1.5节start..
This commit is contained in:
21
cookbook/c01/p05_priority_queue.py
Normal file
21
cookbook/c01/p05_priority_queue.py
Normal file
@@ -0,0 +1,21 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- encoding: utf-8 -*-
|
||||
"""
|
||||
Topic: 优先级队列
|
||||
Desc :
|
||||
"""
|
||||
import heapq
|
||||
|
||||
|
||||
class PriorityQueue:
|
||||
def __init__(self):
|
||||
self._queue = []
|
||||
self._index = 0
|
||||
|
||||
def push(self, item, priority):
|
||||
heapq.heappush(self._queue, (-priority, self._index, item))
|
||||
self._index += 1
|
||||
|
||||
def pop(self):
|
||||
return heapq.heappop(self._queue)[-1]
|
||||
|
||||
@@ -5,14 +5,92 @@
|
||||
----------
|
||||
问题
|
||||
----------
|
||||
todo...
|
||||
怎样实现一个按优先级排序的队列? 并且在这个队列上面每次pop操作总是返回优先级最高的那个元素
|
||||
|
||||
----------
|
||||
解决方案
|
||||
----------
|
||||
todo...
|
||||
The following class uses the heapq module to implement a simple priority queue:
|
||||
下面的类利用heapq模块实现了一个简单的优先级队列:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import heapq
|
||||
|
||||
class PriorityQueue:
|
||||
def __init__(self):
|
||||
self._queue = []
|
||||
self._index = 0
|
||||
|
||||
def push(self, item, priority):
|
||||
heapq.heappush(self._queue, (-priority, self._index, item))
|
||||
self._index += 1
|
||||
|
||||
def pop(self):
|
||||
return heapq.heappop(self._queue)[-1]
|
||||
|
||||
|
||||
下面是它的使用方式:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
>>> class Item:
|
||||
... def __init__(self, name):
|
||||
... self.name = name
|
||||
... def __repr__(self):
|
||||
... return 'Item({!r})'.format(self.name)
|
||||
...
|
||||
>>> q = PriorityQueue()
|
||||
>>> q.push(Item('foo'), 1)
|
||||
>>> q.push(Item('bar'), 5)
|
||||
>>> q.push(Item('spam'), 4)
|
||||
>>> q.push(Item('grok'), 1)
|
||||
>>> q.pop()
|
||||
Item('bar')
|
||||
>>> q.pop()
|
||||
Item('spam')
|
||||
>>> q.pop()
|
||||
Item('foo')
|
||||
>>> q.pop()
|
||||
Item('grok')
|
||||
>>>
|
||||
|
||||
仔细观察可以发现,第一个pop()操作返回优先级最高的元素。
|
||||
另外注意到如果两个有着相同优先级的元素(foo 和 grok),pop操作按照它们被插入到队列的顺序返回的。
|
||||
|
||||
----------
|
||||
讨论
|
||||
----------
|
||||
todo...
|
||||
这一小节我们主要关注heapq模块的使用。
|
||||
函数heapq.heappush()和heapq.heappop()分别在队列_queue上插入和删除第一个元素,
|
||||
并且_queue队列保证第一个元素拥有最小优先级(1.4节已经讨论过这个问题)。
|
||||
heappop()函数总是返回"最小的"的元素,这就是保证队列pop操作返回正确元素的关键。
|
||||
另外,由于push和pop操作时间复杂度为O(N),其中N是堆的大小,因此就算是N很大的时候它们运行速度也依旧很快。
|
||||
|
||||
在上面代码中,队列包含了一个(-priority, index, item)的元组。
|
||||
优先级为负数的目的是使得元素按照从高到低的优先级排序。
|
||||
这个跟普通的按优先级从低到高排序的堆排序恰巧相反。
|
||||
|
||||
index变量的作用是保证同等优先级元素的正确排序。
|
||||
通过保存一个不断增加的index下标变量,可以确保元素安装它们插入的顺序排序。
|
||||
而且,index变量也在相同优先级元素比较的时候起到重要作用。
|
||||
|
||||
为了阐明这些,Item实例是不能被排序的:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
>>> a = Item('foo')
|
||||
>>> b = Item('bar')
|
||||
>>> a < b
|
||||
Traceback (most recent call last):
|
||||
File "<stdin>", line 1, in <module>
|
||||
TypeError: unorderable types: Item() < Item()
|
||||
>>>
|
||||
|
||||
If you make (priority, item) tuples, they can be compared as long as the priorities
|
||||
are different. However, if two tuples with equal priorities are compared, the comparison
|
||||
fails as before. For example:
|
||||
如果你使用元组(priority, item),
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user