124 lines
3.6 KiB
ReStructuredText
124 lines
3.6 KiB
ReStructuredText
============================
|
||
6.13 数据的累加与统计操作
|
||
============================
|
||
|
||
----------
|
||
问题
|
||
----------
|
||
你需要处理一个很大的数据集并需要计算数据总和或其他统计量。
|
||
|
||
|
|
||
|
||
----------
|
||
解决方案
|
||
----------
|
||
对于任何涉及到统计、时间序列以及其他相关技术的数据分析问题,都可以考虑使用 `Pandas库 <http://pandas.pydata.org/>`_ 。
|
||
|
||
为了让你先体验下,下面是一个使用Pandas来分析芝加哥城市的
|
||
`老鼠和啮齿类动物数据库 <https://data.cityofchicago.org/Service-Requests/311-Service-Requests-Rodent-Baiting/97t6-zrhs>`_ 的例子。
|
||
在我写这篇文章的时候,这个数据库是一个拥有大概74,000行数据的CSV文件。
|
||
|
||
.. code-block:: python
|
||
|
||
>>> import pandas
|
||
|
||
>>> # Read a CSV file, skipping last line
|
||
>>> rats = pandas.read_csv('rats.csv', skip_footer=1)
|
||
>>> rats
|
||
<class 'pandas.core.frame.DataFrame'>
|
||
Int64Index: 74055 entries, 0 to 74054
|
||
Data columns:
|
||
Creation Date 74055 non-null values
|
||
Status 74055 non-null values
|
||
Completion Date 72154 non-null values
|
||
Service Request Number 74055 non-null values
|
||
Type of Service Request 74055 non-null values
|
||
Number of Premises Baited 65804 non-null values
|
||
Number of Premises with Garbage 65600 non-null values
|
||
Number of Premises with Rats 65752 non-null values
|
||
Current Activity 66041 non-null values
|
||
Most Recent Action 66023 non-null values
|
||
Street Address 74055 non-null values
|
||
ZIP Code 73584 non-null values
|
||
X Coordinate 74043 non-null values
|
||
Y Coordinate 74043 non-null values
|
||
Ward 74044 non-null values
|
||
Police District 74044 non-null values
|
||
Community Area 74044 non-null values
|
||
Latitude 74043 non-null values
|
||
Longitude 74043 non-null values
|
||
Location 74043 non-null values
|
||
dtypes: float64(11), object(9)
|
||
|
||
>>> # Investigate range of values for a certain field
|
||
>>> rats['Current Activity'].unique()
|
||
array([nan, Dispatch Crew, Request Sanitation Inspector], dtype=object)
|
||
>>> # Filter the data
|
||
>>> crew_dispatched = rats[rats['Current Activity'] == 'Dispatch Crew']
|
||
>>> len(crew_dispatched)
|
||
65676
|
||
>>>
|
||
|
||
>>> # Find 10 most rat-infested ZIP codes in Chicago
|
||
>>> crew_dispatched['ZIP Code'].value_counts()[:10]
|
||
60647 3837
|
||
60618 3530
|
||
60614 3284
|
||
60629 3251
|
||
60636 2801
|
||
60657 2465
|
||
60641 2238
|
||
60609 2206
|
||
60651 2152
|
||
60632 2071
|
||
>>>
|
||
|
||
>>> # Group by completion date
|
||
>>> dates = crew_dispatched.groupby('Completion Date')
|
||
<pandas.core.groupby.DataFrameGroupBy object at 0x10d0a2a10>
|
||
>>> len(dates)
|
||
472
|
||
>>>
|
||
|
||
>>> # Determine counts on each day
|
||
>>> date_counts = dates.size()
|
||
>>> date_counts[0:10]
|
||
Completion Date
|
||
01/03/2011 4
|
||
01/03/2012 125
|
||
01/04/2011 54
|
||
01/04/2012 38
|
||
01/05/2011 78
|
||
01/05/2012 100
|
||
01/06/2011 100
|
||
01/06/2012 58
|
||
01/07/2011 1
|
||
01/09/2012 12
|
||
>>>
|
||
|
||
>>> # Sort the counts
|
||
>>> date_counts.sort()
|
||
>>> date_counts[-10:]
|
||
Completion Date
|
||
10/12/2012 313
|
||
10/21/2011 314
|
||
09/20/2011 316
|
||
10/26/2011 319
|
||
02/22/2011 325
|
||
10/26/2012 333
|
||
03/17/2011 336
|
||
10/13/2011 378
|
||
10/14/2011 391
|
||
10/07/2011 457
|
||
>>>
|
||
嗯,看样子2011年10月7日对老鼠们来说是个很忙碌的日子啊!^_^
|
||
|
||
|
|
||
|
||
----------
|
||
讨论
|
||
----------
|
||
Pandas是一个拥有很多特性的大型函数库,我在这里不可能介绍完。
|
||
但是只要你需要去分析大型数据集合、对数据分组、计算各种统计量或其他类似任务的话,这个函数库真的值得你去看一看。
|
||
|