This commit is contained in:
root
2017-04-14 12:11:24 +08:00
parent 3b6387ab59
commit 75ca866cb8
24 changed files with 1897 additions and 22 deletions

View File

@@ -9,3 +9,6 @@
*[竞态与并发与内核锁机制](./concur/README.md)
*[高级IO与阻塞](./higher_scull/README.md)

106
higher_scull/README.md Normal file
View File

@@ -0,0 +1,106 @@
## 关于IO的高级话题
### 阻塞型IO --休眠
让一个进程进入休眠状态是很容易的,但是我们必须考虑如何不让他“一睡不醒”。其中有几个重要的规则我们必须遵守。
1.永远不要在原子的上下文中进入睡眠。尤其驱动程序不能在拥有自旋锁seqlock或者RCU锁时休眠。如果我们已经禁止中断也不能使休眠。所以休眠的信号量必须很小。
2.当我们被唤醒时,我们不能对睡眠时间作任何的假设,因此必须检查确保我们等待的条件为真。
3.除非我们知道其他人会在某一个地方唤醒我门,否则进程不能进入休眠状态。
休眠的几个内核函数接口:
“include/linux/wait.h”
```
等待队列:
struct __wait_queue {
unsigned int flags;
void *private;
wait_queue_func_t func;
struct list_head task_list;
};
/**
* wait_event - sleep until a condition gets true
* @wq: the waitqueue to wait on
* @condition: a C expression for the event to wait for
*
* The process is put to sleep (TASK_UNINTERRUPTIBLE) until the
* @condition evaluates to true. The @condition is checked each time
* the waitqueue @wq is woken up.
*
* wake_up() has to be called after changing any variable that could
* change the result of the wait condition.
*/
#define wait_event(wq, condition) \
do { \
might_sleep(); \
if (condition) \
break; \
__wait_event(wq, condition); \
} while (0)
简单来说使用这个函数,我们就会被置于非中断休眠,屏蔽中断的休眠方式,还有非屏蔽中断休眠,它可以被某个信号中断。我们这里就写这一个例子。
wake_up 唤醒操作
#define wake_up(x) __wake_up(x, TASK_NORMAL, 1, NULL)
void __wake_up(wait_queue_head_t *q, unsigned int mode, int nr, void *key;
```
在CODE中有一个SLEEP 的模块,具有一个简单的行为设备:任何试图从该设备上读取的进程均被放置到休眠态,只要某个进程向该设备写入,所有的休眠进程就会被唤醒。./code/sleepy.c
效果如下:
我们加载完成小模块后对它进行一个读行为cat ,一个写行为 ls > 重定向。
友情提示这里光加载模块是不够的需要使用mknod 命令创建设备,不清楚的读者可以参考前文:
还是帮助下大家:
```
insmod sleepy.ko
mknod /dev/sleepy c 247 0
```
![ss](./image/sp1.png)
![ss](./image/sp2.png)
读取的进程被睡眠,写的进程被读取。
## 阻塞和非阻塞操作
一般情况下如果我们需要设置非阻塞操作直接可以设置set_noblock 标志关键字。其实内核的处理是非常简单而且直接的, 检查是否设置非阻塞标志如果没有设置就调用wait_sleep睡眠设置了做好处理直接返回非阻塞并没有什么厉害的。
我们来讨论缓冲区在阻塞中的使用大多数情况下而言实现缓冲区可以提高性能减少了上下文的切换和用户调用的次数。仅此而已关键标志O_NONBLOCK.
在高级的字符驱动设备中我们的scullpipe驱动程序阻塞在我们的read调用的进程在数据到达时被唤醒通常硬件会发出一个中断来处理然后作为中断处理的一部分驱动程序会唤醒等待进程。我们选择另一个进程来产生数据并唤醒读取进程读取进程用来唤醒等待缓冲区空间可用的写入进程。
我们在read_p 中添加了阻塞相关的内容书P155.
## 进程如何休眠?
1.初始化一个wait_queue_t 的等待队列。
2.设置进程状态,设置休眠状态。
3.放弃处理器在这之前我们必须要检查是否满足唤醒条件不然会丧失最后唤醒的机会永远睡眠下去。即使唤醒发生在这里两个操作中间休眠会把进程修改成RUNING状态schedule()会立即返回。
## 测试SCULLPIPE 程序
我们向设备读取文件,然后肯定会阻塞,然后我们在另一个进程中读取文件,可以看到之前睡眠的读取进程被唤醒,读取成功。
我们用cat读取 用cp 写入
![ss](./image/ss1.png)
读取完成。
![ss](./image/ss2.png)

View File

@@ -0,0 +1,31 @@
# To build modules outside of the kernel tree, we run "make"
# in the kernel source tree; the Makefile these then includes this
# Makefile once again.
# This conditional selects whether we are being included from the
# kernel Makefile or not.
ifeq ($(KERNELRELEASE),)
# Assume the source tree is where the running kernel was built
# You should set KERNELDIR in the environment if it's elsewhere
KERNELDIR ?= /lib/modules/$(shell uname -r)/build
# The current directory is passed to sub-makes as argument
PWD := $(shell pwd)
modules:
$(MAKE) -C $(KERNELDIR) M=$(PWD) modules
modules_install:
$(MAKE) -C $(KERNELDIR) M=$(PWD) modules_install
clean:
rm -rf *.o *~ core .depend .*.cmd *.ko *.mod.c .tmp_versions *.order *.sym*
.PHONY: modules modules_install clean
else
# called from kernel build system: just declare what our modules are
obj-m := sleepy.o
endif

84
higher_scull/code/sleepy.c Executable file
View File

@@ -0,0 +1,84 @@
/*
* sleepy.c -- the writers awake the readers
*
* Copyright (C) 2001 Alessandro Rubini and Jonathan Corbet
* Copyright (C) 2001 O'Reilly & Associates
*
* The source code in this file can be freely used, adapted,
* and redistributed in source or binary form, so long as an
* acknowledgment appears in derived source files. The citation
* should list that the code comes from the book "Linux Device
* Drivers" by Alessandro Rubini and Jonathan Corbet, published
* by O'Reilly & Associates. No warranty is attached;
* we cannot take responsibility for errors or fitness for use.
*
* $Id: sleepy.c,v 1.7 2004/09/26 07:02:43 gregkh Exp $
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h> /* current and everything */
#include <linux/kernel.h> /* printk() */
#include <linux/fs.h> /* everything... */
#include <linux/types.h> /* size_t */
#include <linux/wait.h>
MODULE_LICENSE("Dual BSD/GPL");
static int sleepy_major = 0;
static DECLARE_WAIT_QUEUE_HEAD(wq);
static int flag = 0;
ssize_t sleepy_read (struct file *filp, char __user *buf, size_t count, loff_t *pos)
{
printk(KERN_DEBUG "process %i (%s) going to sleep\n",
current->pid, current->comm);
wait_event_interruptible(wq, flag != 0);
flag = 0;
printk(KERN_DEBUG "awoken %i (%s)\n", current->pid, current->comm);
return 0; /* EOF */
}
ssize_t sleepy_write (struct file *filp, const char __user *buf, size_t count,
loff_t *pos)
{
printk(KERN_DEBUG "process %i (%s) awakening the readers...\n",
current->pid, current->comm);
flag = 1;
wake_up_interruptible(&wq);
return count; /* succeed, to avoid retrial */
}
struct file_operations sleepy_fops = {
.owner = THIS_MODULE,
.read = sleepy_read,
.write = sleepy_write,
};
int sleepy_init(void)
{
int result;
/*
* Register your major, and accept a dynamic number
*/
result = register_chrdev(sleepy_major, "sleepy", &sleepy_fops);
if (result < 0)
return result;
if (sleepy_major == 0)
sleepy_major = result; /* dynamic */
return 0;
}
void sleepy_cleanup(void)
{
unregister_chrdev(sleepy_major, "sleepy");
}
module_init(sleepy_init);
module_exit(sleepy_cleanup);

View File

@@ -0,0 +1,2 @@
/home/hacker/git/Linux_Scull/higher_scull/high_scull/scull.ko
/home/hacker/git/Linux_Scull/higher_scull/high_scull/main.o /home/hacker/git/Linux_Scull/higher_scull/high_scull/pipe.o

View File

@@ -0,0 +1,12 @@
scull-objs := main.o pipe.o
obj-m := scull.o
CURRENT_PATH := ${shell pwd}
CURRENT_KERNEL_PATH := ${shell uname -r}
LINUX_KERNEL_PATH := /usr/src/kernels/$(CURRENT_KERNEL_PATH)
all:
make -C $(LINUX_KERNEL_PATH) M=$(CURRENT_PATH) modules
clean:
rm *.o *.order *.symvers *.mod.c *.ko

View File

@@ -0,0 +1,410 @@
/*
* access.c -- the files with access control on open
*
* Copyright (C) 2001 Alessandro Rubini and Jonathan Corbet
* Copyright (C) 2001 O'Reilly & Associates
*
* The source code in this file can be freely used, adapted,
* and redistributed in source or binary form, so long as an
* acknowledgment appears in derived source files. The citation
* should list that the code comes from the book "Linux Device
* Drivers" by Alessandro Rubini and Jonathan Corbet, published
* by O'Reilly & Associates. No warranty is attached;
* we cannot take responsibility for errors or fitness for use.
*
* $Id: access.c,v 1.17 2004/09/26 07:29:56 gregkh Exp $
*/
/* FIXME: cloned devices as a use for kobjects? */
#include <linux/kernel.h> /* printk() */
#include <linux/module.h>
#include <linux/slab.h> /* kmalloc() */
#include <linux/fs.h> /* everything... */
#include <linux/errno.h> /* error codes */
#include <linux/types.h> /* size_t */
#include <linux/fcntl.h>
#include <linux/cdev.h>
#include <linux/tty.h>
#include <asm/atomic.h>
#include <linux/list.h>
#include "scull.h" /* local definitions */
static dev_t scull_a_firstdev; /* Where our range begins */
/*
* These devices fall back on the main scull operations. They only
* differ in the implementation of open() and close()
*/
/************************************************************************
*
* The first device is the single-open one,
* it has an hw structure and an open count
*/
static struct scull_dev scull_s_device;
static atomic_t scull_s_available = ATOMIC_INIT(1);
static int scull_s_open(struct inode *inode, struct file *filp)
{
struct scull_dev *dev = &scull_s_device; /* device information */
if (! atomic_dec_and_test (&scull_s_available)) {
atomic_inc(&scull_s_available);
return -EBUSY; /* already open */
}
/* then, everything else is copied from the bare scull device */
if ( (filp->f_flags & O_ACCMODE) == O_WRONLY)
scull_trim(dev);
filp->private_data = dev;
return 0; /* success */
}
static int scull_s_release(struct inode *inode, struct file *filp)
{
atomic_inc(&scull_s_available); /* release the device */
return 0;
}
/*
* The other operations for the single-open device come from the bare device
*/
struct file_operations scull_sngl_fops = {
.owner = THIS_MODULE,
.llseek = scull_llseek,
.read = scull_read,
.write = scull_write,
.ioctl = scull_ioctl,
.open = scull_s_open,
.release = scull_s_release,
};
/************************************************************************
*
* Next, the "uid" device. It can be opened multiple times by the
* same user, but access is denied to other users if the device is open
*/
static struct scull_dev scull_u_device;
static int scull_u_count; /* initialized to 0 by default */
static uid_t scull_u_owner; /* initialized to 0 by default */
static spinlock_t scull_u_lock = SPIN_LOCK_UNLOCKED;
static int scull_u_open(struct inode *inode, struct file *filp)
{
struct scull_dev *dev = &scull_u_device; /* device information */
spin_lock(&scull_u_lock);
if (scull_u_count &&
(scull_u_owner != current->uid) && /* allow user */
(scull_u_owner != current->euid) && /* allow whoever did su */
!capable(CAP_DAC_OVERRIDE)) { /* still allow root */
spin_unlock(&scull_u_lock);
return -EBUSY; /* -EPERM would confuse the user */
}
if (scull_u_count == 0)
scull_u_owner = current->uid; /* grab it */
scull_u_count++;
spin_unlock(&scull_u_lock);
/* then, everything else is copied from the bare scull device */
if ((filp->f_flags & O_ACCMODE) == O_WRONLY)
scull_trim(dev);
filp->private_data = dev;
return 0; /* success */
}
static int scull_u_release(struct inode *inode, struct file *filp)
{
spin_lock(&scull_u_lock);
scull_u_count--; /* nothing else */
spin_unlock(&scull_u_lock);
return 0;
}
/*
* The other operations for the device come from the bare device
*/
struct file_operations scull_user_fops = {
.owner = THIS_MODULE,
.llseek = scull_llseek,
.read = scull_read,
.write = scull_write,
.ioctl = scull_ioctl,
.open = scull_u_open,
.release = scull_u_release,
};
/************************************************************************
*
* Next, the device with blocking-open based on uid
*/
static struct scull_dev scull_w_device;
static int scull_w_count; /* initialized to 0 by default */
static uid_t scull_w_owner; /* initialized to 0 by default */
static DECLARE_WAIT_QUEUE_HEAD(scull_w_wait);
static spinlock_t scull_w_lock = SPIN_LOCK_UNLOCKED;
static inline int scull_w_available(void)
{
return scull_w_count == 0 ||
scull_w_owner == current->uid ||
scull_w_owner == current->euid ||
capable(CAP_DAC_OVERRIDE);
}
static int scull_w_open(struct inode *inode, struct file *filp)
{
struct scull_dev *dev = &scull_w_device; /* device information */
spin_lock(&scull_w_lock);
while (! scull_w_available()) {
spin_unlock(&scull_w_lock);
if (filp->f_flags & O_NONBLOCK) return -EAGAIN;
if (wait_event_interruptible (scull_w_wait, scull_w_available()))
return -ERESTARTSYS; /* tell the fs layer to handle it */
spin_lock(&scull_w_lock);
}
if (scull_w_count == 0)
scull_w_owner = current->uid; /* grab it */
scull_w_count++;
spin_unlock(&scull_w_lock);
/* then, everything else is copied from the bare scull device */
if ((filp->f_flags & O_ACCMODE) == O_WRONLY)
scull_trim(dev);
filp->private_data = dev;
return 0; /* success */
}
static int scull_w_release(struct inode *inode, struct file *filp)
{
int temp;
spin_lock(&scull_w_lock);
scull_w_count--;
temp = scull_w_count;
spin_unlock(&scull_w_lock);
if (temp == 0)
wake_up_interruptible_sync(&scull_w_wait); /* awake other uid's */
return 0;
}
/*
* The other operations for the device come from the bare device
*/
struct file_operations scull_wusr_fops = {
.owner = THIS_MODULE,
.llseek = scull_llseek,
.read = scull_read,
.write = scull_write,
.ioctl = scull_ioctl,
.open = scull_w_open,
.release = scull_w_release,
};
/************************************************************************
*
* Finally the `cloned' private device. This is trickier because it
* involves list management, and dynamic allocation.
*/
/* The clone-specific data structure includes a key field */
struct scull_listitem {
struct scull_dev device;
dev_t key;
struct list_head list;
};
/* The list of devices, and a lock to protect it */
static LIST_HEAD(scull_c_list);
static spinlock_t scull_c_lock = SPIN_LOCK_UNLOCKED;
/* A placeholder scull_dev which really just holds the cdev stuff. */
static struct scull_dev scull_c_device;
/* Look for a device or create one if missing */
static struct scull_dev *scull_c_lookfor_device(dev_t key)
{
struct scull_listitem *lptr;
list_for_each_entry(lptr, &scull_c_list, list) {
if (lptr->key == key)
return &(lptr->device);
}
/* not found */
lptr = kmalloc(sizeof(struct scull_listitem), GFP_KERNEL);
if (!lptr)
return NULL;
/* initialize the device */
memset(lptr, 0, sizeof(struct scull_listitem));
lptr->key = key;
scull_trim(&(lptr->device)); /* initialize it */
init_MUTEX(&(lptr->device.sem));
/* place it in the list */
list_add(&lptr->list, &scull_c_list);
return &(lptr->device);
}
static int scull_c_open(struct inode *inode, struct file *filp)
{
struct scull_dev *dev;
dev_t key;
if (!current->signal->tty) {
PDEBUG("Process \"%s\" has no ctl tty\n", current->comm);
return -EINVAL;
}
key = tty_devnum(current->signal->tty);
/* look for a scullc device in the list */
spin_lock(&scull_c_lock);
dev = scull_c_lookfor_device(key);
spin_unlock(&scull_c_lock);
if (!dev)
return -ENOMEM;
/* then, everything else is copied from the bare scull device */
if ( (filp->f_flags & O_ACCMODE) == O_WRONLY)
scull_trim(dev);
filp->private_data = dev;
return 0; /* success */
}
static int scull_c_release(struct inode *inode, struct file *filp)
{
/*
* Nothing to do, because the device is persistent.
* A `real' cloned device should be freed on last close
*/
return 0;
}
/*
* The other operations for the device come from the bare device
*/
struct file_operations scull_priv_fops = {
.owner = THIS_MODULE,
.llseek = scull_llseek,
.read = scull_read,
.write = scull_write,
.ioctl = scull_ioctl,
.open = scull_c_open,
.release = scull_c_release,
};
/************************************************************************
*
* And the init and cleanup functions come last
*/
static struct scull_adev_info {
char *name;
struct scull_dev *sculldev;
struct file_operations *fops;
} scull_access_devs[] = {
{ "scullsingle", &scull_s_device, &scull_sngl_fops },
{ "sculluid", &scull_u_device, &scull_user_fops },
{ "scullwuid", &scull_w_device, &scull_wusr_fops },
{ "sullpriv", &scull_c_device, &scull_priv_fops }
};
#define SCULL_N_ADEVS 4
/*
* Set up a single device.
*/
static void scull_access_setup (dev_t devno, struct scull_adev_info *devinfo)
{
struct scull_dev *dev = devinfo->sculldev;
int err;
/* Initialize the device structure */
dev->quantum = scull_quantum;
dev->qset = scull_qset;
init_MUTEX(&dev->sem);
/* Do the cdev stuff. */
cdev_init(&dev->cdev, devinfo->fops);
kobject_set_name(&dev->cdev.kobj, devinfo->name);
dev->cdev.owner = THIS_MODULE;
err = cdev_add (&dev->cdev, devno, 1);
/* Fail gracefully if need be */
if (err) {
printk(KERN_NOTICE "Error %d adding %s\n", err, devinfo->name);
kobject_put(&dev->cdev.kobj);
} else
printk(KERN_NOTICE "%s registered at %x\n", devinfo->name, devno);
}
int scull_access_init(dev_t firstdev)
{
int result, i;
/* Get our number space */
result = register_chrdev_region (firstdev, SCULL_N_ADEVS, "sculla");
if (result < 0) {
printk(KERN_WARNING "sculla: device number registration failed\n");
return 0;
}
scull_a_firstdev = firstdev;
/* Set up each device. */
for (i = 0; i < SCULL_N_ADEVS; i++)
scull_access_setup (firstdev + i, scull_access_devs + i);
return SCULL_N_ADEVS;
}
/*
* This is called by cleanup_module or on failure.
* It is required to never fail, even if nothing was initialized first
*/
void scull_access_cleanup(void)
{
struct scull_listitem *lptr, *next;
int i;
/* Clean up the static devs */
for (i = 0; i < SCULL_N_ADEVS; i++) {
struct scull_dev *dev = scull_access_devs[i].sculldev;
cdev_del(&dev->cdev);
scull_trim(scull_access_devs[i].sculldev);
}
/* And all the cloned devices */
list_for_each_entry_safe(lptr, next, &scull_c_list, list) {
list_del(&lptr->list);
scull_trim(&(lptr->device));
kfree(lptr);
}
/* Free up our number space */
unregister_chrdev_region(scull_a_firstdev, SCULL_N_ADEVS);
return;
}

View File

@@ -0,0 +1,486 @@
/*************************************************************************
> File Name: main.c
> Author:
> Mail:
> Created Time: 2017年03月24日 星期五 11时41分42秒
************************************************************************/
//#include <linux/config.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/kernel.h> /* printk() */
#include <linux/slab.h> /* kmalloc() */
#include <linux/fs.h> /* everything... */
#include <linux/errno.h> /* error codes */
#include <linux/types.h> /* size_t */
#include <linux/proc_fs.h>
#include <linux/fcntl.h> /* O_ACCMODE */
#include <linux/seq_file.h> /*创建/proc 文件以用来和用户交互数据*/
#include <linux/cdev.h>
#include <linux/proc_ns.h> /*proc 在新版中移动到了此目录下*/
//#include <asm/system.h> /* cli(), *_flags */
#include <asm/uaccess.h> /* copy_*_user */
#include <net/snmp.h>
#include <linux/ipv6.h>
#include <net/if_inet6.h>
#include "scull.h" /* local definitions */
int scull_major = SCULL_MAJOR;
int scull_minor = 0;
int scull_nr_devs = SCULL_NR_DEVS;
int scull_quantum = SCULL_QUANTUM;
int scull_qset = SCULL_QSET;
struct scull_dev *scull_devices;
struct file_operations scull_fops = { /*文件操作函数*/
.owner = THIS_MODULE,
.llseek = scull_llseek,
.read = scull_read,
.write = scull_write,
// .ioctl = scull_ioctl, 最新内核删掉了这个接口
.open = scull_open,
.release= scull_release,
};
/*
* Here are our sequence iteration methods. Our "position" is
* simply the device number.
*/
static void *scull_seq_start(struct seq_file *s, loff_t *pos)
{
if (*pos >= scull_nr_devs)
return NULL; /* No more to read */
return scull_devices + *pos;
}
static void *scull_seq_next(struct seq_file *s, void *v, loff_t *pos)
{
(*pos)++;
if (*pos >= scull_nr_devs)
return NULL;
return scull_devices + *pos;
}
static void scull_seq_stop(struct seq_file *s, void *v)
{
/* Actually, there's nothing to do here */
}
static int scull_seq_show(struct seq_file *s, void *v)
{
struct scull_dev *dev = (struct scull_dev *) v;
struct scull_qset *d;
int i;
if (down_interruptible(&dev->sem))
return -ERESTARTSYS;
seq_printf(s, "\nDevice %i: qset %i, q %i, sz %li\n",
(int) (dev - scull_devices), dev->qset,
dev->quantum, dev->size);
for (d = dev->data; d; d = d->next) { /* scan the list */
seq_printf(s, " item at %p, qset at %p\n", d, d->data);
if (d->data && !d->next) /* dump only the last item */
for (i = 0; i < dev->qset; i++) {
if (d->data[i])
seq_printf(s, " % 4i: %8p\n",
i, d->data[i]);
}
}
up(&dev->sem);
return 0;
}
/*
* The proc filesystem: function to read and entry
*/
int scull_read_procmem(char *buf, char **start, off_t offset,
int count, int *eof, void *data)
{
int i, j, len = 0;
int limit = count - 80; /* Don't print more than this */
for (i = 0; i < scull_nr_devs && len <= limit; i++) {
struct scull_dev *d = &scull_devices[i];
struct scull_qset *qs = d->data;
if (down_interruptible(&d->sem))
return -ERESTARTSYS;
len += sprintf(buf+len,"\nDevice %i: qset %i, q %i, sz %li\n",
i, d->qset, d->quantum, d->size);
for (; qs && len <= limit; qs = qs->next) { /* scan the list */
len += sprintf(buf + len, " item at %p, qset at %p\n",
qs, qs->data);
if (qs->data && !qs->next) /* dump only the last item */
for (j = 0; j < d->qset; j++) {
if (qs->data[j])
len += sprintf(buf + len,
" % 4i: %8p\n",
j, qs->data[j]);
}
}
up(&scull_devices[i].sem);
}
*eof = 1;
return len;
}
/*便利设备链表*/
struct scull_qset *scull_follow(struct scull_dev *dev, int n)
{
struct scull_qset *qs = dev->data;
/* Allocate first qset explicitly if need be */
if (! qs) {
qs = dev->data = kmalloc(sizeof(struct scull_qset), GFP_KERNEL);
if (qs == NULL)
return NULL; /* Never mind */
memset(qs, 0, sizeof(struct scull_qset));
}
/* Then follow the list */
while (n--) {
if (!qs->next) {
qs->next = kmalloc(sizeof(struct scull_qset), GFP_KERNEL);
if (qs->next == NULL)
return NULL; /* Never mind */
memset(qs->next, 0, sizeof(struct scull_qset));
}
qs = qs->next;
continue;
}
return qs;
}
/*安装DEV 结构到这个scull_devices*/
static void scull_setup_cdev(struct scull_dev *dev,int index){
int err,devno = MKDEV(scull_major,scull_minor + index);
cdev_init(&dev->cdev,&scull_fops);
dev->cdev.owner = THIS_MODULE;
dev->cdev.ops = &scull_fops;
err = cdev_add(&dev->cdev,devno,1);
if(err){
printk("error %d adding scull%d",err,index);
}
}
/*几个函数调用方法*/
int scull_p_init(dev_t dev);
void scull_p_cleanup(void);
int scull_access_init(dev_t dev){
return 0;
}
void scull_access_cleanup(void){
//return 0;
}
/*删除设备的空间*/
int scull_trim(struct scull_dev *dev){
struct scull_qset *next,*dptr;
int qset = dev->qset;
int i;
for(dptr = dev->data;dptr;dptr = next){
if(dptr->data){
for(i = 0;i < qset;i++){
kfree(dptr->data[i]);
}
kfree(dptr->data);
dptr->data = NULL;
}
next = dptr->next;
kfree(dptr);
}
dev->size = 0;
dev->quantum = scull_quantum;
dev->qset = scull_qset;
dev->data = NULL;
return 0;
}
int scull_open(struct inode* inode,struct file *filp){
struct scull_dev *dev; /* device information */
dev = container_of(inode->i_cdev, struct scull_dev, cdev);
filp->private_data = dev; /* for other methods */
/* now trim to 0 the length of the device if open was write-only */
if ( (filp->f_flags & O_ACCMODE) == O_WRONLY) {
if (down_interruptible(&dev->sem))
return -ERESTARTSYS;
scull_trim(dev); /* ignore errors */
up(&dev->sem);
}
return 0; /* success */
}
ssize_t scull_read(struct file *filp, char __user *buf, size_t count,loff_t *f_pos){
struct scull_dev *dev = filp->private_data;
struct scull_qset *dptr; /* the first listitem */
int quantum = dev->quantum, qset = dev->qset;
int itemsize = quantum * qset; /* how many bytes in the listitem */
int item, s_pos, q_pos, rest;
ssize_t retval = 0;
if (down_interruptible(&dev->sem))
return -ERESTARTSYS;
if (*f_pos >= dev->size)
goto out;
if (*f_pos + count > dev->size)
count = dev->size - *f_pos;
/* find listitem, qset index, and offset in the quantum */
item = (long)*f_pos / itemsize;
rest = (long)*f_pos % itemsize;
s_pos = rest / quantum; q_pos = rest % quantum;
/* follow the list up to the right position (defined elsewhere) */
dptr = scull_follow(dev, item);
if (dptr == NULL || !dptr->data || ! dptr->data[s_pos])
goto out; /* don't fill holes */
/* read only up to the end of this quantum */
if (count > quantum - q_pos)
count = quantum - q_pos;
if (copy_to_user(buf, dptr->data[s_pos] + q_pos, count)) {
retval = -EFAULT;
goto out;
}
*f_pos += count;
retval = count;
out:
up(&dev->sem);
return retval;
}
ssize_t scull_write(struct file *filp, const char __user *buf, size_t count,loff_t *f_pos){
struct scull_dev *dev = filp->private_data;
struct scull_qset *dptr;
int quantum = dev->quantum, qset = dev->qset;
int itemsize = quantum * qset;
int item, s_pos, q_pos, rest;
ssize_t retval = -ENOMEM; /* value used in "goto out" statements */
if (down_interruptible(&dev->sem))
return -ERESTARTSYS;
/* find listitem, qset index and offset in the quantum */
item = (long)*f_pos / itemsize;
rest = (long)*f_pos % itemsize;
s_pos = rest / quantum; q_pos = rest % quantum;
/* follow the list up to the right position */
dptr = scull_follow(dev, item);
if (dptr == NULL)
goto out;
if (!dptr->data) {
dptr->data = kmalloc(qset * sizeof(char *), GFP_KERNEL);
if (!dptr->data)
goto out;
memset(dptr->data, 0, qset * sizeof(char *));
}
if (!dptr->data[s_pos]) {
dptr->data[s_pos] = kmalloc(quantum, GFP_KERNEL);
if (!dptr->data[s_pos])
goto out;
}
/* write only up to the end of this quantum */
if (count > quantum - q_pos)
count = quantum - q_pos;
if (copy_from_user(dptr->data[s_pos]+q_pos, buf, count)) {
retval = -EFAULT;
goto out;
}
*f_pos += count;
retval = count;
/* update the size */
if (dev->size < *f_pos)
dev->size = *f_pos;
out:
up(&dev->sem);
return retval;
}
loff_t scull_llseek(struct file *filp, loff_t off, int whence){
return 0;
}
int scull_ioctl(struct inode *inode, struct file *filp,unsigned int cmd, unsigned long arg){
return 0;
}
int scull_release(struct inode * inode,struct file*filp){
return 0;
}
/*
* Tie the sequence operators up.
*/
static struct seq_operations scull_seq_ops = {
.start = scull_seq_start,
.next = scull_seq_next,
.stop = scull_seq_stop,
.show = scull_seq_show
};
/*
* Now to implement the /proc file we need only make an open
* method which sets up the sequence operators.
*/
static int scull_proc_open(struct inode *inode, struct file *file)
{
return seq_open(file, &scull_seq_ops);
}
/*
* Create a set of file operations for our proc file.
*/
static struct file_operations scull_proc_ops = {
.owner = THIS_MODULE,
.open = scull_proc_open,
.read = seq_read,
.llseek = seq_lseek,
.release = seq_release
};
/*proc 文件的创建与移除*/
static void scull_create_proc(void)
{
struct proc_dir_entry *entry;
/*create_proc_read_entry("scullmem", 0 {default mode},
NULL { parent dir } , {scull_read_procmem},
NULL { client data} );
entry = create_proc_entry("scullseq", 0, NULL);
*/
proc_create("scullmem",0,NULL,&scull_proc_ops);
entry = proc_create("scullseq",0,NULL,&scull_proc_ops);
//if (entry)
// entry->proc_fops = &scull_proc_ops;
}
static void scull_remove_proc(void)
{
/* no problem if it was not registered */
remove_proc_entry("scullmem", NULL /* parent dir */);
remove_proc_entry("scullseq", NULL);
}
/*_______________________________________________________________________________________*/
void scull_cleanup_module(void)
{
int i;
dev_t devno = MKDEV(scull_major, scull_minor);
/* Get rid of our char dev entries */
if (scull_devices) {
for (i = 0; i < scull_nr_devs; i++) {
scull_trim(scull_devices + i);
cdev_del(&scull_devices[i].cdev);
}
kfree(scull_devices);
}
scull_remove_proc();/*创建测试的proc 文件*/
/* cleanup_module is never called if registering failed */
unregister_chrdev_region(devno, scull_nr_devs);
/* and call the cleanup functions for friend devices */
scull_p_cleanup();
scull_access_cleanup();
}
int scull_init_module(void) /*获取主设备号,或者创建设备编号*/
{
int result ,i;
dev_t dev = 0;
if(scull_major){
dev = MKDEV(scull_major,scull_minor); /*将两个设备号转换为dev_t类型*/
result = register_chrdev_region(dev,scull_nr_devs,"scull");/*申请设备编号*/
}else{
result = alloc_chrdev_region(&dev,scull_minor,scull_nr_devs,"scull");/*分配主设备号*/
scull_major = MAJOR(dev);
}
if(result < 0){
printk("scull : cant get major %d\n",scull_major);
return result;
}else{
printk("make a dev %d %d\n",scull_major,scull_minor);
}
/*分配设备的结构体*/
scull_devices = kmalloc(scull_nr_devs * sizeof(struct scull_dev),GFP_KERNEL);
if(!scull_devices){
result = -1;
goto fail;
}
memset(scull_devices,0,scull_nr_devs * sizeof(struct scull_dev));
for(i = 0;i < scull_nr_devs;i++){
scull_devices[i].quantum = scull_quantum;
scull_devices[i].qset = scull_qset;
sema_init(&scull_devices[i].sem,1);
/*sema_init 是内核用来新代替dev_INIT 的函数,初始化互斥量*/
scull_setup_cdev(&scull_devices[i],i);
/*注册每一个设备到总控结构体*/
}
dev = MKDEV(scull_major,scull_minor + scull_nr_devs);
dev += scull_p_init(dev);
dev += scull_access_init(dev);
scull_create_proc(); /*创建/proc 下文件*/
return 0;
fail:
scull_cleanup_module();
return result;
}
module_init(scull_init_module);
module_exit(scull_cleanup_module);

View File

@@ -0,0 +1,386 @@
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h> /* printk(), min() */
#include <linux/slab.h> /* kmalloc() */
#include <linux/fs.h> /* everything... */
#include <linux/proc_fs.h>
#include <linux/errno.h> /* error codes */
#include <linux/types.h> /* size_t */
#include <linux/fcntl.h>
#include <linux/poll.h>
#include <linux/cdev.h>
#include <linux/sched.h> /*4.4将很多wait.h的宏方到了这里*/
#include <asm/uaccess.h>
#include "scull.h" /* local definitions */
MODULE_LICENSE("Dual BSD/GPL");
struct scull_pipe {
wait_queue_head_t inq, outq; /* read and write queues */
char *buffer, *end; /* begin of buf, end of buf */
int buffersize; /* used in pointer arithmetic */
char *rp, *wp; /* where to read, where to write */
int nreaders, nwriters; /* number of openings for r/w */
struct fasync_struct *async_queue; /* asynchronous readers */
struct semaphore sem; /* mutual exclusion semaphore */
struct cdev cdev; /* Char device structure */
};
/* parameters */
static int scull_p_nr_devs = SCULL_P_NR_DEVS; /* number of pipe devices */
int scull_p_buffer = SCULL_P_BUFFER; /* buffer size */
dev_t scull_p_devno; /* Our first device number */
module_param(scull_p_nr_devs, int, 0); /* FIXME check perms */
module_param(scull_p_buffer, int, 0);
static struct scull_pipe *scull_p_devices;
static int scull_p_fasync(int fd, struct file *filp, int mode);
static int spacefree(struct scull_pipe *dev);
/*
* Open and close
*/
static int scull_p_open(struct inode *inode, struct file *filp)
{
struct scull_pipe *dev;
dev = container_of(inode->i_cdev, struct scull_pipe, cdev);
filp->private_data = dev;
if (down_interruptible(&dev->sem))
return -ERESTARTSYS;
if (!dev->buffer) {
/* allocate the buffer */
dev->buffer = kmalloc(scull_p_buffer, GFP_KERNEL);
if (!dev->buffer) {
up(&dev->sem);
return -ENOMEM;
}
}
dev->buffersize = scull_p_buffer;
dev->end = dev->buffer + dev->buffersize;
dev->rp = dev->wp = dev->buffer; /* rd and wr from the beginning */
/* use f_mode,not f_flags: it's cleaner (fs/open.c tells why) */
if (filp->f_mode & FMODE_READ)
dev->nreaders++;
if (filp->f_mode & FMODE_WRITE)
dev->nwriters++;
up(&dev->sem);
return nonseekable_open(inode, filp);
}
static int scull_p_release(struct inode *inode, struct file *filp)
{
struct scull_pipe *dev = filp->private_data;
/* remove this filp from the asynchronously notified filp's */
scull_p_fasync(-1, filp, 0);
down(&dev->sem);
if (filp->f_mode & FMODE_READ)
dev->nreaders--;
if (filp->f_mode & FMODE_WRITE)
dev->nwriters--;
if (dev->nreaders + dev->nwriters == 0) {
kfree(dev->buffer);
dev->buffer = NULL; /* the other fields are not checked on open */
}
up(&dev->sem);
return 0;
}
/*
* Data management: read and write
*/
static ssize_t scull_p_read (struct file *filp, char __user *buf, size_t count,
loff_t *f_pos)
{
struct scull_pipe *dev = filp->private_data;
if (down_interruptible(&dev->sem))
return -ERESTARTSYS;
while (dev->rp == dev->wp) { /* nothing to read */
up(&dev->sem); /* release the lock */
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
PDEBUG("\"%s\" reading: going to sleep\n", current->comm);
if (wait_event_interruptible(dev->inq, (dev->rp != dev->wp)))
return -ERESTARTSYS; /* signal: tell the fs layer to handle it */
/* otherwise loop, but first reacquire the lock */
if (down_interruptible(&dev->sem))
return -ERESTARTSYS;
}
/* ok, data is there, return something */
if (dev->wp > dev->rp)
count = min(count, (size_t)(dev->wp - dev->rp));
else /* the write pointer has wrapped, return data up to dev->end */
count = min(count, (size_t)(dev->end - dev->rp));
if (copy_to_user(buf, dev->rp, count)) {
up (&dev->sem);
return -EFAULT;
}
dev->rp += count;
if (dev->rp == dev->end)
dev->rp = dev->buffer; /* wrapped */
up (&dev->sem);
/* finally, awake any writers and return */
wake_up_interruptible(&dev->outq);
PDEBUG("\"%s\" did read %li bytes\n",current->comm, (long)count);
return count;
}
/* Wait for space for writing; caller must hold device semaphore. On
* error the semaphore will be released before returning. */
static int scull_getwritespace(struct scull_pipe *dev, struct file *filp)
{
while (spacefree(dev) == 0) { /* full */
DEFINE_WAIT(wait);
up(&dev->sem);
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
PDEBUG("\"%s\" writing: going to sleep\n",current->comm);
prepare_to_wait(&dev->outq, &wait, TASK_INTERRUPTIBLE);
if (spacefree(dev) == 0)
schedule();
finish_wait(&dev->outq, &wait);
if (signal_pending(current))
return -ERESTARTSYS; /* signal: tell the fs layer to handle it */
if (down_interruptible(&dev->sem))
return -ERESTARTSYS;
}
return 0;
}
/* How much space is free? */
static int spacefree(struct scull_pipe *dev)
{
if (dev->rp == dev->wp)
return dev->buffersize - 1;
return ((dev->rp + dev->buffersize - dev->wp) % dev->buffersize) - 1;
}
static ssize_t scull_p_write(struct file *filp, const char __user *buf, size_t count,
loff_t *f_pos)
{
struct scull_pipe *dev = filp->private_data;
int result;
if (down_interruptible(&dev->sem))
return -ERESTARTSYS;
/* Make sure there's space to write */
result = scull_getwritespace(dev, filp);
if (result)
return result; /* scull_getwritespace called up(&dev->sem) */
/* ok, space is there, accept something */
count = min(count, (size_t)spacefree(dev));
if (dev->wp >= dev->rp)
count = min(count, (size_t)(dev->end - dev->wp)); /* to end-of-buf */
else /* the write pointer has wrapped, fill up to rp-1 */
count = min(count, (size_t)(dev->rp - dev->wp - 1));
PDEBUG("Going to accept %li bytes to %p from %p\n", (long)count, dev->wp, buf);
if (copy_from_user(dev->wp, buf, count)) {
up (&dev->sem);
return -EFAULT;
}
dev->wp += count;
if (dev->wp == dev->end)
dev->wp = dev->buffer; /* wrapped */
up(&dev->sem);
/* finally, awake any reader */
wake_up_interruptible(&dev->inq); /* blocked in read() and select() */
/* and signal asynchronous readers, explained late in chapter 5 */
if (dev->async_queue)
kill_fasync(&dev->async_queue, SIGIO, POLL_IN);
PDEBUG("\"%s\" did write %li bytes\n",current->comm, (long)count);
return count;
}
static unsigned int scull_p_poll(struct file *filp, poll_table *wait)
{
struct scull_pipe *dev = filp->private_data;
unsigned int mask = 0;
/*
* The buffer is circular; it is considered full
* if "wp" is right behind "rp" and empty if the
* two are equal.
*/
down(&dev->sem);
poll_wait(filp, &dev->inq, wait);
poll_wait(filp, &dev->outq, wait);
if (dev->rp != dev->wp)
mask |= POLLIN | POLLRDNORM; /* readable */
if (spacefree(dev))
mask |= POLLOUT | POLLWRNORM; /* writable */
up(&dev->sem);
return mask;
}
static int scull_p_fasync(int fd, struct file *filp, int mode)
{
struct scull_pipe *dev = filp->private_data;
return fasync_helper(fd, filp, mode, &dev->async_queue);
}
/* FIXME this should use seq_file */
#ifdef SCULL_DEBUG
static void scullp_proc_offset(char *buf, char **start, off_t *offset, int *len)
{
if (*offset == 0)
return;
if (*offset >= *len) { /* Not there yet */
*offset -= *len;
*len = 0;
}
else { /* We're into the interesting stuff now */
*start = buf + *offset;
*offset = 0;
}
}
static int scull_read_p_mem(char *buf, char **start, off_t offset, int count,
int *eof, void *data)
{
int i, len;
struct scull_pipe *p;
#define LIMIT (PAGE_SIZE-200) /* don't print any more after this size */
*start = buf;
len = sprintf(buf, "Default buffersize is %i\n", scull_p_buffer);
for(i = 0; i<scull_p_nr_devs && len <= LIMIT; i++) {
p = &scull_p_devices[i];
if (down_interruptible(&p->sem))
return -ERESTARTSYS;
len += sprintf(buf+len, "\nDevice %i: %p\n", i, p);
/* len += sprintf(buf+len, " Queues: %p %p\n", p->inq, p->outq);*/
len += sprintf(buf+len, " Buffer: %p to %p (%i bytes)\n", p->buffer, p->end, p->buffersize);
len += sprintf(buf+len, " rp %p wp %p\n", p->rp, p->wp);
len += sprintf(buf+len, " readers %i writers %i\n", p->nreaders, p->nwriters);
up(&p->sem);
scullp_proc_offset(buf, start, &offset, &len);
}
*eof = (len <= LIMIT);
return len;
}
#endif
/*
* The file operations for the pipe device
* (some are overlayed with bare scull)
*/
struct file_operations scull_pipe_fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.read = scull_p_read,
.write = scull_p_write,
.poll = scull_p_poll,
/*.ioctl = scull_ioctl,*/
.open = scull_p_open,
.release = scull_p_release,
.fasync = scull_p_fasync,
};
/*
* Set up a cdev entry.
*/
static void scull_p_setup_cdev(struct scull_pipe *dev, int index)
{
int err, devno = scull_p_devno + index;
cdev_init(&dev->cdev, &scull_pipe_fops);
dev->cdev.owner = THIS_MODULE;
err = cdev_add (&dev->cdev, devno, 1);
/* Fail gracefully if need be */
if (err)
printk(KERN_NOTICE "Error %d adding scullpipe%d", err, index);
}
/*
* Initialize the pipe devs; return how many we did.
*/
int scull_p_init(dev_t firstdev)
{
int i, result;
result = register_chrdev_region(firstdev, scull_p_nr_devs, "scullp");
if (result < 0) {
printk(KERN_NOTICE "Unable to get scullp region, error %d\n", result);
return 0;
}
scull_p_devno = firstdev;
scull_p_devices = kmalloc(scull_p_nr_devs * sizeof(struct scull_pipe), GFP_KERNEL);
if (scull_p_devices == NULL) {
unregister_chrdev_region(firstdev, scull_p_nr_devs);
return 0;
}
memset(scull_p_devices, 0, scull_p_nr_devs * sizeof(struct scull_pipe));
for (i = 0; i < scull_p_nr_devs; i++) {
init_waitqueue_head(&(scull_p_devices[i].inq));
init_waitqueue_head(&(scull_p_devices[i].outq));
//init_MUTEX(&scull_p_devices[i].sem);
sema_init(&scull_p_devices[i].sem,1);
scull_p_setup_cdev(scull_p_devices + i, i);
}
#ifdef SCULL_DEBUG
create_proc_read_entry("scullpipe", 0, NULL, scull_read_p_mem, NULL);
#endif
return scull_p_nr_devs;
}
/*
* This is called by cleanup_module or on failure.
* It is required to never fail, even if nothing was initialized first
*/
void scull_p_cleanup(void)
{
int i;
#ifdef SCULL_DEBUG
remove_proc_entry("scullpipe", NULL);
#endif
if (!scull_p_devices)
return; /* nothing else to release */
for (i = 0; i < scull_p_nr_devs; i++) {
cdev_del(&scull_p_devices[i].cdev);
kfree(scull_p_devices[i].buffer);
}
kfree(scull_p_devices);
unregister_chrdev_region(scull_p_devno, scull_p_nr_devs);
scull_p_devices = NULL; /* pedantic */
}

View File

@@ -0,0 +1,169 @@
/*************************************************************************
> File Name: scull.h
> Author:
> Mail:
> Created Time: 2017年03月24日 星期五 11时43分30秒
************************************************************************/
#ifndef _SCULL_H
#define _SCULL_H
#include <linux/ioctl.h> /* needed for the _IOW etc stuff used later */
/*
* Macros to help debugging
*/
#undef PDEBUG /* undef it, just in case */
#ifdef SCULL_DEBUG
# ifdef __KERNEL__
/* This one if debugging is on, and kernel space */
# define PDEBUG(fmt, args...) printk( KERN_DEBUG "scull: " fmt, ## args)
# else
/* This one for user space */
# define PDEBUG(fmt, args...) fprintf(stderr, fmt, ## args)
# endif
#else
# define PDEBUG(fmt, args...) /* not debugging: nothing */
#endif
#undef PDEBUGG
#define PDEBUGG(fmt, args...) /* nothing: it's a placeholder */
#ifndef SCULL_MAJOR
#define SCULL_MAJOR 0 /* dynamic major by default */
#endif
#ifndef SCULL_NR_DEVS
#define SCULL_NR_DEVS 4 /* scull0 through scull3 */
#endif
#ifndef SCULL_P_NR_DEVS
#define SCULL_P_NR_DEVS 4 /* scullpipe0 through scullpipe3 */
#endif
/*
* The bare device is a variable-length region of memory.
* Use a linked list of indirect blocks.
*
* "scull_dev->data" points to an array of pointers, each
* pointer refers to a memory area of SCULL_QUANTUM bytes.
*
* The array (quantum-set) is SCULL_QSET long.
*/
#ifndef SCULL_QUANTUM
#define SCULL_QUANTUM 4000
#endif
#ifndef SCULL_QSET
#define SCULL_QSET 1000
#endif
/*
* The pipe device is a simple circular buffer. Here its default size
*/
#ifndef SCULL_P_BUFFER
#define SCULL_P_BUFFER 4000
#endif
/*
* Representation of scull quantum sets.
*/
struct scull_qset {
void **data;
struct scull_qset *next;
};
struct scull_dev {
struct scull_qset *data; /* Pointer to first quantum set */
int quantum; /* the current quantum size */
int qset; /* the current array size */
unsigned long size; /* amount of data stored here */
unsigned int access_key; /* used by sculluid and scullpriv */
struct semaphore sem; /* mutual exclusion semaphore */
struct cdev cdev; /* Char device structure */
};
/*
* Split minors in two parts
*/
#define TYPE(minor) (((minor) >> 4) & 0xf) /* high nibble */
#define NUM(minor) ((minor) & 0xf) /* low nibble */
/*
* The different configurable parameters
*/
extern int scull_major; /* main.c */
extern int scull_nr_devs;
extern int scull_quantum;
extern int scull_qset;
extern int scull_p_buffer; /* pipe.c */
/*
* Prototypes for shared functions
*/
int scull_p_init(dev_t dev);
void scull_p_cleanup(void);
int scull_access_init(dev_t dev);
void scull_access_cleanup(void);
int scull_trim(struct scull_dev *dev);
ssize_t scull_read(struct file *filp, char __user *buf, size_t count,
loff_t *f_pos);
ssize_t scull_write(struct file *filp, const char __user *buf, size_t count,
loff_t *f_pos);
loff_t scull_llseek(struct file *filp, loff_t off, int whence);
int scull_ioctl(struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg);
int scull_open(struct inode *inode,struct file *filp);
int scull_release(struct inode *inode,struct file *filp);
/*
* Ioctl definitions
*/
/* Use 'k' as magic number */
#define SCULL_IOC_MAGIC 'k'
/* Please use a different 8-bit number in your code */
#define SCULL_IOCRESET _IO(SCULL_IOC_MAGIC, 0)
/*
* S means "Set" through a ptr,
* T means "Tell" directly with the argument value
* G means "Get": reply by setting through a pointer
* Q means "Query": response is on the return value
* X means "eXchange": switch G and S atomically
* H means "sHift": switch T and Q atomically
*/
#define SCULL_IOCSQUANTUM _IOW(SCULL_IOC_MAGIC, 1, int)
#define SCULL_IOCSQSET _IOW(SCULL_IOC_MAGIC, 2, int)
#define SCULL_IOCTQUANTUM _IO(SCULL_IOC_MAGIC, 3)
#define SCULL_IOCTQSET _IO(SCULL_IOC_MAGIC, 4)
#define SCULL_IOCGQUANTUM _IOR(SCULL_IOC_MAGIC, 5, int)
#define SCULL_IOCGQSET _IOR(SCULL_IOC_MAGIC, 6, int)
#define SCULL_IOCQQUANTUM _IO(SCULL_IOC_MAGIC, 7)
#define SCULL_IOCQQSET _IO(SCULL_IOC_MAGIC, 8)
#define SCULL_IOCXQUANTUM _IOWR(SCULL_IOC_MAGIC, 9, int)
#define SCULL_IOCXQSET _IOWR(SCULL_IOC_MAGIC,10, int)
#define SCULL_IOCHQUANTUM _IO(SCULL_IOC_MAGIC, 11)
#define SCULL_IOCHQSET _IO(SCULL_IOC_MAGIC, 12)
/*
* The other entities only have "Tell" and "Query", because they're
* not printed in the book, and there's no need to have all six.
* (The previous stuff was only there to show different ways to do it.
*/
#define SCULL_P_IOCTSIZE _IO(SCULL_IOC_MAGIC, 13)
#define SCULL_P_IOCQSIZE _IO(SCULL_IOC_MAGIC, 14)
/* ... more to come */
#define SCULL_IOC_MAXNR 14
#endif

View File

@@ -0,0 +1,142 @@
#!/bin/bash
# Sample init script for the a driver module <rubini@linux.it>
DEVICE="scull"
SECTION="misc"
# The list of filenames and minor numbers: $PREFIX is prefixed to all names
PREFIX="scull"
FILES=" 0 0 1 1 2 2 3 3 priv 16
pipe0 32 pipe1 33 pipe2 34 pipe3 35
single 48 uid 64 wuid 80"
INSMOD=/sbin/insmod; # use /sbin/modprobe if you prefer
function device_specific_post_load () {
true; # fill at will
}
function device_specific_pre_unload () {
true; # fill at will
}
# Everything below this line should work unchanged for any char device.
# Obviously, however, no options on the command line: either in
# /etc/${DEVICE}.conf or /etc/modules.conf (if modprobe is used)
# Optional configuration file: format is
# owner <ownername>
# group <groupname>
# mode <modename>
# options <insmod options>
CFG=/etc/${DEVICE}.conf
# kernel version, used to look for modules
KERNEL=`uname -r`
#FIXME: it looks like there is no misc section. Where should it be?
MODDIR="/lib/modules/${KERNEL}/kernel/drivers/${SECTION}"
if [ ! -d $MODDIR ]; then MODDIR="/lib/modules/${KERNEL}/${SECTION}"; fi
# Root or die
if [ "$(id -u)" != "0" ]
then
echo "You must be root to load or unload kernel modules"
exit 1
fi
# Read configuration file
if [ -r $CFG ]; then
OWNER=`awk "\\$1==\"owner\" {print \\$2}" $CFG`
GROUP=`awk "\\$1==\"group\" {print \\$2}" $CFG`
MODE=`awk "\\$1==\"mode\" {print \\$2}" $CFG`
# The options string may include extra blanks or only blanks
OPTIONS=`sed -n '/^options / s/options //p' $CFG`
fi
# Create device files
function create_files () {
cd /dev
local devlist=""
local file
while true; do
if [ $# -lt 2 ]; then break; fi
file="${DEVICE}$1"
mknod $file c $MAJOR $2
devlist="$devlist $file"
shift 2
done
if [ -n "$OWNER" ]; then chown $OWNER $devlist; fi
if [ -n "$GROUP" ]; then chgrp $GROUP $devlist; fi
if [ -n "$MODE" ]; then chmod $MODE $devlist; fi
}
# Remove device files
function remove_files () {
cd /dev
local devlist=""
local file
while true; do
if [ $# -lt 2 ]; then break; fi
file="${DEVICE}$1"
devlist="$devlist $file"
shift 2
done
rm -f $devlist
}
# Load and create files
function load_device () {
if [ -f $MODDIR/$DEVICE.o ]; then
devpath=$MODDIR/$DEVICE.o
else if [ -f ./$DEVICE.o ]; then
devpath=./$DEVICE.o
else
devpath=$DEVICE; # let insmod/modprobe guess
fi; fi
if [ "$devpath" != "$DEVICE" ]; then
echo -n " (loading file $devpath)"
fi
if $INSMOD $devpath $OPTIONS; then
MAJOR=`awk "\\$2==\"$DEVICE\" {print \\$1}" /proc/devices`
remove_files $FILES
create_files $FILES
device_specific_post_load
else
echo " FAILED!"
fi
}
# Unload and remove files
function unload_device () {
device_specific_pre_unload
/sbin/rmmod $DEVICE
remove_files $FILES
}
case "$1" in
start)
echo -n "Loading $DEVICE"
load_device
echo "."
;;
stop)
echo -n "Unloading $DEVICE"
unload_device
echo "."
;;
force-reload|restart)
echo -n "Reloading $DEVICE"
unload_device
load_device
echo "."
;;
*)
echo "Usage: $0 {start|stop|restart|force-reload}"
exit 1
esac
exit 0

View File

@@ -0,0 +1,50 @@
#!/bin/sh
# $Id: scull_load,v 1.4 2004/11/03 06:19:49 rubini Exp $
module="scull"
device="scull"
mode="664"
# Group: since distributions do it differently, look for wheel or use staff
if grep -q '^staff:' /etc/group; then
group="staff"
else
group="wheel"
fi
# invoke insmod with all arguments we got
# and use a pathname, as insmod doesn't look in . by default
/sbin/insmod ./$module.ko $* || exit 1
# retrieve major number
major=$(awk "\$2==\"$module\" {print \$1}" /proc/devices)
# Remove stale nodes and replace them, then give gid and perms
# Usually the script is shorter, it's scull that has several devices in it.
echo ${device}0 $major 0
rm -f /dev/${device}[0-3]
mknod /dev/${device}0 c $major 0
mknod /dev/${device}1 c $major 1
mknod /dev/${device}2 c $major 2
mknod /dev/${device}3 c $major 3
ln -sf ${device}0 /dev/${device}
chgrp $group /dev/${device}[0-3]
chmod $mode /dev/${device}[0-3]
#创建管道设备,测试阻塞和非阻塞功能
rm -f /dev/${device}pipe[0-3]
mknod /dev/${device}pipe0 c $major 4
mknod /dev/${device}pipe1 c $major 5
mknod /dev/${device}pipe2 c $major 6
mknod /dev/${device}pipe3 c $major 7
ln -sf ${device}pipe0 /dev/${device}pipe
chgrp $group /dev/${device}pipe[0-3]
chmod $mode /dev/${device}pipe[0-3]

View File

@@ -0,0 +1,16 @@
#!/bin/sh
module="scull"
device="scull"
# invoke rmmod with all arguments we got
/sbin/rmmod $module $* || exit 1
# Remove stale nodes
rm -f /dev/${device} /dev/${device}[0-3]

BIN
higher_scull/image/sp1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

BIN
higher_scull/image/sp2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

BIN
higher_scull/image/ss1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

BIN
higher_scull/image/ss2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 48 KiB

View File

@@ -1 +0,0 @@
kernel//home/hacker/git/Linux_Scull/test_kernel/code/scull.ko

Binary file not shown.

View File

@@ -1,21 +0,0 @@
#include <linux/module.h>
#include <linux/vermagic.h>
#include <linux/compiler.h>
MODULE_INFO(vermagic, VERMAGIC_STRING);
__visible struct module __this_module
__attribute__((section(".gnu.linkonce.this_module"))) = {
.name = KBUILD_MODNAME,
.init = init_module,
#ifdef CONFIG_MODULE_UNLOAD
.exit = cleanup_module,
#endif
.arch = MODULE_ARCH_INIT,
};
static const char __module_depends[]
__used
__attribute__((section(".modinfo"))) =
"depends=";

Binary file not shown.

Binary file not shown.