the behavior of the type system not only depends on the current assumptions, but also the currentnphase of the compiler. This is mostly necessary as we need to decide whether and how to reveal opaque types. We track this via the `TypingMode`.
387 lines
17 KiB
Rust
387 lines
17 KiB
Rust
use rustc_errors::ErrorGuaranteed;
|
|
use rustc_hir::LangItem;
|
|
use rustc_hir::def_id::DefId;
|
|
use rustc_infer::infer::TyCtxtInferExt;
|
|
use rustc_middle::bug;
|
|
use rustc_middle::query::Providers;
|
|
use rustc_middle::traits::{BuiltinImplSource, CodegenObligationError};
|
|
use rustc_middle::ty::util::AsyncDropGlueMorphology;
|
|
use rustc_middle::ty::{
|
|
self, GenericArgsRef, Instance, PseudoCanonicalInput, TyCtxt, TypeVisitableExt,
|
|
};
|
|
use rustc_span::sym;
|
|
use rustc_trait_selection::traits;
|
|
use rustc_type_ir::ClosureKind;
|
|
use tracing::debug;
|
|
use traits::{Reveal, translate_args};
|
|
|
|
use crate::errors::UnexpectedFnPtrAssociatedItem;
|
|
|
|
fn resolve_instance_raw<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
key: ty::PseudoCanonicalInput<'tcx, (DefId, GenericArgsRef<'tcx>)>,
|
|
) -> Result<Option<Instance<'tcx>>, ErrorGuaranteed> {
|
|
let PseudoCanonicalInput { typing_env, value: (def_id, args) } = key;
|
|
|
|
let result = if let Some(trait_def_id) = tcx.trait_of_item(def_id) {
|
|
debug!(" => associated item, attempting to find impl in typing_env {:#?}", typing_env);
|
|
resolve_associated_item(
|
|
tcx,
|
|
def_id,
|
|
typing_env,
|
|
trait_def_id,
|
|
tcx.normalize_erasing_regions(typing_env, args),
|
|
)
|
|
} else {
|
|
let def = if tcx.intrinsic(def_id).is_some() {
|
|
debug!(" => intrinsic");
|
|
ty::InstanceKind::Intrinsic(def_id)
|
|
} else if tcx.is_lang_item(def_id, LangItem::DropInPlace) {
|
|
let ty = args.type_at(0);
|
|
|
|
if ty.needs_drop(tcx, typing_env) {
|
|
debug!(" => nontrivial drop glue");
|
|
match *ty.kind() {
|
|
ty::Closure(..)
|
|
| ty::CoroutineClosure(..)
|
|
| ty::Coroutine(..)
|
|
| ty::Tuple(..)
|
|
| ty::Adt(..)
|
|
| ty::Dynamic(..)
|
|
| ty::Array(..)
|
|
| ty::Slice(..) => {}
|
|
// Drop shims can only be built from ADTs.
|
|
_ => return Ok(None),
|
|
}
|
|
|
|
ty::InstanceKind::DropGlue(def_id, Some(ty))
|
|
} else {
|
|
debug!(" => trivial drop glue");
|
|
ty::InstanceKind::DropGlue(def_id, None)
|
|
}
|
|
} else if tcx.is_lang_item(def_id, LangItem::AsyncDropInPlace) {
|
|
let ty = args.type_at(0);
|
|
|
|
if ty.async_drop_glue_morphology(tcx) != AsyncDropGlueMorphology::Noop {
|
|
match *ty.kind() {
|
|
ty::Closure(..)
|
|
| ty::CoroutineClosure(..)
|
|
| ty::Coroutine(..)
|
|
| ty::Tuple(..)
|
|
| ty::Adt(..)
|
|
| ty::Dynamic(..)
|
|
| ty::Array(..)
|
|
| ty::Slice(..) => {}
|
|
// Async destructor ctor shims can only be built from ADTs.
|
|
_ => return Ok(None),
|
|
}
|
|
debug!(" => nontrivial async drop glue ctor");
|
|
ty::InstanceKind::AsyncDropGlueCtorShim(def_id, Some(ty))
|
|
} else {
|
|
debug!(" => trivial async drop glue ctor");
|
|
ty::InstanceKind::AsyncDropGlueCtorShim(def_id, None)
|
|
}
|
|
} else {
|
|
debug!(" => free item");
|
|
ty::InstanceKind::Item(def_id)
|
|
};
|
|
|
|
Ok(Some(Instance { def, args }))
|
|
};
|
|
debug!("resolve_instance: result={:?}", result);
|
|
result
|
|
}
|
|
|
|
fn resolve_associated_item<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
trait_item_id: DefId,
|
|
typing_env: ty::TypingEnv<'tcx>,
|
|
trait_id: DefId,
|
|
rcvr_args: GenericArgsRef<'tcx>,
|
|
) -> Result<Option<Instance<'tcx>>, ErrorGuaranteed> {
|
|
debug!(?trait_item_id, ?typing_env, ?trait_id, ?rcvr_args, "resolve_associated_item");
|
|
|
|
let trait_ref = ty::TraitRef::from_method(tcx, trait_id, rcvr_args);
|
|
|
|
let input = typing_env.as_query_input(trait_ref);
|
|
let vtbl = match tcx.codegen_select_candidate(input) {
|
|
Ok(vtbl) => vtbl,
|
|
Err(
|
|
CodegenObligationError::Ambiguity
|
|
| CodegenObligationError::Unimplemented
|
|
| CodegenObligationError::FulfillmentError,
|
|
) => return Ok(None),
|
|
};
|
|
|
|
// Now that we know which impl is being used, we can dispatch to
|
|
// the actual function:
|
|
Ok(match vtbl {
|
|
traits::ImplSource::UserDefined(impl_data) => {
|
|
debug!(
|
|
"resolving ImplSource::UserDefined: {:?}, {:?}, {:?}, {:?}",
|
|
typing_env, trait_item_id, rcvr_args, impl_data
|
|
);
|
|
assert!(!rcvr_args.has_infer());
|
|
assert!(!trait_ref.has_infer());
|
|
|
|
let trait_def_id = tcx.trait_id_of_impl(impl_data.impl_def_id).unwrap();
|
|
let trait_def = tcx.trait_def(trait_def_id);
|
|
let leaf_def = trait_def
|
|
.ancestors(tcx, impl_data.impl_def_id)?
|
|
.leaf_def(tcx, trait_item_id)
|
|
.unwrap_or_else(|| {
|
|
bug!("{:?} not found in {:?}", trait_item_id, impl_data.impl_def_id);
|
|
});
|
|
|
|
let typing_env = typing_env.with_reveal_all_normalized(tcx);
|
|
let (infcx, param_env) = tcx.infer_ctxt().build_with_typing_env(typing_env);
|
|
let args = rcvr_args.rebase_onto(tcx, trait_def_id, impl_data.args);
|
|
let args = translate_args(
|
|
&infcx,
|
|
param_env,
|
|
impl_data.impl_def_id,
|
|
args,
|
|
leaf_def.defining_node,
|
|
);
|
|
let args = infcx.tcx.erase_regions(args);
|
|
|
|
// Since this is a trait item, we need to see if the item is either a trait default item
|
|
// or a specialization because we can't resolve those unless we can `Reveal::All`.
|
|
// NOTE: This should be kept in sync with the similar code in
|
|
// `rustc_trait_selection::traits::project::assemble_candidates_from_impls()`.
|
|
let eligible = if leaf_def.is_final() {
|
|
// Non-specializable items are always projectable.
|
|
true
|
|
} else {
|
|
// Only reveal a specializable default if we're past type-checking
|
|
// and the obligation is monomorphic, otherwise passes such as
|
|
// transmute checking and polymorphic MIR optimizations could
|
|
// get a result which isn't correct for all monomorphizations.
|
|
if param_env.reveal() == Reveal::All {
|
|
!trait_ref.still_further_specializable()
|
|
} else {
|
|
false
|
|
}
|
|
};
|
|
if !eligible {
|
|
return Ok(None);
|
|
}
|
|
|
|
// HACK: We may have overlapping `dyn Trait` built-in impls and
|
|
// user-provided blanket impls. Detect that case here, and return
|
|
// ambiguity.
|
|
//
|
|
// This should not affect totally monomorphized contexts, only
|
|
// resolve calls that happen polymorphically, such as the mir-inliner
|
|
// and const-prop (and also some lints).
|
|
let self_ty = rcvr_args.type_at(0);
|
|
if !self_ty.is_known_rigid() {
|
|
let predicates = tcx
|
|
.predicates_of(impl_data.impl_def_id)
|
|
.instantiate(tcx, impl_data.args)
|
|
.predicates;
|
|
let sized_def_id = tcx.lang_items().sized_trait();
|
|
// If we find a `Self: Sized` bound on the item, then we know
|
|
// that `dyn Trait` can certainly never apply here.
|
|
if !predicates.into_iter().filter_map(ty::Clause::as_trait_clause).any(|clause| {
|
|
Some(clause.def_id()) == sized_def_id
|
|
&& clause.skip_binder().self_ty() == self_ty
|
|
}) {
|
|
return Ok(None);
|
|
}
|
|
}
|
|
|
|
// Any final impl is required to define all associated items.
|
|
if !leaf_def.item.defaultness(tcx).has_value() {
|
|
let guar = tcx.dcx().span_delayed_bug(
|
|
tcx.def_span(leaf_def.item.def_id),
|
|
"missing value for assoc item in impl",
|
|
);
|
|
return Err(guar);
|
|
}
|
|
|
|
// Make sure that we're projecting to an item that has compatible args.
|
|
// This may happen if we are resolving an instance before codegen, such
|
|
// as during inlining. This check is also done in projection.
|
|
if !tcx.check_args_compatible(leaf_def.item.def_id, args) {
|
|
let guar = tcx.dcx().span_delayed_bug(
|
|
tcx.def_span(leaf_def.item.def_id),
|
|
"missing value for assoc item in impl",
|
|
);
|
|
return Err(guar);
|
|
}
|
|
|
|
let args = tcx.erase_regions(args);
|
|
|
|
// Check if we just resolved an associated `const` declaration from
|
|
// a `trait` to an associated `const` definition in an `impl`, where
|
|
// the definition in the `impl` has the wrong type (for which an
|
|
// error has already been/will be emitted elsewhere).
|
|
if leaf_def.item.kind == ty::AssocKind::Const
|
|
&& trait_item_id != leaf_def.item.def_id
|
|
&& let Some(leaf_def_item) = leaf_def.item.def_id.as_local()
|
|
{
|
|
tcx.compare_impl_const((leaf_def_item, trait_item_id))?;
|
|
}
|
|
|
|
Some(ty::Instance::new(leaf_def.item.def_id, args))
|
|
}
|
|
traits::ImplSource::Builtin(BuiltinImplSource::Object(_), _) => {
|
|
let trait_ref = ty::TraitRef::from_method(tcx, trait_id, rcvr_args);
|
|
if trait_ref.has_non_region_infer() || trait_ref.has_non_region_param() {
|
|
// We only resolve totally substituted vtable entries.
|
|
None
|
|
} else {
|
|
let vtable_base = tcx.first_method_vtable_slot(trait_ref);
|
|
let offset = tcx
|
|
.own_existential_vtable_entries(trait_id)
|
|
.iter()
|
|
.copied()
|
|
.position(|def_id| def_id == trait_item_id);
|
|
offset.map(|offset| Instance {
|
|
def: ty::InstanceKind::Virtual(trait_item_id, vtable_base + offset),
|
|
args: rcvr_args,
|
|
})
|
|
}
|
|
}
|
|
traits::ImplSource::Builtin(BuiltinImplSource::Misc, _) => {
|
|
if tcx.is_lang_item(trait_ref.def_id, LangItem::Clone) {
|
|
// FIXME(eddyb) use lang items for methods instead of names.
|
|
let name = tcx.item_name(trait_item_id);
|
|
if name == sym::clone {
|
|
let self_ty = trait_ref.self_ty();
|
|
match self_ty.kind() {
|
|
ty::FnDef(..) | ty::FnPtr(..) => (),
|
|
ty::Coroutine(..)
|
|
| ty::CoroutineWitness(..)
|
|
| ty::Closure(..)
|
|
| ty::CoroutineClosure(..)
|
|
| ty::Tuple(..) => {}
|
|
_ => return Ok(None),
|
|
};
|
|
|
|
Some(Instance {
|
|
def: ty::InstanceKind::CloneShim(trait_item_id, self_ty),
|
|
args: rcvr_args,
|
|
})
|
|
} else {
|
|
assert_eq!(name, sym::clone_from);
|
|
|
|
// Use the default `fn clone_from` from `trait Clone`.
|
|
let args = tcx.erase_regions(rcvr_args);
|
|
Some(ty::Instance::new(trait_item_id, args))
|
|
}
|
|
} else if tcx.is_lang_item(trait_ref.def_id, LangItem::FnPtrTrait) {
|
|
if tcx.is_lang_item(trait_item_id, LangItem::FnPtrAddr) {
|
|
let self_ty = trait_ref.self_ty();
|
|
if !matches!(self_ty.kind(), ty::FnPtr(..)) {
|
|
return Ok(None);
|
|
}
|
|
Some(Instance {
|
|
def: ty::InstanceKind::FnPtrAddrShim(trait_item_id, self_ty),
|
|
args: rcvr_args,
|
|
})
|
|
} else {
|
|
tcx.dcx().emit_fatal(UnexpectedFnPtrAssociatedItem {
|
|
span: tcx.def_span(trait_item_id),
|
|
})
|
|
}
|
|
} else if let Some(target_kind) = tcx.fn_trait_kind_from_def_id(trait_ref.def_id) {
|
|
// FIXME: This doesn't check for malformed libcore that defines, e.g.,
|
|
// `trait Fn { fn call_once(&self) { .. } }`. This is mostly for extension
|
|
// methods.
|
|
if cfg!(debug_assertions)
|
|
&& ![sym::call, sym::call_mut, sym::call_once]
|
|
.contains(&tcx.item_name(trait_item_id))
|
|
{
|
|
// For compiler developers who'd like to add new items to `Fn`/`FnMut`/`FnOnce`,
|
|
// you either need to generate a shim body, or perhaps return
|
|
// `InstanceKind::Item` pointing to a trait default method body if
|
|
// it is given a default implementation by the trait.
|
|
bug!(
|
|
"no definition for `{trait_ref}::{}` for built-in callable type",
|
|
tcx.item_name(trait_item_id)
|
|
)
|
|
}
|
|
match *rcvr_args.type_at(0).kind() {
|
|
ty::Closure(closure_def_id, args) => {
|
|
Some(Instance::resolve_closure(tcx, closure_def_id, args, target_kind))
|
|
}
|
|
ty::FnDef(..) | ty::FnPtr(..) => Some(Instance {
|
|
def: ty::InstanceKind::FnPtrShim(trait_item_id, rcvr_args.type_at(0)),
|
|
args: rcvr_args,
|
|
}),
|
|
ty::CoroutineClosure(coroutine_closure_def_id, args) => {
|
|
// When a coroutine-closure implements the `Fn` traits, then it
|
|
// always dispatches to the `FnOnce` implementation. This is to
|
|
// ensure that the `closure_kind` of the resulting closure is in
|
|
// sync with the built-in trait implementations (since all of the
|
|
// implementations return `FnOnce::Output`).
|
|
if ty::ClosureKind::FnOnce == args.as_coroutine_closure().kind() {
|
|
Some(Instance::new(coroutine_closure_def_id, args))
|
|
} else {
|
|
Some(Instance {
|
|
def: ty::InstanceKind::ConstructCoroutineInClosureShim {
|
|
coroutine_closure_def_id,
|
|
receiver_by_ref: target_kind != ty::ClosureKind::FnOnce,
|
|
},
|
|
args,
|
|
})
|
|
}
|
|
}
|
|
_ => bug!(
|
|
"no built-in definition for `{trait_ref}::{}` for non-fn type",
|
|
tcx.item_name(trait_item_id)
|
|
),
|
|
}
|
|
} else if let Some(target_kind) = tcx.async_fn_trait_kind_from_def_id(trait_ref.def_id)
|
|
{
|
|
match *rcvr_args.type_at(0).kind() {
|
|
ty::CoroutineClosure(coroutine_closure_def_id, args) => {
|
|
if target_kind == ClosureKind::FnOnce
|
|
&& args.as_coroutine_closure().kind() != ClosureKind::FnOnce
|
|
{
|
|
// If we're computing `AsyncFnOnce` for a by-ref closure then
|
|
// construct a new body that has the right return types.
|
|
Some(Instance {
|
|
def: ty::InstanceKind::ConstructCoroutineInClosureShim {
|
|
coroutine_closure_def_id,
|
|
receiver_by_ref: false,
|
|
},
|
|
args,
|
|
})
|
|
} else {
|
|
Some(Instance::new(coroutine_closure_def_id, args))
|
|
}
|
|
}
|
|
ty::Closure(closure_def_id, args) => {
|
|
Some(Instance::resolve_closure(tcx, closure_def_id, args, target_kind))
|
|
}
|
|
ty::FnDef(..) | ty::FnPtr(..) => Some(Instance {
|
|
def: ty::InstanceKind::FnPtrShim(trait_item_id, rcvr_args.type_at(0)),
|
|
args: rcvr_args,
|
|
}),
|
|
_ => bug!(
|
|
"no built-in definition for `{trait_ref}::{}` for non-lending-closure type",
|
|
tcx.item_name(trait_item_id)
|
|
),
|
|
}
|
|
} else if tcx.is_lang_item(trait_ref.def_id, LangItem::TransmuteTrait) {
|
|
let name = tcx.item_name(trait_item_id);
|
|
assert_eq!(name, sym::transmute);
|
|
let args = tcx.erase_regions(rcvr_args);
|
|
Some(ty::Instance::new(trait_item_id, args))
|
|
} else {
|
|
Instance::try_resolve_item_for_coroutine(tcx, trait_item_id, trait_id, rcvr_args)
|
|
}
|
|
}
|
|
traits::ImplSource::Param(..)
|
|
| traits::ImplSource::Builtin(BuiltinImplSource::TraitUpcasting { .. }, _)
|
|
| traits::ImplSource::Builtin(BuiltinImplSource::TupleUnsizing, _) => None,
|
|
})
|
|
}
|
|
|
|
pub(crate) fn provide(providers: &mut Providers) {
|
|
*providers = Providers { resolve_instance_raw, ..*providers };
|
|
}
|