121 lines
3.8 KiB
ReStructuredText
121 lines
3.8 KiB
ReStructuredText
============================
|
||
4.4 实现迭代器协议
|
||
============================
|
||
|
||
----------
|
||
问题
|
||
----------
|
||
你想构建一个能支持迭代操作的自定义对象,并希望找到一个能实现迭代协议的简单方法。
|
||
|
||
----------
|
||
解决方案
|
||
----------
|
||
目前为止,在一个对象上实现迭代最简单的方式是使用一个生成器函数。
|
||
在4.2小节中,使用Node类来表示树形数据结构。你可能想实现一个以深度优先方式遍历树形节点的生成器。
|
||
下面是代码示例:
|
||
|
||
.. code-block:: python
|
||
|
||
class Node:
|
||
def __init__(self, value):
|
||
self._value = value
|
||
self._children = []
|
||
|
||
def __repr__(self):
|
||
return 'Node({!r})'.format(self._value)
|
||
|
||
def add_child(self, node):
|
||
self._children.append(node)
|
||
|
||
def __iter__(self):
|
||
return iter(self._children)
|
||
|
||
def depth_first(self):
|
||
yield self
|
||
for c in self:
|
||
yield from c.depth_first()
|
||
|
||
# Example
|
||
if __name__ == '__main__':
|
||
root = Node(0)
|
||
child1 = Node(1)
|
||
child2 = Node(2)
|
||
root.add_child(child1)
|
||
root.add_child(child2)
|
||
child1.add_child(Node(3))
|
||
child1.add_child(Node(4))
|
||
child2.add_child(Node(5))
|
||
|
||
for ch in root.depth_first():
|
||
print(ch)
|
||
# Outputs Node(0), Node(1), Node(3), Node(4), Node(2), Node(5)
|
||
|
||
在这段代码中,``depth_first()`` 方法简单直观。
|
||
它首先返回自己本身并迭代每一个子节点并
|
||
通过调用子节点的 ``depth_first()`` 方法(使用 ``yield from`` 语句)返回对应元素。
|
||
|
||
----------
|
||
讨论
|
||
----------
|
||
Python的迭代协议要求一个 ``__iter__()`` 方法返回一个特殊的迭代器对象,
|
||
这个迭代器对象实现了 ``__next__()`` 方法并通过 ``StopIteration`` 异常标识迭代的完成。
|
||
但是,实现这些通常会比较繁琐。
|
||
下面我们演示下这种方式,如何使用一个关联迭代器类重新实现 ``depth_first()`` 方法:
|
||
|
||
|
||
.. code-block:: python
|
||
|
||
class Node2:
|
||
def __init__(self, value):
|
||
self._value = value
|
||
self._children = []
|
||
|
||
def __repr__(self):
|
||
return 'Node({!r})'.format(self._value)
|
||
|
||
def add_child(self, node):
|
||
self._children.append(node)
|
||
|
||
def __iter__(self):
|
||
return iter(self._children)
|
||
|
||
def depth_first(self):
|
||
return DepthFirstIterator(self)
|
||
|
||
|
||
class DepthFirstIterator(object):
|
||
'''
|
||
Depth-first traversal
|
||
'''
|
||
|
||
def __init__(self, start_node):
|
||
self._node = start_node
|
||
self._children_iter = None
|
||
self._child_iter = None
|
||
|
||
def __iter__(self):
|
||
return self
|
||
|
||
def __next__(self):
|
||
# Return myself if just started; create an iterator for children
|
||
if self._children_iter is None:
|
||
self._children_iter = iter(self._node)
|
||
return self._node
|
||
# If processing a child, return its next item
|
||
elif self._child_iter:
|
||
try:
|
||
nextchild = next(self._child_iter)
|
||
return nextchild
|
||
except StopIteration:
|
||
self._child_iter = None
|
||
return next(self)
|
||
# Advance to the next child and start its iteration
|
||
else:
|
||
self._child_iter = next(self._children_iter).depth_first()
|
||
return next(self)
|
||
|
||
``DepthFirstIterator`` 类和上面使用生成器的版本工作原理类似,
|
||
但是它写起来很繁琐,因为迭代器必须在迭代处理过程中维护大量的状态信息。
|
||
坦白来讲,没人愿意写这么晦涩的代码。将你的迭代器定义为一个生成器后一切迎刃而解。
|
||
|