Files
rust/library/core/src/num/nonzero.rs
2024-03-01 13:49:37 +01:00

1629 lines
62 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//! Definitions of integer that is known not to equal zero.
use crate::cmp::Ordering;
use crate::fmt;
use crate::hash::{Hash, Hasher};
use crate::intrinsics;
use crate::marker::StructuralPartialEq;
use crate::ops::{BitOr, BitOrAssign, Div, Neg, Rem};
use crate::str::FromStr;
use super::from_str_radix;
use super::{IntErrorKind, ParseIntError};
mod private {
#[unstable(
feature = "nonzero_internals",
reason = "implementation detail which may disappear or be replaced at any time",
issue = "none"
)]
#[const_trait]
pub trait Sealed {}
}
/// A marker trait for primitive types which can be zero.
///
/// This is an implementation detail for <code>[NonZero]\<T></code> which may disappear or be replaced at any time.
///
/// # Safety
///
/// Types implementing this trait must be primitves that are valid when zeroed.
#[unstable(
feature = "nonzero_internals",
reason = "implementation detail which may disappear or be replaced at any time",
issue = "none"
)]
#[const_trait]
pub unsafe trait ZeroablePrimitive: Sized + Copy + private::Sealed {}
macro_rules! impl_zeroable_primitive {
($primitive:ty) => {
#[unstable(
feature = "nonzero_internals",
reason = "implementation detail which may disappear or be replaced at any time",
issue = "none"
)]
impl const private::Sealed for $primitive {}
#[unstable(
feature = "nonzero_internals",
reason = "implementation detail which may disappear or be replaced at any time",
issue = "none"
)]
unsafe impl const ZeroablePrimitive for $primitive {}
};
}
impl_zeroable_primitive!(u8);
impl_zeroable_primitive!(u16);
impl_zeroable_primitive!(u32);
impl_zeroable_primitive!(u64);
impl_zeroable_primitive!(u128);
impl_zeroable_primitive!(usize);
impl_zeroable_primitive!(i8);
impl_zeroable_primitive!(i16);
impl_zeroable_primitive!(i32);
impl_zeroable_primitive!(i64);
impl_zeroable_primitive!(i128);
impl_zeroable_primitive!(isize);
/// A value that is known not to equal zero.
///
/// This enables some memory layout optimization.
/// For example, `Option<NonZero<u32>>` is the same size as `u32`:
///
/// ```
/// #![feature(generic_nonzero)]
/// use core::mem::size_of;
///
/// assert_eq!(size_of::<Option<core::num::NonZero<u32>>>(), size_of::<u32>());
/// ```
#[unstable(feature = "generic_nonzero", issue = "120257")]
#[repr(transparent)]
#[rustc_layout_scalar_valid_range_start(1)]
#[rustc_nonnull_optimization_guaranteed]
#[rustc_diagnostic_item = "NonZero"]
pub struct NonZero<T: ZeroablePrimitive>(T);
macro_rules! impl_nonzero_fmt {
($Trait:ident) => {
#[stable(feature = "nonzero", since = "1.28.0")]
impl<T> fmt::$Trait for NonZero<T>
where
T: ZeroablePrimitive + fmt::$Trait,
{
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.get().fmt(f)
}
}
};
}
impl_nonzero_fmt!(Debug);
impl_nonzero_fmt!(Display);
impl_nonzero_fmt!(Binary);
impl_nonzero_fmt!(Octal);
impl_nonzero_fmt!(LowerHex);
impl_nonzero_fmt!(UpperHex);
#[stable(feature = "nonzero", since = "1.28.0")]
impl<T> Clone for NonZero<T>
where
T: ZeroablePrimitive,
{
#[inline]
fn clone(&self) -> Self {
// SAFETY: The contained value is non-zero.
unsafe { Self(self.0) }
}
}
#[stable(feature = "nonzero", since = "1.28.0")]
impl<T> Copy for NonZero<T> where T: ZeroablePrimitive {}
#[stable(feature = "nonzero", since = "1.28.0")]
impl<T> PartialEq for NonZero<T>
where
T: ZeroablePrimitive + PartialEq,
{
#[inline]
fn eq(&self, other: &Self) -> bool {
self.get() == other.get()
}
#[inline]
fn ne(&self, other: &Self) -> bool {
self.get() != other.get()
}
}
#[unstable(feature = "structural_match", issue = "31434")]
impl<T> StructuralPartialEq for NonZero<T> where T: ZeroablePrimitive + StructuralPartialEq {}
#[stable(feature = "nonzero", since = "1.28.0")]
impl<T> Eq for NonZero<T> where T: ZeroablePrimitive + Eq {}
#[stable(feature = "nonzero", since = "1.28.0")]
impl<T> PartialOrd for NonZero<T>
where
T: ZeroablePrimitive + PartialOrd,
{
#[inline]
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.get().partial_cmp(&other.get())
}
#[inline]
fn lt(&self, other: &Self) -> bool {
self.get() < other.get()
}
#[inline]
fn le(&self, other: &Self) -> bool {
self.get() <= other.get()
}
#[inline]
fn gt(&self, other: &Self) -> bool {
self.get() > other.get()
}
#[inline]
fn ge(&self, other: &Self) -> bool {
self.get() >= other.get()
}
}
#[stable(feature = "nonzero", since = "1.28.0")]
impl<T> Ord for NonZero<T>
where
T: ZeroablePrimitive + Ord,
{
#[inline]
fn cmp(&self, other: &Self) -> Ordering {
self.get().cmp(&other.get())
}
#[inline]
fn max(self, other: Self) -> Self {
// SAFETY: The maximum of two non-zero values is still non-zero.
unsafe { Self(self.get().max(other.get())) }
}
#[inline]
fn min(self, other: Self) -> Self {
// SAFETY: The minimum of two non-zero values is still non-zero.
unsafe { Self(self.get().min(other.get())) }
}
#[inline]
fn clamp(self, min: Self, max: Self) -> Self {
// SAFETY: A non-zero value clamped between two non-zero values is still non-zero.
unsafe { Self(self.get().clamp(min.get(), max.get())) }
}
}
#[stable(feature = "nonzero", since = "1.28.0")]
impl<T> Hash for NonZero<T>
where
T: ZeroablePrimitive + Hash,
{
#[inline]
fn hash<H>(&self, state: &mut H)
where
H: Hasher,
{
self.get().hash(state)
}
}
#[stable(feature = "from_nonzero", since = "1.31.0")]
impl<T> From<NonZero<T>> for T
where
T: ZeroablePrimitive,
{
#[inline]
fn from(nonzero: NonZero<T>) -> Self {
// Call `get` method to keep range information.
nonzero.get()
}
}
#[stable(feature = "nonzero_bitor", since = "1.45.0")]
impl<T> BitOr for NonZero<T>
where
T: ZeroablePrimitive + BitOr<Output = T>,
{
type Output = Self;
#[inline]
fn bitor(self, rhs: Self) -> Self::Output {
// SAFETY: Bitwise OR of two non-zero values is still non-zero.
unsafe { Self(self.get() | rhs.get()) }
}
}
#[stable(feature = "nonzero_bitor", since = "1.45.0")]
impl<T> BitOr<T> for NonZero<T>
where
T: ZeroablePrimitive + BitOr<Output = T>,
{
type Output = Self;
#[inline]
fn bitor(self, rhs: T) -> Self::Output {
// SAFETY: Bitwise OR of a non-zero value with anything is still non-zero.
unsafe { Self(self.get() | rhs) }
}
}
#[stable(feature = "nonzero_bitor", since = "1.45.0")]
impl<T> BitOr<NonZero<T>> for T
where
T: ZeroablePrimitive + BitOr<Output = T>,
{
type Output = NonZero<T>;
#[inline]
fn bitor(self, rhs: NonZero<T>) -> Self::Output {
// SAFETY: Bitwise OR of anything with a non-zero value is still non-zero.
unsafe { NonZero(self | rhs.get()) }
}
}
#[stable(feature = "nonzero_bitor", since = "1.45.0")]
impl<T> BitOrAssign for NonZero<T>
where
T: ZeroablePrimitive,
Self: BitOr<Output = Self>,
{
#[inline]
fn bitor_assign(&mut self, rhs: Self) {
*self = *self | rhs;
}
}
#[stable(feature = "nonzero_bitor", since = "1.45.0")]
impl<T> BitOrAssign<T> for NonZero<T>
where
T: ZeroablePrimitive,
Self: BitOr<T, Output = Self>,
{
#[inline]
fn bitor_assign(&mut self, rhs: T) {
*self = *self | rhs;
}
}
impl<T> NonZero<T>
where
T: ZeroablePrimitive,
{
/// Creates a non-zero if the given value is not zero.
#[stable(feature = "nonzero", since = "1.28.0")]
#[rustc_const_stable(feature = "const_nonzero_int_methods", since = "1.47.0")]
#[must_use]
#[inline]
pub const fn new(n: T) -> Option<Self> {
// SAFETY: Memory layout optimization guarantees that `Option<NonZero<T>>` has
// the same layout and size as `T`, with `0` representing `None`.
unsafe { intrinsics::transmute_unchecked(n) }
}
/// Creates a non-zero without checking whether the value is non-zero.
/// This results in undefined behaviour if the value is zero.
///
/// # Safety
///
/// The value must not be zero.
#[stable(feature = "nonzero", since = "1.28.0")]
#[rustc_const_stable(feature = "nonzero", since = "1.28.0")]
#[must_use]
#[inline]
pub const unsafe fn new_unchecked(n: T) -> Self {
match Self::new(n) {
Some(n) => n,
None => {
// SAFETY: The caller guarantees that `n` is non-zero, so this is unreachable.
unsafe {
intrinsics::assert_unsafe_precondition!(
"NonZero::new_unchecked requires the argument to be non-zero",
() => false,
);
intrinsics::unreachable()
}
}
}
}
/// Converts a reference to a non-zero mutable reference
/// if the referenced value is not zero.
#[unstable(feature = "nonzero_from_mut", issue = "106290")]
#[must_use]
#[inline]
pub fn from_mut(n: &mut T) -> Option<&mut Self> {
// SAFETY: Memory layout optimization guarantees that `Option<NonZero<T>>` has
// the same layout and size as `T`, with `0` representing `None`.
let opt_n = unsafe { &mut *(n as *mut T as *mut Option<Self>) };
opt_n.as_mut()
}
/// Converts a mutable reference to a non-zero mutable reference
/// without checking whether the referenced value is non-zero.
/// This results in undefined behavior if the referenced value is zero.
///
/// # Safety
///
/// The referenced value must not be zero.
#[unstable(feature = "nonzero_from_mut", issue = "106290")]
#[must_use]
#[inline]
pub unsafe fn from_mut_unchecked(n: &mut T) -> &mut Self {
match Self::from_mut(n) {
Some(n) => n,
None => {
// SAFETY: The caller guarantees that `n` references a value that is non-zero, so this is unreachable.
unsafe {
intrinsics::assert_unsafe_precondition!(
"NonZero::from_mut_unchecked requires the argument to dereference as non-zero",
() => false,
);
intrinsics::unreachable()
}
}
}
}
/// Returns the contained value as a primitive type.
#[stable(feature = "nonzero", since = "1.28.0")]
#[rustc_const_stable(feature = "const_nonzero_get", since = "1.34.0")]
#[inline]
pub const fn get(self) -> T {
// FIXME: This can be changed to simply `self.0` once LLVM supports `!range` metadata
// for function arguments: https://github.com/llvm/llvm-project/issues/76628
//
// Rustc can set range metadata only if it loads `self` from
// memory somewhere. If the value of `self` was from by-value argument
// of some not-inlined function, LLVM don't have range metadata
// to understand that the value cannot be zero.
match Self::new(self.0) {
Some(Self(n)) => n,
None => {
// SAFETY: `NonZero` is guaranteed to only contain non-zero values, so this is unreachable.
unsafe { intrinsics::unreachable() }
}
}
}
}
macro_rules! nonzero_integer {
(
#[$stability:meta]
Self = $Ty:ident,
Primitive = $signedness:ident $Int:ident,
$(UnsignedNonZero = $UnsignedNonZero:ident,)?
UnsignedPrimitive = $UnsignedPrimitive:ty,
// Used in doc comments.
leading_zeros_test = $leading_zeros_test:expr,
) => {
/// An integer that is known not to equal zero.
///
/// This enables some memory layout optimization.
#[doc = concat!("For example, `Option<", stringify!($Ty), ">` is the same size as `", stringify!($Int), "`:")]
///
/// ```rust
/// use std::mem::size_of;
#[doc = concat!("assert_eq!(size_of::<Option<core::num::", stringify!($Ty), ">>(), size_of::<", stringify!($Int), ">());")]
/// ```
///
/// # Layout
///
#[doc = concat!("`", stringify!($Ty), "` is guaranteed to have the same layout and bit validity as `", stringify!($Int), "`")]
/// with the exception that `0` is not a valid instance.
#[doc = concat!("`Option<", stringify!($Ty), ">` is guaranteed to be compatible with `", stringify!($Int), "`,")]
/// including in FFI.
///
/// Thanks to the [null pointer optimization],
#[doc = concat!("`", stringify!($Ty), "` and `Option<", stringify!($Ty), ">`")]
/// are guaranteed to have the same size and alignment:
///
/// ```
/// # use std::mem::{size_of, align_of};
#[doc = concat!("use std::num::", stringify!($Ty), ";")]
///
#[doc = concat!("assert_eq!(size_of::<", stringify!($Ty), ">(), size_of::<Option<", stringify!($Ty), ">>());")]
#[doc = concat!("assert_eq!(align_of::<", stringify!($Ty), ">(), align_of::<Option<", stringify!($Ty), ">>());")]
/// ```
///
/// [null pointer optimization]: crate::option#representation
#[$stability]
pub type $Ty = NonZero<$Int>;
impl $Ty {
/// The size of this non-zero integer type in bits.
///
#[doc = concat!("This value is equal to [`", stringify!($Int), "::BITS`].")]
///
/// # Examples
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
///
#[doc = concat!("assert_eq!(", stringify!($Ty), "::BITS, ", stringify!($Int), "::BITS);")]
/// ```
#[stable(feature = "nonzero_bits", since = "1.67.0")]
pub const BITS: u32 = <$Int>::BITS;
/// Returns the number of leading zeros in the binary representation of `self`.
///
/// On many architectures, this function can perform better than `leading_zeros()` on the underlying integer type, as special handling of zero can be avoided.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = std::num::", stringify!($Ty), "::new(", $leading_zeros_test, ").unwrap();")]
///
/// assert_eq!(n.leading_zeros(), 0);
/// ```
#[stable(feature = "nonzero_leading_trailing_zeros", since = "1.53.0")]
#[rustc_const_stable(feature = "nonzero_leading_trailing_zeros", since = "1.53.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn leading_zeros(self) -> u32 {
// SAFETY: since `self` cannot be zero, it is safe to call `ctlz_nonzero`.
unsafe { intrinsics::ctlz_nonzero(self.get() as $UnsignedPrimitive) as u32 }
}
/// Returns the number of trailing zeros in the binary representation
/// of `self`.
///
/// On many architectures, this function can perform better than `trailing_zeros()` on the underlying integer type, as special handling of zero can be avoided.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let n = std::num::", stringify!($Ty), "::new(0b0101000).unwrap();")]
///
/// assert_eq!(n.trailing_zeros(), 3);
/// ```
#[stable(feature = "nonzero_leading_trailing_zeros", since = "1.53.0")]
#[rustc_const_stable(feature = "nonzero_leading_trailing_zeros", since = "1.53.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn trailing_zeros(self) -> u32 {
// SAFETY: since `self` cannot be zero, it is safe to call `cttz_nonzero`.
unsafe { intrinsics::cttz_nonzero(self.get() as $UnsignedPrimitive) as u32 }
}
/// Returns the number of ones in the binary representation of `self`.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// #![feature(generic_nonzero, non_zero_count_ones)]
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
/// # use std::num::*;
/// #
#[doc = concat!("let a = NonZero::<", stringify!($Int), ">::new(0b100_0000)?;")]
#[doc = concat!("let b = NonZero::<", stringify!($Int), ">::new(0b100_0011)?;")]
///
/// assert_eq!(a.count_ones(), NonZero::new(1)?);
/// assert_eq!(b.count_ones(), NonZero::new(3)?);
/// # Some(())
/// # }
/// ```
///
#[unstable(feature = "non_zero_count_ones", issue = "120287")]
#[rustc_const_unstable(feature = "non_zero_count_ones", issue = "120287")]
#[doc(alias = "popcount")]
#[doc(alias = "popcnt")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline(always)]
pub const fn count_ones(self) -> NonZero<u32> {
// SAFETY:
// `self` is non-zero, which means it has at least one bit set, which means
// that the result of `count_ones` is non-zero.
unsafe { NonZero::new_unchecked(self.get().count_ones()) }
}
nonzero_integer_signedness_dependent_methods! {
Self = $Ty,
Primitive = $signedness $Int,
$(UnsignedNonZero = $UnsignedNonZero,)?
UnsignedPrimitive = $UnsignedPrimitive,
}
/// Multiplies two non-zero integers together.
/// Checks for overflow and returns [`None`] on overflow.
/// As a consequence, the result cannot wrap to zero.
///
/// # Examples
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let two = ", stringify!($Ty), "::new(2)?;")]
#[doc = concat!("let four = ", stringify!($Ty), "::new(4)?;")]
#[doc = concat!("let max = ", stringify!($Ty), "::new(",
stringify!($Int), "::MAX)?;")]
///
/// assert_eq!(Some(four), two.checked_mul(two));
/// assert_eq!(None, max.checked_mul(two));
/// # Some(())
/// # }
/// ```
#[stable(feature = "nonzero_checked_ops", since = "1.64.0")]
#[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_mul(self, other: Self) -> Option<Self> {
if let Some(result) = self.get().checked_mul(other.get()) {
// SAFETY:
// - `checked_mul` returns `None` on overflow
// - `self` and `other` are non-zero
// - the only way to get zero from a multiplication without overflow is for one
// of the sides to be zero
//
// So the result cannot be zero.
Some(unsafe { Self::new_unchecked(result) })
} else {
None
}
}
/// Multiplies two non-zero integers together.
#[doc = concat!("Return [`", stringify!($Ty), "::MAX`] on overflow.")]
///
/// # Examples
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let two = ", stringify!($Ty), "::new(2)?;")]
#[doc = concat!("let four = ", stringify!($Ty), "::new(4)?;")]
#[doc = concat!("let max = ", stringify!($Ty), "::new(",
stringify!($Int), "::MAX)?;")]
///
/// assert_eq!(four, two.saturating_mul(two));
/// assert_eq!(max, four.saturating_mul(max));
/// # Some(())
/// # }
/// ```
#[stable(feature = "nonzero_checked_ops", since = "1.64.0")]
#[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn saturating_mul(self, other: Self) -> Self {
// SAFETY:
// - `saturating_mul` returns `u*::MAX`/`i*::MAX`/`i*::MIN` on overflow/underflow,
// all of which are non-zero
// - `self` and `other` are non-zero
// - the only way to get zero from a multiplication without overflow is for one
// of the sides to be zero
//
// So the result cannot be zero.
unsafe { Self::new_unchecked(self.get().saturating_mul(other.get())) }
}
/// Multiplies two non-zero integers together,
/// assuming overflow cannot occur.
/// Overflow is unchecked, and it is undefined behaviour to overflow
/// *even if the result would wrap to a non-zero value*.
/// The behaviour is undefined as soon as
#[doc = sign_dependent_expr!{
$signedness ?
if signed {
concat!("`self * rhs > ", stringify!($Int), "::MAX`, ",
"or `self * rhs < ", stringify!($Int), "::MIN`.")
}
if unsigned {
concat!("`self * rhs > ", stringify!($Int), "::MAX`.")
}
}]
///
/// # Examples
///
/// ```
/// #![feature(nonzero_ops)]
///
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let two = ", stringify!($Ty), "::new(2)?;")]
#[doc = concat!("let four = ", stringify!($Ty), "::new(4)?;")]
///
/// assert_eq!(four, unsafe { two.unchecked_mul(two) });
/// # Some(())
/// # }
/// ```
#[unstable(feature = "nonzero_ops", issue = "84186")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const unsafe fn unchecked_mul(self, other: Self) -> Self {
// SAFETY: The caller ensures there is no overflow.
unsafe { Self::new_unchecked(self.get().unchecked_mul(other.get())) }
}
/// Raises non-zero value to an integer power.
/// Checks for overflow and returns [`None`] on overflow.
/// As a consequence, the result cannot wrap to zero.
///
/// # Examples
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let three = ", stringify!($Ty), "::new(3)?;")]
#[doc = concat!("let twenty_seven = ", stringify!($Ty), "::new(27)?;")]
#[doc = concat!("let half_max = ", stringify!($Ty), "::new(",
stringify!($Int), "::MAX / 2)?;")]
///
/// assert_eq!(Some(twenty_seven), three.checked_pow(3));
/// assert_eq!(None, half_max.checked_pow(3));
/// # Some(())
/// # }
/// ```
#[stable(feature = "nonzero_checked_ops", since = "1.64.0")]
#[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_pow(self, other: u32) -> Option<Self> {
if let Some(result) = self.get().checked_pow(other) {
// SAFETY:
// - `checked_pow` returns `None` on overflow/underflow
// - `self` is non-zero
// - the only way to get zero from an exponentiation without overflow is
// for base to be zero
//
// So the result cannot be zero.
Some(unsafe { Self::new_unchecked(result) })
} else {
None
}
}
/// Raise non-zero value to an integer power.
#[doc = sign_dependent_expr!{
$signedness ?
if signed {
concat!("Return [`", stringify!($Ty), "::MIN`] ",
"or [`", stringify!($Ty), "::MAX`] on overflow.")
}
if unsigned {
concat!("Return [`", stringify!($Ty), "::MAX`] on overflow.")
}
}]
///
/// # Examples
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let three = ", stringify!($Ty), "::new(3)?;")]
#[doc = concat!("let twenty_seven = ", stringify!($Ty), "::new(27)?;")]
#[doc = concat!("let max = ", stringify!($Ty), "::new(",
stringify!($Int), "::MAX)?;")]
///
/// assert_eq!(twenty_seven, three.saturating_pow(3));
/// assert_eq!(max, max.saturating_pow(3));
/// # Some(())
/// # }
/// ```
#[stable(feature = "nonzero_checked_ops", since = "1.64.0")]
#[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn saturating_pow(self, other: u32) -> Self {
// SAFETY:
// - `saturating_pow` returns `u*::MAX`/`i*::MAX`/`i*::MIN` on overflow/underflow,
// all of which are non-zero
// - `self` is non-zero
// - the only way to get zero from an exponentiation without overflow is
// for base to be zero
//
// So the result cannot be zero.
unsafe { Self::new_unchecked(self.get().saturating_pow(other)) }
}
}
#[stable(feature = "nonzero_parse", since = "1.35.0")]
impl FromStr for $Ty {
type Err = ParseIntError;
fn from_str(src: &str) -> Result<Self, Self::Err> {
Self::new(from_str_radix(src, 10)?)
.ok_or(ParseIntError {
kind: IntErrorKind::Zero
})
}
}
nonzero_integer_signedness_dependent_impls!($Ty $signedness $Int);
};
(Self = $Ty:ident, Primitive = unsigned $Int:ident $(,)?) => {
nonzero_integer! {
#[stable(feature = "nonzero", since = "1.28.0")]
Self = $Ty,
Primitive = unsigned $Int,
UnsignedPrimitive = $Int,
leading_zeros_test = concat!(stringify!($Int), "::MAX"),
}
};
(Self = $Ty:ident, Primitive = signed $Int:ident, $($rest:tt)*) => {
nonzero_integer! {
#[stable(feature = "signed_nonzero", since = "1.34.0")]
Self = $Ty,
Primitive = signed $Int,
$($rest)*
leading_zeros_test = concat!("-1", stringify!($Int)),
}
};
}
macro_rules! nonzero_integer_signedness_dependent_impls {
// Impls for unsigned nonzero types only.
($Ty:ident unsigned $Int:ty) => {
#[stable(feature = "nonzero_div", since = "1.51.0")]
impl Div<$Ty> for $Int {
type Output = $Int;
/// This operation rounds towards zero,
/// truncating any fractional part of the exact result, and cannot panic.
#[inline]
fn div(self, other: $Ty) -> $Int {
// SAFETY: div by zero is checked because `other` is a nonzero,
// and MIN/-1 is checked because `self` is an unsigned int.
unsafe { intrinsics::unchecked_div(self, other.get()) }
}
}
#[stable(feature = "nonzero_div", since = "1.51.0")]
impl Rem<$Ty> for $Int {
type Output = $Int;
/// This operation satisfies `n % d == n - (n / d) * d`, and cannot panic.
#[inline]
fn rem(self, other: $Ty) -> $Int {
// SAFETY: rem by zero is checked because `other` is a nonzero,
// and MIN/-1 is checked because `self` is an unsigned int.
unsafe { intrinsics::unchecked_rem(self, other.get()) }
}
}
};
// Impls for signed nonzero types only.
($Ty:ident signed $Int:ty) => {
#[stable(feature = "signed_nonzero_neg", since = "1.71.0")]
impl Neg for $Ty {
type Output = Self;
#[inline]
fn neg(self) -> Self {
// SAFETY: negation of nonzero cannot yield zero values.
unsafe { Self::new_unchecked(self.get().neg()) }
}
}
forward_ref_unop! { impl Neg, neg for $Ty,
#[stable(feature = "signed_nonzero_neg", since = "1.71.0")] }
};
}
#[rustfmt::skip] // https://github.com/rust-lang/rustfmt/issues/5974
macro_rules! nonzero_integer_signedness_dependent_methods {
// Associated items for unsigned nonzero types only.
(
Self = $Ty:ident,
Primitive = unsigned $Int:ident,
UnsignedPrimitive = $Uint:ty,
) => {
/// The smallest value that can be represented by this non-zero
/// integer type, 1.
///
/// # Examples
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
#[doc = concat!("assert_eq!(", stringify!($Ty), "::MIN.get(), 1", stringify!($Int), ");")]
/// ```
#[stable(feature = "nonzero_min_max", since = "1.70.0")]
pub const MIN: Self = Self::new(1).unwrap();
/// The largest value that can be represented by this non-zero
/// integer type,
#[doc = concat!("equal to [`", stringify!($Int), "::MAX`].")]
///
/// # Examples
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
#[doc = concat!("assert_eq!(", stringify!($Ty), "::MAX.get(), ", stringify!($Int), "::MAX);")]
/// ```
#[stable(feature = "nonzero_min_max", since = "1.70.0")]
pub const MAX: Self = Self::new(<$Int>::MAX).unwrap();
/// Adds an unsigned integer to a non-zero value.
/// Checks for overflow and returns [`None`] on overflow.
/// As a consequence, the result cannot wrap to zero.
///
///
/// # Examples
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let one = ", stringify!($Ty), "::new(1)?;")]
#[doc = concat!("let two = ", stringify!($Ty), "::new(2)?;")]
#[doc = concat!("let max = ", stringify!($Ty), "::new(",
stringify!($Int), "::MAX)?;")]
///
/// assert_eq!(Some(two), one.checked_add(1));
/// assert_eq!(None, max.checked_add(1));
/// # Some(())
/// # }
/// ```
#[stable(feature = "nonzero_checked_ops", since = "1.64.0")]
#[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_add(self, other: $Int) -> Option<Self> {
if let Some(result) = self.get().checked_add(other) {
// SAFETY:
// - `checked_add` returns `None` on overflow
// - `self` is non-zero
// - the only way to get zero from an addition without overflow is for both
// sides to be zero
//
// So the result cannot be zero.
Some(unsafe { Self::new_unchecked(result) })
} else {
None
}
}
/// Adds an unsigned integer to a non-zero value.
#[doc = concat!("Return [`", stringify!($Ty), "::MAX`] on overflow.")]
///
/// # Examples
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let one = ", stringify!($Ty), "::new(1)?;")]
#[doc = concat!("let two = ", stringify!($Ty), "::new(2)?;")]
#[doc = concat!("let max = ", stringify!($Ty), "::new(",
stringify!($Int), "::MAX)?;")]
///
/// assert_eq!(two, one.saturating_add(1));
/// assert_eq!(max, max.saturating_add(1));
/// # Some(())
/// # }
/// ```
#[stable(feature = "nonzero_checked_ops", since = "1.64.0")]
#[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn saturating_add(self, other: $Int) -> Self {
// SAFETY:
// - `saturating_add` returns `u*::MAX` on overflow, which is non-zero
// - `self` is non-zero
// - the only way to get zero from an addition without overflow is for both
// sides to be zero
//
// So the result cannot be zero.
unsafe { Self::new_unchecked(self.get().saturating_add(other)) }
}
/// Adds an unsigned integer to a non-zero value,
/// assuming overflow cannot occur.
/// Overflow is unchecked, and it is undefined behaviour to overflow
/// *even if the result would wrap to a non-zero value*.
/// The behaviour is undefined as soon as
#[doc = concat!("`self + rhs > ", stringify!($Int), "::MAX`.")]
///
/// # Examples
///
/// ```
/// #![feature(nonzero_ops)]
///
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let one = ", stringify!($Ty), "::new(1)?;")]
#[doc = concat!("let two = ", stringify!($Ty), "::new(2)?;")]
///
/// assert_eq!(two, unsafe { one.unchecked_add(1) });
/// # Some(())
/// # }
/// ```
#[unstable(feature = "nonzero_ops", issue = "84186")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const unsafe fn unchecked_add(self, other: $Int) -> Self {
// SAFETY: The caller ensures there is no overflow.
unsafe { Self::new_unchecked(self.get().unchecked_add(other)) }
}
/// Returns the smallest power of two greater than or equal to n.
/// Checks for overflow and returns [`None`]
/// if the next power of two is greater than the types maximum value.
/// As a consequence, the result cannot wrap to zero.
///
/// # Examples
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let two = ", stringify!($Ty), "::new(2)?;")]
#[doc = concat!("let three = ", stringify!($Ty), "::new(3)?;")]
#[doc = concat!("let four = ", stringify!($Ty), "::new(4)?;")]
#[doc = concat!("let max = ", stringify!($Ty), "::new(",
stringify!($Int), "::MAX)?;")]
///
/// assert_eq!(Some(two), two.checked_next_power_of_two() );
/// assert_eq!(Some(four), three.checked_next_power_of_two() );
/// assert_eq!(None, max.checked_next_power_of_two() );
/// # Some(())
/// # }
/// ```
#[stable(feature = "nonzero_checked_ops", since = "1.64.0")]
#[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_next_power_of_two(self) -> Option<Self> {
if let Some(nz) = self.get().checked_next_power_of_two() {
// SAFETY: The next power of two is positive
// and overflow is checked.
Some(unsafe { Self::new_unchecked(nz) })
} else {
None
}
}
/// Returns the base 2 logarithm of the number, rounded down.
///
/// This is the same operation as
#[doc = concat!("[`", stringify!($Int), "::ilog2`],")]
/// except that it has no failure cases to worry about
/// since this value can never be zero.
///
/// # Examples
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
#[doc = concat!("assert_eq!(", stringify!($Ty), "::new(7).unwrap().ilog2(), 2);")]
#[doc = concat!("assert_eq!(", stringify!($Ty), "::new(8).unwrap().ilog2(), 3);")]
#[doc = concat!("assert_eq!(", stringify!($Ty), "::new(9).unwrap().ilog2(), 3);")]
/// ```
#[stable(feature = "int_log", since = "1.67.0")]
#[rustc_const_stable(feature = "int_log", since = "1.67.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn ilog2(self) -> u32 {
Self::BITS - 1 - self.leading_zeros()
}
/// Returns the base 10 logarithm of the number, rounded down.
///
/// This is the same operation as
#[doc = concat!("[`", stringify!($Int), "::ilog10`],")]
/// except that it has no failure cases to worry about
/// since this value can never be zero.
///
/// # Examples
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
#[doc = concat!("assert_eq!(", stringify!($Ty), "::new(99).unwrap().ilog10(), 1);")]
#[doc = concat!("assert_eq!(", stringify!($Ty), "::new(100).unwrap().ilog10(), 2);")]
#[doc = concat!("assert_eq!(", stringify!($Ty), "::new(101).unwrap().ilog10(), 2);")]
/// ```
#[stable(feature = "int_log", since = "1.67.0")]
#[rustc_const_stable(feature = "int_log", since = "1.67.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn ilog10(self) -> u32 {
super::int_log10::$Int(self.get())
}
/// Calculates the middle point of `self` and `rhs`.
///
/// `midpoint(a, b)` is `(a + b) >> 1` as if it were performed in a
/// sufficiently-large signed integral type. This implies that the result is
/// always rounded towards negative infinity and that no overflow will ever occur.
///
/// # Examples
///
/// ```
/// #![feature(num_midpoint)]
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
///
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let one = ", stringify!($Ty), "::new(1)?;")]
#[doc = concat!("let two = ", stringify!($Ty), "::new(2)?;")]
#[doc = concat!("let four = ", stringify!($Ty), "::new(4)?;")]
///
/// assert_eq!(one.midpoint(four), two);
/// assert_eq!(four.midpoint(one), two);
/// # Some(())
/// # }
/// ```
#[unstable(feature = "num_midpoint", issue = "110840")]
#[rustc_const_unstable(feature = "const_num_midpoint", issue = "110840")]
#[rustc_allow_const_fn_unstable(const_num_midpoint)]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn midpoint(self, rhs: Self) -> Self {
// SAFETY: The only way to get `0` with midpoint is to have two opposite or
// near opposite numbers: (-5, 5), (0, 1), (0, 0) which is impossible because
// of the unsignedness of this number and also because `Self` is guaranteed to
// never being 0.
unsafe { Self::new_unchecked(self.get().midpoint(rhs.get())) }
}
/// Returns `true` if and only if `self == (1 << k)` for some `k`.
///
/// On many architectures, this function can perform better than `is_power_of_two()`
/// on the underlying integer type, as special handling of zero can be avoided.
///
/// # Examples
///
/// Basic usage:
///
/// ```
#[doc = concat!("let eight = std::num::", stringify!($Ty), "::new(8).unwrap();")]
/// assert!(eight.is_power_of_two());
#[doc = concat!("let ten = std::num::", stringify!($Ty), "::new(10).unwrap();")]
/// assert!(!ten.is_power_of_two());
/// ```
#[must_use]
#[stable(feature = "nonzero_is_power_of_two", since = "1.59.0")]
#[rustc_const_stable(feature = "nonzero_is_power_of_two", since = "1.59.0")]
#[inline]
pub const fn is_power_of_two(self) -> bool {
// LLVM 11 normalizes `unchecked_sub(x, 1) & x == 0` to the implementation seen here.
// On the basic x86-64 target, this saves 3 instructions for the zero check.
// On x86_64 with BMI1, being nonzero lets it codegen to `BLSR`, which saves an instruction
// compared to the `POPCNT` implementation on the underlying integer type.
intrinsics::ctpop(self.get()) < 2
}
};
// Associated items for signed nonzero types only.
(
Self = $Ty:ident,
Primitive = signed $Int:ident,
UnsignedNonZero = $Uty:ident,
UnsignedPrimitive = $Uint:ty,
) => {
/// The smallest value that can be represented by this non-zero
/// integer type,
#[doc = concat!("equal to [`", stringify!($Int), "::MIN`].")]
///
/// Note: While most integer types are defined for every whole
/// number between `MIN` and `MAX`, signed non-zero integers are
/// a special case. They have a "gap" at 0.
///
/// # Examples
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
#[doc = concat!("assert_eq!(", stringify!($Ty), "::MIN.get(), ", stringify!($Int), "::MIN);")]
/// ```
#[stable(feature = "nonzero_min_max", since = "1.70.0")]
pub const MIN: Self = Self::new(<$Int>::MIN).unwrap();
/// The largest value that can be represented by this non-zero
/// integer type,
#[doc = concat!("equal to [`", stringify!($Int), "::MAX`].")]
///
/// Note: While most integer types are defined for every whole
/// number between `MIN` and `MAX`, signed non-zero integers are
/// a special case. They have a "gap" at 0.
///
/// # Examples
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
#[doc = concat!("assert_eq!(", stringify!($Ty), "::MAX.get(), ", stringify!($Int), "::MAX);")]
/// ```
#[stable(feature = "nonzero_min_max", since = "1.70.0")]
pub const MAX: Self = Self::new(<$Int>::MAX).unwrap();
/// Computes the absolute value of self.
#[doc = concat!("See [`", stringify!($Int), "::abs`]")]
/// for documentation on overflow behaviour.
///
/// # Example
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let pos = ", stringify!($Ty), "::new(1)?;")]
#[doc = concat!("let neg = ", stringify!($Ty), "::new(-1)?;")]
///
/// assert_eq!(pos, pos.abs());
/// assert_eq!(pos, neg.abs());
/// # Some(())
/// # }
/// ```
#[stable(feature = "nonzero_checked_ops", since = "1.64.0")]
#[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn abs(self) -> Self {
// SAFETY: This cannot overflow to zero.
unsafe { Self::new_unchecked(self.get().abs()) }
}
/// Checked absolute value.
/// Checks for overflow and returns [`None`] if
#[doc = concat!("`self == ", stringify!($Ty), "::MIN`.")]
/// The result cannot be zero.
///
/// # Example
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let pos = ", stringify!($Ty), "::new(1)?;")]
#[doc = concat!("let neg = ", stringify!($Ty), "::new(-1)?;")]
#[doc = concat!("let min = ", stringify!($Ty), "::new(",
stringify!($Int), "::MIN)?;")]
///
/// assert_eq!(Some(pos), neg.checked_abs());
/// assert_eq!(None, min.checked_abs());
/// # Some(())
/// # }
/// ```
#[stable(feature = "nonzero_checked_ops", since = "1.64.0")]
#[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn checked_abs(self) -> Option<Self> {
if let Some(nz) = self.get().checked_abs() {
// SAFETY: absolute value of nonzero cannot yield zero values.
Some(unsafe { Self::new_unchecked(nz) })
} else {
None
}
}
/// Computes the absolute value of self,
/// with overflow information, see
#[doc = concat!("[`", stringify!($Int), "::overflowing_abs`].")]
///
/// # Example
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let pos = ", stringify!($Ty), "::new(1)?;")]
#[doc = concat!("let neg = ", stringify!($Ty), "::new(-1)?;")]
#[doc = concat!("let min = ", stringify!($Ty), "::new(",
stringify!($Int), "::MIN)?;")]
///
/// assert_eq!((pos, false), pos.overflowing_abs());
/// assert_eq!((pos, false), neg.overflowing_abs());
/// assert_eq!((min, true), min.overflowing_abs());
/// # Some(())
/// # }
/// ```
#[stable(feature = "nonzero_checked_ops", since = "1.64.0")]
#[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn overflowing_abs(self) -> (Self, bool) {
let (nz, flag) = self.get().overflowing_abs();
(
// SAFETY: absolute value of nonzero cannot yield zero values.
unsafe { Self::new_unchecked(nz) },
flag,
)
}
/// Saturating absolute value, see
#[doc = concat!("[`", stringify!($Int), "::saturating_abs`].")]
///
/// # Example
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let pos = ", stringify!($Ty), "::new(1)?;")]
#[doc = concat!("let neg = ", stringify!($Ty), "::new(-1)?;")]
#[doc = concat!("let min = ", stringify!($Ty), "::new(",
stringify!($Int), "::MIN)?;")]
#[doc = concat!("let min_plus = ", stringify!($Ty), "::new(",
stringify!($Int), "::MIN + 1)?;")]
#[doc = concat!("let max = ", stringify!($Ty), "::new(",
stringify!($Int), "::MAX)?;")]
///
/// assert_eq!(pos, pos.saturating_abs());
/// assert_eq!(pos, neg.saturating_abs());
/// assert_eq!(max, min.saturating_abs());
/// assert_eq!(max, min_plus.saturating_abs());
/// # Some(())
/// # }
/// ```
#[stable(feature = "nonzero_checked_ops", since = "1.64.0")]
#[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn saturating_abs(self) -> Self {
// SAFETY: absolute value of nonzero cannot yield zero values.
unsafe { Self::new_unchecked(self.get().saturating_abs()) }
}
/// Wrapping absolute value, see
#[doc = concat!("[`", stringify!($Int), "::wrapping_abs`].")]
///
/// # Example
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let pos = ", stringify!($Ty), "::new(1)?;")]
#[doc = concat!("let neg = ", stringify!($Ty), "::new(-1)?;")]
#[doc = concat!("let min = ", stringify!($Ty), "::new(",
stringify!($Int), "::MIN)?;")]
#[doc = concat!("# let max = ", stringify!($Ty), "::new(",
stringify!($Int), "::MAX)?;")]
///
/// assert_eq!(pos, pos.wrapping_abs());
/// assert_eq!(pos, neg.wrapping_abs());
/// assert_eq!(min, min.wrapping_abs());
/// assert_eq!(max, (-max).wrapping_abs());
/// # Some(())
/// # }
/// ```
#[stable(feature = "nonzero_checked_ops", since = "1.64.0")]
#[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn wrapping_abs(self) -> Self {
// SAFETY: absolute value of nonzero cannot yield zero values.
unsafe { Self::new_unchecked(self.get().wrapping_abs()) }
}
/// Computes the absolute value of self
/// without any wrapping or panicking.
///
/// # Example
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
#[doc = concat!("# use std::num::", stringify!($Uty), ";")]
///
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let u_pos = ", stringify!($Uty), "::new(1)?;")]
#[doc = concat!("let i_pos = ", stringify!($Ty), "::new(1)?;")]
#[doc = concat!("let i_neg = ", stringify!($Ty), "::new(-1)?;")]
#[doc = concat!("let i_min = ", stringify!($Ty), "::new(",
stringify!($Int), "::MIN)?;")]
#[doc = concat!("let u_max = ", stringify!($Uty), "::new(",
stringify!($Uint), "::MAX / 2 + 1)?;")]
///
/// assert_eq!(u_pos, i_pos.unsigned_abs());
/// assert_eq!(u_pos, i_neg.unsigned_abs());
/// assert_eq!(u_max, i_min.unsigned_abs());
/// # Some(())
/// # }
/// ```
#[stable(feature = "nonzero_checked_ops", since = "1.64.0")]
#[rustc_const_stable(feature = "const_nonzero_checked_ops", since = "1.64.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn unsigned_abs(self) -> $Uty {
// SAFETY: absolute value of nonzero cannot yield zero values.
unsafe { $Uty::new_unchecked(self.get().unsigned_abs()) }
}
/// Returns `true` if `self` is positive and `false` if the
/// number is negative.
///
/// # Example
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let pos_five = ", stringify!($Ty), "::new(5)?;")]
#[doc = concat!("let neg_five = ", stringify!($Ty), "::new(-5)?;")]
///
/// assert!(pos_five.is_positive());
/// assert!(!neg_five.is_positive());
/// # Some(())
/// # }
/// ```
#[must_use]
#[inline]
#[stable(feature = "nonzero_negation_ops", since = "1.71.0")]
#[rustc_const_stable(feature = "nonzero_negation_ops", since = "1.71.0")]
pub const fn is_positive(self) -> bool {
self.get().is_positive()
}
/// Returns `true` if `self` is negative and `false` if the
/// number is positive.
///
/// # Example
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let pos_five = ", stringify!($Ty), "::new(5)?;")]
#[doc = concat!("let neg_five = ", stringify!($Ty), "::new(-5)?;")]
///
/// assert!(neg_five.is_negative());
/// assert!(!pos_five.is_negative());
/// # Some(())
/// # }
/// ```
#[must_use]
#[inline]
#[stable(feature = "nonzero_negation_ops", since = "1.71.0")]
#[rustc_const_stable(feature = "nonzero_negation_ops", since = "1.71.0")]
pub const fn is_negative(self) -> bool {
self.get().is_negative()
}
/// Checked negation. Computes `-self`,
#[doc = concat!("returning `None` if `self == ", stringify!($Ty), "::MIN`.")]
///
/// # Example
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let pos_five = ", stringify!($Ty), "::new(5)?;")]
#[doc = concat!("let neg_five = ", stringify!($Ty), "::new(-5)?;")]
#[doc = concat!("let min = ", stringify!($Ty), "::new(",
stringify!($Int), "::MIN)?;")]
///
/// assert_eq!(pos_five.checked_neg(), Some(neg_five));
/// assert_eq!(min.checked_neg(), None);
/// # Some(())
/// # }
/// ```
#[inline]
#[stable(feature = "nonzero_negation_ops", since = "1.71.0")]
#[rustc_const_stable(feature = "nonzero_negation_ops", since = "1.71.0")]
pub const fn checked_neg(self) -> Option<Self> {
if let Some(result) = self.get().checked_neg() {
// SAFETY: negation of nonzero cannot yield zero values.
return Some(unsafe { Self::new_unchecked(result) });
}
None
}
/// Negates self, overflowing if this is equal to the minimum value.
///
#[doc = concat!("See [`", stringify!($Int), "::overflowing_neg`]")]
/// for documentation on overflow behaviour.
///
/// # Example
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let pos_five = ", stringify!($Ty), "::new(5)?;")]
#[doc = concat!("let neg_five = ", stringify!($Ty), "::new(-5)?;")]
#[doc = concat!("let min = ", stringify!($Ty), "::new(",
stringify!($Int), "::MIN)?;")]
///
/// assert_eq!(pos_five.overflowing_neg(), (neg_five, false));
/// assert_eq!(min.overflowing_neg(), (min, true));
/// # Some(())
/// # }
/// ```
#[inline]
#[stable(feature = "nonzero_negation_ops", since = "1.71.0")]
#[rustc_const_stable(feature = "nonzero_negation_ops", since = "1.71.0")]
pub const fn overflowing_neg(self) -> (Self, bool) {
let (result, overflow) = self.get().overflowing_neg();
// SAFETY: negation of nonzero cannot yield zero values.
((unsafe { Self::new_unchecked(result) }), overflow)
}
/// Saturating negation. Computes `-self`,
#[doc = concat!("returning [`", stringify!($Ty), "::MAX`]")]
#[doc = concat!("if `self == ", stringify!($Ty), "::MIN`")]
/// instead of overflowing.
///
/// # Example
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let pos_five = ", stringify!($Ty), "::new(5)?;")]
#[doc = concat!("let neg_five = ", stringify!($Ty), "::new(-5)?;")]
#[doc = concat!("let min = ", stringify!($Ty), "::new(",
stringify!($Int), "::MIN)?;")]
#[doc = concat!("let min_plus_one = ", stringify!($Ty), "::new(",
stringify!($Int), "::MIN + 1)?;")]
#[doc = concat!("let max = ", stringify!($Ty), "::new(",
stringify!($Int), "::MAX)?;")]
///
/// assert_eq!(pos_five.saturating_neg(), neg_five);
/// assert_eq!(min.saturating_neg(), max);
/// assert_eq!(max.saturating_neg(), min_plus_one);
/// # Some(())
/// # }
/// ```
#[inline]
#[stable(feature = "nonzero_negation_ops", since = "1.71.0")]
#[rustc_const_stable(feature = "nonzero_negation_ops", since = "1.71.0")]
pub const fn saturating_neg(self) -> Self {
if let Some(result) = self.checked_neg() {
return result;
}
Self::MAX
}
/// Wrapping (modular) negation. Computes `-self`, wrapping around at the boundary
/// of the type.
///
#[doc = concat!("See [`", stringify!($Int), "::wrapping_neg`]")]
/// for documentation on overflow behaviour.
///
/// # Example
///
/// ```
#[doc = concat!("# use std::num::", stringify!($Ty), ";")]
/// # fn main() { test().unwrap(); }
/// # fn test() -> Option<()> {
#[doc = concat!("let pos_five = ", stringify!($Ty), "::new(5)?;")]
#[doc = concat!("let neg_five = ", stringify!($Ty), "::new(-5)?;")]
#[doc = concat!("let min = ", stringify!($Ty), "::new(",
stringify!($Int), "::MIN)?;")]
///
/// assert_eq!(pos_five.wrapping_neg(), neg_five);
/// assert_eq!(min.wrapping_neg(), min);
/// # Some(())
/// # }
/// ```
#[inline]
#[stable(feature = "nonzero_negation_ops", since = "1.71.0")]
#[rustc_const_stable(feature = "nonzero_negation_ops", since = "1.71.0")]
pub const fn wrapping_neg(self) -> Self {
let result = self.get().wrapping_neg();
// SAFETY: negation of nonzero cannot yield zero values.
unsafe { Self::new_unchecked(result) }
}
};
}
// Use this when the generated code should differ between signed and unsigned types.
macro_rules! sign_dependent_expr {
(signed ? if signed { $signed_case:expr } if unsigned { $unsigned_case:expr } ) => {
$signed_case
};
(unsigned ? if signed { $signed_case:expr } if unsigned { $unsigned_case:expr } ) => {
$unsigned_case
};
}
nonzero_integer! {
Self = NonZeroU8,
Primitive = unsigned u8,
}
nonzero_integer! {
Self = NonZeroU16,
Primitive = unsigned u16,
}
nonzero_integer! {
Self = NonZeroU32,
Primitive = unsigned u32,
}
nonzero_integer! {
Self = NonZeroU64,
Primitive = unsigned u64,
}
nonzero_integer! {
Self = NonZeroU128,
Primitive = unsigned u128,
}
nonzero_integer! {
Self = NonZeroUsize,
Primitive = unsigned usize,
}
nonzero_integer! {
Self = NonZeroI8,
Primitive = signed i8,
UnsignedNonZero = NonZeroU8,
UnsignedPrimitive = u8,
}
nonzero_integer! {
Self = NonZeroI16,
Primitive = signed i16,
UnsignedNonZero = NonZeroU16,
UnsignedPrimitive = u16,
}
nonzero_integer! {
Self = NonZeroI32,
Primitive = signed i32,
UnsignedNonZero = NonZeroU32,
UnsignedPrimitive = u32,
}
nonzero_integer! {
Self = NonZeroI64,
Primitive = signed i64,
UnsignedNonZero = NonZeroU64,
UnsignedPrimitive = u64,
}
nonzero_integer! {
Self = NonZeroI128,
Primitive = signed i128,
UnsignedNonZero = NonZeroU128,
UnsignedPrimitive = u128,
}
nonzero_integer! {
Self = NonZeroIsize,
Primitive = signed isize,
UnsignedNonZero = NonZeroUsize,
UnsignedPrimitive = usize,
}