Files
rust/src/libstd/num/strconv.rs
Huon Wilson 0302d37977 Merge UnicodeChar and CharExt.
This "reexports" all the functionality of `core::char::CharExt` as
methods on `unicode::u_char::UnicodeChar` (renamed to `CharExt`).

Imports may need to be updated (one now just imports
`unicode::CharExt`, or `std::char::CharExt` rather than two traits from
either), so this is a

[breaking-change]
2015-01-05 12:30:51 +11:00

558 lines
18 KiB
Rust

// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//
// ignore-lexer-test FIXME #15679
#![allow(missing_docs)]
use self::ExponentFormat::*;
use self::SignificantDigits::*;
use self::SignFormat::*;
use char::{self, CharExt};
use num::{self, Int, Float, ToPrimitive};
use num::FpCategory as Fp;
use ops::FnMut;
use slice::SliceExt;
use str::StrExt;
use string::String;
use vec::Vec;
/// A flag that specifies whether to use exponential (scientific) notation.
#[derive(Copy)]
pub enum ExponentFormat {
/// Do not use exponential notation.
ExpNone,
/// Use exponential notation with the exponent having a base of 10 and the
/// exponent sign being `e` or `E`. For example, 1000 would be printed
/// 1e3.
ExpDec,
/// Use exponential notation with the exponent having a base of 2 and the
/// exponent sign being `p` or `P`. For example, 8 would be printed 1p3.
ExpBin,
}
/// The number of digits used for emitting the fractional part of a number, if
/// any.
#[derive(Copy)]
pub enum SignificantDigits {
/// All calculable digits will be printed.
///
/// Note that bignums or fractions may cause a surprisingly large number
/// of digits to be printed.
DigAll,
/// At most the given number of digits will be printed, truncating any
/// trailing zeroes.
DigMax(uint),
/// Precisely the given number of digits will be printed.
DigExact(uint)
}
/// How to emit the sign of a number.
#[derive(Copy)]
pub enum SignFormat {
/// No sign will be printed. The exponent sign will also be emitted.
SignNone,
/// `-` will be printed for negative values, but no sign will be emitted
/// for positive numbers.
SignNeg,
/// `+` will be printed for positive values, and `-` will be printed for
/// negative values.
SignAll,
}
/// Converts an integral number to its string representation as a byte vector.
/// This is meant to be a common base implementation for all integral string
/// conversion functions like `to_string()` or `to_str_radix()`.
///
/// # Arguments
///
/// - `num` - The number to convert. Accepts any number that
/// implements the numeric traits.
/// - `radix` - Base to use. Accepts only the values 2-36.
/// - `sign` - How to emit the sign. Options are:
/// - `SignNone`: No sign at all. Basically emits `abs(num)`.
/// - `SignNeg`: Only `-` on negative values.
/// - `SignAll`: Both `+` on positive, and `-` on negative numbers.
/// - `f` - a callback which will be invoked for each ascii character
/// which composes the string representation of this integer
///
/// # Panics
///
/// - Panics if `radix` < 2 or `radix` > 36.
fn int_to_str_bytes_common<T, F>(num: T, radix: uint, sign: SignFormat, mut f: F) where
T: Int,
F: FnMut(u8),
{
assert!(2 <= radix && radix <= 36);
let _0: T = Int::zero();
let neg = num < _0;
let radix_gen: T = num::cast(radix).unwrap();
let mut deccum = num;
// This is just for integral types, the largest of which is a u64. The
// smallest base that we can have is 2, so the most number of digits we're
// ever going to have is 64
let mut buf = [0u8; 64];
let mut cur = 0;
// Loop at least once to make sure at least a `0` gets emitted.
loop {
// Calculate the absolute value of each digit instead of only
// doing it once for the whole number because a
// representable negative number doesn't necessary have an
// representable additive inverse of the same type
// (See twos complement). But we assume that for the
// numbers [-35 .. 0] we always have [0 .. 35].
let current_digit_signed = deccum % radix_gen;
let current_digit = if current_digit_signed < _0 {
_0 - current_digit_signed
} else {
current_digit_signed
};
buf[cur] = match current_digit.to_u8().unwrap() {
i @ 0...9 => b'0' + i,
i => b'a' + (i - 10),
};
cur += 1;
deccum = deccum / radix_gen;
// No more digits to calculate for the non-fractional part -> break
if deccum == _0 { break; }
}
// Decide what sign to put in front
match sign {
SignNeg | SignAll if neg => { f(b'-'); }
SignAll => { f(b'+'); }
_ => ()
}
// We built the number in reverse order, so un-reverse it here
while cur > 0 {
cur -= 1;
f(buf[cur]);
}
}
/// Converts a number to its string representation as a byte vector.
/// This is meant to be a common base implementation for all numeric string
/// conversion functions like `to_string()` or `to_str_radix()`.
///
/// # Arguments
///
/// - `num` - The number to convert. Accepts any number that
/// implements the numeric traits.
/// - `radix` - Base to use. Accepts only the values 2-36. If the exponential notation
/// is used, then this base is only used for the significand. The exponent
/// itself always printed using a base of 10.
/// - `negative_zero` - Whether to treat the special value `-0` as
/// `-0` or as `+0`.
/// - `sign` - How to emit the sign. See `SignFormat`.
/// - `digits` - The amount of digits to use for emitting the fractional
/// part, if any. See `SignificantDigits`.
/// - `exp_format` - Whether or not to use the exponential (scientific) notation.
/// See `ExponentFormat`.
/// - `exp_capital` - Whether or not to use a capital letter for the exponent sign, if
/// exponential notation is desired.
///
/// # Return value
///
/// A tuple containing the byte vector, and a boolean flag indicating
/// whether it represents a special value like `inf`, `-inf`, `NaN` or not.
/// It returns a tuple because there can be ambiguity between a special value
/// and a number representation at higher bases.
///
/// # Panics
///
/// - Panics if `radix` < 2 or `radix` > 36.
/// - Panics if `radix` > 14 and `exp_format` is `ExpDec` due to conflict
/// between digit and exponent sign `'e'`.
/// - Panics if `radix` > 25 and `exp_format` is `ExpBin` due to conflict
/// between digit and exponent sign `'p'`.
pub fn float_to_str_bytes_common<T: Float>(
num: T, radix: uint, negative_zero: bool,
sign: SignFormat, digits: SignificantDigits, exp_format: ExponentFormat, exp_upper: bool
) -> (Vec<u8>, bool) {
assert!(2 <= radix && radix <= 36);
match exp_format {
ExpDec if radix >= DIGIT_E_RADIX // decimal exponent 'e'
=> panic!("float_to_str_bytes_common: radix {} incompatible with \
use of 'e' as decimal exponent", radix),
ExpBin if radix >= DIGIT_P_RADIX // binary exponent 'p'
=> panic!("float_to_str_bytes_common: radix {} incompatible with \
use of 'p' as binary exponent", radix),
_ => ()
}
let _0: T = Float::zero();
let _1: T = Float::one();
match num.classify() {
Fp::Nan => { return (b"NaN".to_vec(), true); }
Fp::Infinite if num > _0 => {
return match sign {
SignAll => (b"+inf".to_vec(), true),
_ => (b"inf".to_vec(), true)
};
}
Fp::Infinite if num < _0 => {
return match sign {
SignNone => (b"inf".to_vec(), true),
_ => (b"-inf".to_vec(), true),
};
}
_ => {}
}
let neg = num < _0 || (negative_zero && _1 / num == Float::neg_infinity());
let mut buf = Vec::new();
let radix_gen: T = num::cast(radix as int).unwrap();
let (num, exp) = match exp_format {
ExpNone => (num, 0i32),
ExpDec | ExpBin => {
if num == _0 {
(num, 0i32)
} else {
let (exp, exp_base) = match exp_format {
ExpDec => (num.abs().log10().floor(), num::cast::<f64, T>(10.0f64).unwrap()),
ExpBin => (num.abs().log2().floor(), num::cast::<f64, T>(2.0f64).unwrap()),
ExpNone => unreachable!()
};
(num / exp_base.powf(exp), num::cast::<T, i32>(exp).unwrap())
}
}
};
// First emit the non-fractional part, looping at least once to make
// sure at least a `0` gets emitted.
let mut deccum = num.trunc();
loop {
// Calculate the absolute value of each digit instead of only
// doing it once for the whole number because a
// representable negative number doesn't necessary have an
// representable additive inverse of the same type
// (See twos complement). But we assume that for the
// numbers [-35 .. 0] we always have [0 .. 35].
let current_digit = (deccum % radix_gen).abs();
// Decrease the deccumulator one digit at a time
deccum = deccum / radix_gen;
deccum = deccum.trunc();
buf.push(char::from_digit(current_digit.to_int().unwrap() as uint, radix)
.unwrap() as u8);
// No more digits to calculate for the non-fractional part -> break
if deccum == _0 { break; }
}
// If limited digits, calculate one digit more for rounding.
let (limit_digits, digit_count, exact) = match digits {
DigAll => (false, 0u, false),
DigMax(count) => (true, count+1, false),
DigExact(count) => (true, count+1, true)
};
// Decide what sign to put in front
match sign {
SignNeg | SignAll if neg => {
buf.push(b'-');
}
SignAll => {
buf.push(b'+');
}
_ => ()
}
buf.reverse();
// Remember start of the fractional digits.
// Points one beyond end of buf if none get generated,
// or at the '.' otherwise.
let start_fractional_digits = buf.len();
// Now emit the fractional part, if any
deccum = num.fract();
if deccum != _0 || (limit_digits && exact && digit_count > 0) {
buf.push(b'.');
let mut dig = 0u;
// calculate new digits while
// - there is no limit and there are digits left
// - or there is a limit, it's not reached yet and
// - it's exact
// - or it's a maximum, and there are still digits left
while (!limit_digits && deccum != _0)
|| (limit_digits && dig < digit_count && (
exact
|| (!exact && deccum != _0)
)
) {
// Shift first fractional digit into the integer part
deccum = deccum * radix_gen;
// Calculate the absolute value of each digit.
// See note in first loop.
let current_digit = deccum.trunc().abs();
buf.push(char::from_digit(
current_digit.to_int().unwrap() as uint, radix).unwrap() as u8);
// Decrease the deccumulator one fractional digit at a time
deccum = deccum.fract();
dig += 1u;
}
// If digits are limited, and that limit has been reached,
// cut off the one extra digit, and depending on its value
// round the remaining ones.
if limit_digits && dig == digit_count {
let ascii2value = |&: chr: u8| {
(chr as char).to_digit(radix).unwrap()
};
let value2ascii = |&: val: uint| {
char::from_digit(val, radix).unwrap() as u8
};
let extra_digit = ascii2value(buf.pop().unwrap());
if extra_digit >= radix / 2 { // -> need to round
let mut i: int = buf.len() as int - 1;
loop {
// If reached left end of number, have to
// insert additional digit:
if i < 0
|| buf[i as uint] == b'-'
|| buf[i as uint] == b'+' {
buf.insert((i + 1) as uint, value2ascii(1));
break;
}
// Skip the '.'
if buf[i as uint] == b'.' { i -= 1; continue; }
// Either increment the digit,
// or set to 0 if max and carry the 1.
let current_digit = ascii2value(buf[i as uint]);
if current_digit < (radix - 1) {
buf[i as uint] = value2ascii(current_digit+1);
break;
} else {
buf[i as uint] = value2ascii(0);
i -= 1;
}
}
}
}
}
// if number of digits is not exact, remove all trailing '0's up to
// and including the '.'
if !exact {
let buf_max_i = buf.len() - 1;
// index to truncate from
let mut i = buf_max_i;
// discover trailing zeros of fractional part
while i > start_fractional_digits && buf[i] == b'0' {
i -= 1;
}
// Only attempt to truncate digits if buf has fractional digits
if i >= start_fractional_digits {
// If buf ends with '.', cut that too.
if buf[i] == b'.' { i -= 1 }
// only resize buf if we actually remove digits
if i < buf_max_i {
buf = buf.slice(0, i + 1).to_vec();
}
}
} // If exact and trailing '.', just cut that
else {
let max_i = buf.len() - 1;
if buf[max_i] == b'.' {
buf = buf.slice(0, max_i).to_vec();
}
}
match exp_format {
ExpNone => (),
_ => {
buf.push(match exp_format {
ExpDec if exp_upper => 'E',
ExpDec if !exp_upper => 'e',
ExpBin if exp_upper => 'P',
ExpBin if !exp_upper => 'p',
_ => unreachable!()
} as u8);
int_to_str_bytes_common(exp, 10, sign, |c| buf.push(c));
}
}
(buf, false)
}
/// Converts a number to its string representation. This is a wrapper for
/// `to_str_bytes_common()`, for details see there.
#[inline]
pub fn float_to_str_common<T: Float>(
num: T, radix: uint, negative_zero: bool,
sign: SignFormat, digits: SignificantDigits, exp_format: ExponentFormat, exp_capital: bool
) -> (String, bool) {
let (bytes, special) = float_to_str_bytes_common(num, radix,
negative_zero, sign, digits, exp_format, exp_capital);
(String::from_utf8(bytes).unwrap(), special)
}
// Some constants for from_str_bytes_common's input validation,
// they define minimum radix values for which the character is a valid digit.
static DIGIT_P_RADIX: uint = ('p' as uint) - ('a' as uint) + 11u;
static DIGIT_E_RADIX: uint = ('e' as uint) - ('a' as uint) + 11u;
#[cfg(test)]
mod tests {
use string::ToString;
#[test]
fn test_int_to_str_overflow() {
let mut i8_val: i8 = 127_i8;
assert_eq!(i8_val.to_string(), "127");
i8_val += 1 as i8;
assert_eq!(i8_val.to_string(), "-128");
let mut i16_val: i16 = 32_767_i16;
assert_eq!(i16_val.to_string(), "32767");
i16_val += 1 as i16;
assert_eq!(i16_val.to_string(), "-32768");
let mut i32_val: i32 = 2_147_483_647_i32;
assert_eq!(i32_val.to_string(), "2147483647");
i32_val += 1 as i32;
assert_eq!(i32_val.to_string(), "-2147483648");
let mut i64_val: i64 = 9_223_372_036_854_775_807_i64;
assert_eq!(i64_val.to_string(), "9223372036854775807");
i64_val += 1 as i64;
assert_eq!(i64_val.to_string(), "-9223372036854775808");
}
}
#[cfg(test)]
mod bench {
extern crate test;
mod uint {
use super::test::Bencher;
use rand::{weak_rng, Rng};
use std::fmt;
#[inline]
fn to_string(x: uint, base: u8) {
format!("{}", fmt::radix(x, base));
}
#[bench]
fn to_str_bin(b: &mut Bencher) {
let mut rng = weak_rng();
b.iter(|| { to_string(rng.gen::<uint>(), 2); })
}
#[bench]
fn to_str_oct(b: &mut Bencher) {
let mut rng = weak_rng();
b.iter(|| { to_string(rng.gen::<uint>(), 8); })
}
#[bench]
fn to_str_dec(b: &mut Bencher) {
let mut rng = weak_rng();
b.iter(|| { to_string(rng.gen::<uint>(), 10); })
}
#[bench]
fn to_str_hex(b: &mut Bencher) {
let mut rng = weak_rng();
b.iter(|| { to_string(rng.gen::<uint>(), 16); })
}
#[bench]
fn to_str_base_36(b: &mut Bencher) {
let mut rng = weak_rng();
b.iter(|| { to_string(rng.gen::<uint>(), 36); })
}
}
mod int {
use super::test::Bencher;
use rand::{weak_rng, Rng};
use std::fmt;
#[inline]
fn to_string(x: int, base: u8) {
format!("{}", fmt::radix(x, base));
}
#[bench]
fn to_str_bin(b: &mut Bencher) {
let mut rng = weak_rng();
b.iter(|| { to_string(rng.gen::<int>(), 2); })
}
#[bench]
fn to_str_oct(b: &mut Bencher) {
let mut rng = weak_rng();
b.iter(|| { to_string(rng.gen::<int>(), 8); })
}
#[bench]
fn to_str_dec(b: &mut Bencher) {
let mut rng = weak_rng();
b.iter(|| { to_string(rng.gen::<int>(), 10); })
}
#[bench]
fn to_str_hex(b: &mut Bencher) {
let mut rng = weak_rng();
b.iter(|| { to_string(rng.gen::<int>(), 16); })
}
#[bench]
fn to_str_base_36(b: &mut Bencher) {
let mut rng = weak_rng();
b.iter(|| { to_string(rng.gen::<int>(), 36); })
}
}
mod f64 {
use super::test::Bencher;
use rand::{weak_rng, Rng};
use f64;
#[bench]
fn float_to_string(b: &mut Bencher) {
let mut rng = weak_rng();
b.iter(|| { f64::to_string(rng.gen()); })
}
}
}