handler function for threaded interrupts
* @thread: thread pointer for threaded interrupts
* @secondary: pointer to secondary irqaction (force threading)
* @thread_flags: flags related to @thread
* @thread_mask: bitmask for keeping track of @thread activity
* @dir: pointer to the proc/irq/NN/name entry
*/
struct irqaction {
irq_handler_t handler;
void *dev_id;
void __percpu *percpu_dev_id;
struct irqaction *next;
irq_handler_t thread_fn;
struct task_struct *thread;
struct irqaction *secondary;
unsigned int irq;
unsigned int flags;
unsigned long thread_flags;
unsigned long thread_mask;
const char *name;
struct proc_dir_entry *dir;
} ____cacheline_internodealigned_in_smp;
static inline int __must_check
request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags,
const char *name, void *dev)
{
return request_threaded_irq(irq, handler, NULL, flags, name, dev);
}
@irq 要申请的中断号
@handler_t 安装处理中断的函数指针
@flags 中断掩码
@name 中断拥有者
@dev 中断信号线
```
#### 实现中断程序的几个简单要求
1.处理例程不能向用户空间发送或者接受数据,因为它不能再进程上下文中执行,处理过程也不能休眠。
2.不能调用schdule函数
#### 典型应用
如果中断通知进程所等待的事件已经发生,比如新数据到达,就会唤醒在该设备上休眠的进程。我们最好编写执行时间尽可能短的处理例程。
如果需要长时间的计算任务最好的使用方法是tasklet 或者 工作队列在更加安全的时间计算。
### 注册中断函数小测试
我们以共享形式在27号中断线设置一个中断处理函数27号是PCI上的一个周期中断。代码在./code 中。
测试效果:
![s](./image/inter.png)
随着我们系统上27号中断线收到中断请求我们注册的中断处理信息也被打印。

31
interrupt/code/Makefile Executable file
View File

@@ -0,0 +1,31 @@
# To build modules outside of the kernel tree, we run "make"
# in the kernel source tree; the Makefile these then includes this
# Makefile once again.
# This conditional selects whether we are being included from the
# kernel Makefile or not.
ifeq ($(KERNELRELEASE),)
# Assume the source tree is where the running kernel was built
# You should set KERNELDIR in the environment if it's elsewhere
KERNELDIR ?= /lib/modules/$(shell uname -r)/build
# The current directory is passed to sub-makes as argument
PWD := $(shell pwd)
modules:
$(MAKE) -C $(KERNELDIR) M=$(PWD) modules
modules_install:
$(MAKE) -C $(KERNELDIR) M=$(PWD) modules_install
clean:
rm -rf *.o *~ core .depend .*.cmd *.ko *.mod.c .tmp_versions
.PHONY: modules modules_install clean
else
# called from kernel build system: just declare what our modules are
obj-m := irq_qu.o
endif

45
interrupt/code/irq_qu.c Normal file
View File

@@ -0,0 +1,45 @@
/*************************************************************************
> File Name: irq_qu.c
> Author:
> Mail:
> Created Time: 2017年04月25日 星期二 09时18分44秒
************************************************************************/
#include<linux/init.h>
#include<linux/module.h>
#include<linux/kernel.h>
#include<linux/interrupt.h>
MODULE_LICENSE("GPL");
static int irq = 27;
const char *interface = "my_irq";
static irqreturn_t myirq_handler(int irq,void *dev);
static int __init myirq_init(void) {
if(request_irq(irq,myirq_handler,IRQF_SHARED,interface,&irq)){
printk(KERN_ERR "%s interrrupt can't register %d IRQ \n",interface,irq);
return -EIO;
}
printk("%s request %d IRQ\n",interface,irq);
return 0;
}
static irqreturn_t myirq_handler(int irq,void *dev){
printk("my_handle %d IRQ is working\n",irq);
return 0;
}
static void __exit myirq_exit(void){
free_irq(irq,&irq);
printk("%s interrupt free %d IRQ\n",interface,irq);
}
module_init(myirq_init);
module_exit(myirq_exit);

BIN
interrupt/image/ddd.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 KiB

BIN
interrupt/image/inter.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 65 KiB

BIN
interrupt/image/res.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 173 KiB

View File

@@ -4,6 +4,70 @@
我们写了两个小的模块来测试实际数据类型和内存对齐的长度。 我们写了两个小的模块来测试实际数据类型和内存对齐的长度。
内核基本数据类型
C语言类型int
char、short、int、long long在不同的平台上大小不变。
long、ptr(指针)平台不同其大小不同,但二者的大小始终相同。
char的符号问题
大多数平台上char默认是signed但有些平台上默认是 unsigned。
char i = -1; 大部分平台上i是-1有些平台上是255。
应该使用signed char i = -1; unsigned char i = 255;
确定大小的类型u32
u8、u16、u32、u64、 s8、s16、s32、s64是Linux内核确定大小的类型。
__u8等式linux用户态确定大小的类型。头文件linux/types.h
uint8_t、uint32_t是新编译器支持的C99标准确定大小的类型可以跨平台。
特定内核对象的类型pid_t
进程标识符使用pid_t类型而不使用int屏蔽了实际的数据类型中任何可能的差异。
特定内核对象的类型打印时不太好选择printk或printf的输出格式
1. 一些平台上排除的警告在另一平台上可能会出现size_t在一些平台上是unsigned long在一些平台上是unsigned int
2. 将其强制转换成可能的最大类型,然后用响应的格式打印输出。
字节序
大端、小端
数值0x01020304内存从低到高依次存储04 03 02 01 为小端。 存储顺序反过来为大端)
数值0x00000001内存从低到高依次存储01 00 00 00 为小端。
转换函数
u32 __cpu_to_be32(u32); /* 把cpu字节序转为大端字节序 */
u32 __be32_to_cpu(u32); /* 把大端字节序转为cpu字节序 */
u32 __cpu_to_le32(u32); /* 把cpu字节序转为小端字节序 */
u32 __le32_to_cpu(u32); /* 把小端字节序转为cpu字节序 */
在头文件<linux/byteorder.h>
时间间隔
使用HZ代表一秒。
不能假定每秒就1000个jiffies。
与msec毫秒对应的jiffies数目总是msec*HZ/1000。
页大小
页大小为PAGE_SIZE个字节而不是4KB。
分配16KB的空间临时存储数据如下
以上,只是基本数据类型中最简单的一部分,绝大多数都是细节问题,要注意。
#### 基本数据类型的长度 #### 基本数据类型的长度
![df](./image/ssd.png) ![df](./image/ssd.png)
@@ -14,8 +78,233 @@
![fs](./image/dfd.png) ![fs](./image/dfd.png)
#### types.h #### types.h 中的重要数据类型
```
typedef __u32 __kernel_dev_t;
typedef __kernel_fd_set fd_set;
typedef __kernel_dev_t dev_t;
typedef __kernel_ino_t ino_t;
typedef __kernel_mode_t mode_t;
typedef unsigned short umode_t;
typedef __u32 nlink_t;
typedef __kernel_off_t off_t;
typedef __kernel_pid_t pid_t;
typedef __kernel_daddr_t daddr_t;
typedef __kernel_key_t key_t;
typedef __kernel_suseconds_t suseconds_t;
typedef __kernel_timer_t timer_t;
typedef __kernel_clockid_t clockid_t;
typedef __kernel_mqd_t mqd_t;
typedef _Bool bool;
typedef __kernel_uid32_t uid_t;
typedef __kernel_gid32_t gid_t;
typedef __kernel_uid16_t uid16_t;
typedef __kernel_gid16_t gid16_t;
typedef unsigned long uintptr_t;
#ifdef CONFIG_HAVE_UID16
/* This is defined by include/asm-{arch}/posix_types.h */
typedef __kernel_old_uid_t old_uid_t;
typedef __kernel_old_gid_t old_gid_t;
#endif /* CONFIG_UID16 */
#if defined(__GNUC__)
typedef __kernel_loff_t loff_t;
#endif
/*
* The following typedefs are also protected by individual ifdefs for
* historical reasons:
*/
#ifndef _SIZE_T
#define _SIZE_T
typedef __kernel_size_t size_t;
#endif
#ifndef _SSIZE_T
#define _SSIZE_T
typedef __kernel_ssize_t ssize_t;
#endif
#ifndef _PTRDIFF_T
#define _PTRDIFF_T
typedef __kernel_ptrdiff_t ptrdiff_t;
#endif
#ifndef _TIME_T
#define _TIME_T
typedef __kernel_time_t time_t;
#endif
#ifndef _CLOCK_T
#define _CLOCK_T
typedef __kernel_clock_t clock_t;
#endif
#ifndef _CADDR_T
#define _CADDR_T
typedef __kernel_caddr_t caddr_t;
#endif
/* bsd */
typedef unsigned char u_char;
typedef unsigned short u_short;
typedef unsigned int u_int;
typedef unsigned long u_long;
/* sysv */
typedef unsigned char unchar;
typedef unsigned short ushort;
typedef unsigned int uint;
typedef unsigned long ulong;
#ifndef __BIT_TYPES_DEFINED__
#define __BIT_TYPES_DEFINED__
typedef __u8 u_int8_t;
typedef __s8 int8_t;
typedef __u16 u_int16_t;
typedef __s16 int16_t;
typedef __u32 u_int32_t;
typedef __s32 int32_t;
#endif /* !(__BIT_TYPES_DEFINED__) */
typedef __u8 uint8_t;
typedef __u16 uint16_t;
typedef __u32 uint32_t;
#if defined(__GNUC__)
typedef __u64 uint64_t;
typedef __u64 u_int64_t;
typedef __s64 int64_t;
#endif
/* this is a special 64bit data type that is 8-byte aligned */
#define aligned_u64 __u64 __attribute__((aligned(8)))
#define aligned_be64 __be64 __attribute__((aligned(8)))
#define aligned_le64 __le64 __attribute__((aligned(8)))
/**
* The type used for indexing onto a disc or disc partition.
*
* Linux always considers sectors to be 512 bytes long independently
* of the devices real block size.
*
* blkcnt_t is the type of the inode's block count.
*/
#ifdef CONFIG_LBDAF
typedef u64 sector_t;
typedef u64 blkcnt_t;
#else
typedef unsigned long sector_t;
typedef unsigned long blkcnt_t;
#endif
/*
* The type of an index into the pagecache.
*/
#define pgoff_t unsigned long
/*
* A dma_addr_t can hold any valid DMA address, i.e., any address returned
* by the DMA API.
*
* If the DMA API only uses 32-bit addresses, dma_addr_t need only be 32
* bits wide. Bus addresses, e.g., PCI BARs, may be wider than 32 bits,
* but drivers do memory-mapped I/O to ioremapped kernel virtual addresses,
* so they don't care about the size of the actual bus addresses.
*/
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
typedef u64 dma_addr_t;
#else
typedef u32 dma_addr_t;
#endif
typedef unsigned __bitwise__ gfp_t;
typedef unsigned __bitwise__ fmode_t;
typedef unsigned __bitwise__ oom_flags_t;
#ifdef CONFIG_PHYS_ADDR_T_64BIT
typedef u64 phys_addr_t;
#else
typedef u32 phys_addr_t;
#endif
typedef phys_addr_t resource_size_t;
/*
* This type is the placeholder for a hardware interrupt number. It has to be
* big enough to enclose whatever representation is used by a given platform.
*/
typedef unsigned long irq_hw_number_t;
typedef struct {
int counter;
} atomic_t;
#ifdef CONFIG_64BIT
typedef struct {
long counter;
} atomic64_t;
#endif
struct list_head {
struct list_head *next, *prev;
};
struct hlist_head {
struct hlist_node *first;
};
struct hlist_node {
struct hlist_node *next, **pprev;
};
struct ustat {
__kernel_daddr_t f_tfree;
__kernel_ino_t f_tinode;
char f_fname[6];
char f_fpack[6];
};
/**
* struct callback_head - callback structure for use with RCU and task_work
* @next: next update requests in a list
* @func: actual update function to call after the grace period.
*
* The struct is aligned to size of pointer. On most architectures it happens
* naturally due ABI requirements, but some architectures (like CRIS) have
* weird ABI and we need to ask it explicitly.
*
* The alignment is required to guarantee that bits 0 and 1 of @next will be
* clear under normal conditions -- as long as we use call_rcu(),
* call_rcu_bh(), call_rcu_sched(), or call_srcu() to queue callback.
*
* This guarantee is important for few reasons:
* - future call_rcu_lazy() will make use of lower bits in the pointer;
* - the structure shares storage spacer in struct page with @compound_head,
* which encode PageTail() in bit 0. The guarantee is needed to avoid
* false-positive PageTail().
*/
struct callback_head {
struct callback_head *next;
void (*func)(struct callback_head *head);
} __attribute__((aligned(sizeof(void *))));
#define rcu_head callback_head
typedef void (*rcu_callback_t)(struct rcu_head *head);
typedef void (*call_rcu_func_t)(struct rcu_head *head, rcu_callback_t func);
/* clocksource cycle base type */
typedef u64 cycle_t;
```
#### list.h #### list.h