2014-08-21 10:27:10 +08:00
|
|
|
============================
|
2014-09-02 04:46:28 +08:00
|
|
|
3.10 矩阵与线性代数运算
|
2014-08-21 10:27:10 +08:00
|
|
|
============================
|
|
|
|
|
|
|
|
|
|
----------
|
|
|
|
|
问题
|
|
|
|
|
----------
|
2014-09-13 12:06:18 +08:00
|
|
|
你需要执行矩阵和线性代数运算,比如矩阵乘法、寻找行列式、求解线性方程组等等。
|
|
|
|
|
|
2014-08-21 10:27:10 +08:00
|
|
|
----------
|
|
|
|
|
解决方案
|
|
|
|
|
----------
|
2015-09-18 09:13:42 +08:00
|
|
|
``NumPy`` 库有一个矩阵对象可以用来解决这个问题。
|
2014-09-13 12:06:18 +08:00
|
|
|
矩阵类似于3.9小节中数组对象,但是遵循线性代数的计算规则。下面的一个例子展示了矩阵的一些基本特性:
|
|
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
>>> import numpy as np
|
|
|
|
|
>>> m = np.matrix([[1,-2,3],[0,4,5],[7,8,-9]])
|
|
|
|
|
>>> m
|
|
|
|
|
matrix([[ 1, -2, 3],
|
|
|
|
|
[ 0, 4, 5],
|
|
|
|
|
[ 7, 8, -9]])
|
|
|
|
|
|
|
|
|
|
>>> # Return transpose
|
|
|
|
|
>>> m.T
|
|
|
|
|
matrix([[ 1, 0, 7],
|
|
|
|
|
[-2, 4, 8],
|
|
|
|
|
[ 3, 5, -9]])
|
|
|
|
|
|
|
|
|
|
>>> # Return inverse
|
|
|
|
|
>>> m.I
|
|
|
|
|
matrix([[ 0.33043478, -0.02608696, 0.09565217],
|
|
|
|
|
[-0.15217391, 0.13043478, 0.02173913],
|
|
|
|
|
[ 0.12173913, 0.09565217, -0.0173913 ]])
|
|
|
|
|
|
|
|
|
|
>>> # Create a vector and multiply
|
|
|
|
|
>>> v = np.matrix([[2],[3],[4]])
|
|
|
|
|
>>> v
|
|
|
|
|
matrix([[2],
|
|
|
|
|
[3],
|
|
|
|
|
[4]])
|
|
|
|
|
>>> m * v
|
|
|
|
|
matrix([[ 8],
|
|
|
|
|
[32],
|
|
|
|
|
[ 2]])
|
|
|
|
|
>>>
|
|
|
|
|
|
2014-09-23 10:52:16 +08:00
|
|
|
可以在 ``numpy.linalg`` 子包中找到更多的操作函数,比如:
|
2014-09-13 12:06:18 +08:00
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
>>> import numpy.linalg
|
|
|
|
|
|
|
|
|
|
>>> # Determinant
|
|
|
|
|
>>> numpy.linalg.det(m)
|
|
|
|
|
-229.99999999999983
|
|
|
|
|
|
|
|
|
|
>>> # Eigenvalues
|
|
|
|
|
>>> numpy.linalg.eigvals(m)
|
|
|
|
|
array([-13.11474312, 2.75956154, 6.35518158])
|
|
|
|
|
|
|
|
|
|
>>> # Solve for x in mx = v
|
|
|
|
|
>>> x = numpy.linalg.solve(m, v)
|
|
|
|
|
>>> x
|
|
|
|
|
matrix([[ 0.96521739],
|
|
|
|
|
[ 0.17391304],
|
|
|
|
|
[ 0.46086957]])
|
|
|
|
|
>>> m * x
|
|
|
|
|
matrix([[ 2.],
|
|
|
|
|
[ 3.],
|
|
|
|
|
[ 4.]])
|
|
|
|
|
>>> v
|
|
|
|
|
matrix([[2],
|
|
|
|
|
[3],
|
|
|
|
|
[4]])
|
|
|
|
|
>>>
|
|
|
|
|
|
2014-08-21 10:27:10 +08:00
|
|
|
----------
|
|
|
|
|
讨论
|
|
|
|
|
----------
|
2014-09-13 12:06:18 +08:00
|
|
|
很显然线性代数是个非常大的主题,已经超出了本书能讨论的范围。
|
2015-09-18 09:13:42 +08:00
|
|
|
但是,如果你需要操作数组和向量的话, ``NumPy`` 是一个不错的入口点。
|
|
|
|
|
可以访问 ``NumPy`` 官网 http://www.numpy.org 获取更多信息。
|
2014-09-13 12:06:18 +08:00
|
|
|
|