It is a more descriptive name and with upcoming changes there will be nothing "mini" about them.
205 lines
7.0 KiB
Rust
205 lines
7.0 KiB
Rust
//! An iterator over the type substructure.
|
|
//! WARNING: this does not keep track of the region depth.
|
|
|
|
use crate::ty;
|
|
use crate::ty::subst::{GenericArg, GenericArgKind};
|
|
use rustc_data_structures::sso::SsoHashSet;
|
|
use smallvec::{self, SmallVec};
|
|
|
|
// The TypeWalker's stack is hot enough that it's worth going to some effort to
|
|
// avoid heap allocations.
|
|
type TypeWalkerStack<'tcx> = SmallVec<[GenericArg<'tcx>; 8]>;
|
|
|
|
pub struct TypeWalker<'tcx> {
|
|
stack: TypeWalkerStack<'tcx>,
|
|
last_subtree: usize,
|
|
visited: SsoHashSet<GenericArg<'tcx>>,
|
|
}
|
|
|
|
/// An iterator for walking the type tree.
|
|
///
|
|
/// It's very easy to produce a deeply
|
|
/// nested type tree with a lot of
|
|
/// identical subtrees. In order to work efficiently
|
|
/// in this situation walker only visits each type once.
|
|
/// It maintains a set of visited types and
|
|
/// skips any types that are already there.
|
|
impl<'tcx> TypeWalker<'tcx> {
|
|
pub fn new(root: GenericArg<'tcx>) -> Self {
|
|
Self { stack: smallvec![root], last_subtree: 1, visited: SsoHashSet::new() }
|
|
}
|
|
|
|
/// Skips the subtree corresponding to the last type
|
|
/// returned by `next()`.
|
|
///
|
|
/// Example: Imagine you are walking `Foo<Bar<i32>, usize>`.
|
|
///
|
|
/// ```
|
|
/// let mut iter: TypeWalker = ...;
|
|
/// iter.next(); // yields Foo
|
|
/// iter.next(); // yields Bar<i32>
|
|
/// iter.skip_current_subtree(); // skips i32
|
|
/// iter.next(); // yields usize
|
|
/// ```
|
|
pub fn skip_current_subtree(&mut self) {
|
|
self.stack.truncate(self.last_subtree);
|
|
}
|
|
}
|
|
|
|
impl<'tcx> Iterator for TypeWalker<'tcx> {
|
|
type Item = GenericArg<'tcx>;
|
|
|
|
fn next(&mut self) -> Option<GenericArg<'tcx>> {
|
|
debug!("next(): stack={:?}", self.stack);
|
|
loop {
|
|
let next = self.stack.pop()?;
|
|
self.last_subtree = self.stack.len();
|
|
if self.visited.insert(next) {
|
|
push_inner(&mut self.stack, next);
|
|
debug!("next: stack={:?}", self.stack);
|
|
return Some(next);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl GenericArg<'tcx> {
|
|
/// Iterator that walks `self` and any types reachable from
|
|
/// `self`, in depth-first order. Note that just walks the types
|
|
/// that appear in `self`, it does not descend into the fields of
|
|
/// structs or variants. For example:
|
|
///
|
|
/// ```text
|
|
/// isize => { isize }
|
|
/// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
|
|
/// [isize] => { [isize], isize }
|
|
/// ```
|
|
pub fn walk(self) -> TypeWalker<'tcx> {
|
|
TypeWalker::new(self)
|
|
}
|
|
|
|
/// Iterator that walks the immediate children of `self`. Hence
|
|
/// `Foo<Bar<i32>, u32>` yields the sequence `[Bar<i32>, u32]`
|
|
/// (but not `i32`, like `walk`).
|
|
///
|
|
/// Iterator only walks items once.
|
|
/// It accepts visited set, updates it with all visited types
|
|
/// and skips any types that are already there.
|
|
pub fn walk_shallow(
|
|
self,
|
|
visited: &mut SsoHashSet<GenericArg<'tcx>>,
|
|
) -> impl Iterator<Item = GenericArg<'tcx>> {
|
|
let mut stack = SmallVec::new();
|
|
push_inner(&mut stack, self);
|
|
stack.retain(|a| visited.insert(*a));
|
|
stack.into_iter()
|
|
}
|
|
}
|
|
|
|
impl<'tcx> super::TyS<'tcx> {
|
|
/// Iterator that walks `self` and any types reachable from
|
|
/// `self`, in depth-first order. Note that just walks the types
|
|
/// that appear in `self`, it does not descend into the fields of
|
|
/// structs or variants. For example:
|
|
///
|
|
/// ```text
|
|
/// isize => { isize }
|
|
/// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
|
|
/// [isize] => { [isize], isize }
|
|
/// ```
|
|
pub fn walk(&'tcx self) -> TypeWalker<'tcx> {
|
|
TypeWalker::new(self.into())
|
|
}
|
|
}
|
|
|
|
// We push `GenericArg`s on the stack in reverse order so as to
|
|
// maintain a pre-order traversal. As of the time of this
|
|
// writing, the fact that the traversal is pre-order is not
|
|
// known to be significant to any code, but it seems like the
|
|
// natural order one would expect (basically, the order of the
|
|
// types as they are written).
|
|
fn push_inner<'tcx>(stack: &mut TypeWalkerStack<'tcx>, parent: GenericArg<'tcx>) {
|
|
match parent.unpack() {
|
|
GenericArgKind::Type(parent_ty) => match *parent_ty.kind() {
|
|
ty::Bool
|
|
| ty::Char
|
|
| ty::Int(_)
|
|
| ty::Uint(_)
|
|
| ty::Float(_)
|
|
| ty::Str
|
|
| ty::Infer(_)
|
|
| ty::Param(_)
|
|
| ty::Never
|
|
| ty::Error(_)
|
|
| ty::Placeholder(..)
|
|
| ty::Bound(..)
|
|
| ty::Foreign(..) => {}
|
|
|
|
ty::Array(ty, len) => {
|
|
stack.push(len.into());
|
|
stack.push(ty.into());
|
|
}
|
|
ty::Slice(ty) => {
|
|
stack.push(ty.into());
|
|
}
|
|
ty::RawPtr(mt) => {
|
|
stack.push(mt.ty.into());
|
|
}
|
|
ty::Ref(lt, ty, _) => {
|
|
stack.push(ty.into());
|
|
stack.push(lt.into());
|
|
}
|
|
ty::Projection(data) => {
|
|
stack.extend(data.substs.iter().rev());
|
|
}
|
|
ty::Dynamic(obj, lt) => {
|
|
stack.push(lt.into());
|
|
stack.extend(obj.iter().rev().flat_map(|predicate| {
|
|
let (substs, opt_ty) = match predicate.skip_binder() {
|
|
ty::ExistentialPredicate::Trait(tr) => (tr.substs, None),
|
|
ty::ExistentialPredicate::Projection(p) => (p.substs, Some(p.ty)),
|
|
ty::ExistentialPredicate::AutoTrait(_) =>
|
|
// Empty iterator
|
|
{
|
|
(ty::InternalSubsts::empty(), None)
|
|
}
|
|
};
|
|
|
|
substs.iter().rev().chain(opt_ty.map(|ty| ty.into()))
|
|
}));
|
|
}
|
|
ty::Adt(_, substs)
|
|
| ty::Opaque(_, substs)
|
|
| ty::Closure(_, substs)
|
|
| ty::Generator(_, substs, _)
|
|
| ty::Tuple(substs)
|
|
| ty::FnDef(_, substs) => {
|
|
stack.extend(substs.iter().rev());
|
|
}
|
|
ty::GeneratorWitness(ts) => {
|
|
stack.extend(ts.skip_binder().iter().rev().map(|ty| ty.into()));
|
|
}
|
|
ty::FnPtr(sig) => {
|
|
stack.push(sig.skip_binder().output().into());
|
|
stack.extend(sig.skip_binder().inputs().iter().copied().rev().map(|ty| ty.into()));
|
|
}
|
|
},
|
|
GenericArgKind::Lifetime(_) => {}
|
|
GenericArgKind::Const(parent_ct) => {
|
|
stack.push(parent_ct.ty.into());
|
|
match parent_ct.val {
|
|
ty::ConstKind::Infer(_)
|
|
| ty::ConstKind::Param(_)
|
|
| ty::ConstKind::Placeholder(_)
|
|
| ty::ConstKind::Bound(..)
|
|
| ty::ConstKind::Value(_)
|
|
| ty::ConstKind::Error(_) => {}
|
|
|
|
ty::ConstKind::Unevaluated(_, substs, _) => {
|
|
stack.extend(substs.iter().rev());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|