the behavior of the type system not only depends on the current assumptions, but also the currentnphase of the compiler. This is mostly necessary as we need to decide whether and how to reveal opaque types. We track this via the `TypingMode`.
575 lines
22 KiB
Rust
575 lines
22 KiB
Rust
use std::fmt::{self, Debug, Display, Formatter};
|
|
|
|
use rustc_abi::{HasDataLayout, Size};
|
|
use rustc_hir::def_id::DefId;
|
|
use rustc_macros::{HashStable, Lift, TyDecodable, TyEncodable, TypeFoldable, TypeVisitable};
|
|
use rustc_session::RemapFileNameExt;
|
|
use rustc_session::config::RemapPathScopeComponents;
|
|
use rustc_span::{DUMMY_SP, Span};
|
|
use rustc_type_ir::visit::TypeVisitableExt;
|
|
|
|
use crate::mir::interpret::{AllocId, ConstAllocation, ErrorHandled, Scalar, alloc_range};
|
|
use crate::mir::{Promoted, pretty_print_const_value};
|
|
use crate::ty::print::{pretty_print_const, with_no_trimmed_paths};
|
|
use crate::ty::{self, ConstKind, GenericArgsRef, ScalarInt, Ty, TyCtxt};
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
/// Evaluated Constants
|
|
|
|
/// Represents the result of const evaluation via the `eval_to_allocation` query.
|
|
/// Not to be confused with `ConstAllocation`, which directly refers to the underlying data!
|
|
/// Here we indirect via an `AllocId`.
|
|
#[derive(Copy, Clone, HashStable, TyEncodable, TyDecodable, Debug, Hash, Eq, PartialEq)]
|
|
pub struct ConstAlloc<'tcx> {
|
|
/// The value lives here, at offset 0, and that allocation definitely is an `AllocKind::Memory`
|
|
/// (so you can use `AllocMap::unwrap_memory`).
|
|
pub alloc_id: AllocId,
|
|
pub ty: Ty<'tcx>,
|
|
}
|
|
|
|
/// Represents a constant value in Rust. `Scalar` and `Slice` are optimizations for
|
|
/// array length computations, enum discriminants and the pattern matching logic.
|
|
#[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable, Hash)]
|
|
#[derive(HashStable, Lift)]
|
|
pub enum ConstValue<'tcx> {
|
|
/// Used for types with `layout::abi::Scalar` ABI.
|
|
///
|
|
/// Not using the enum `Value` to encode that this must not be `Uninit`.
|
|
Scalar(Scalar),
|
|
|
|
/// Only for ZSTs.
|
|
ZeroSized,
|
|
|
|
/// Used for references to unsized types with slice tail.
|
|
///
|
|
/// This is worth an optimized representation since Rust has literals of type `&str` and
|
|
/// `&[u8]`. Not having to indirect those through an `AllocId` (or two, if we used `Indirect`)
|
|
/// has shown measurable performance improvements on stress tests. We then reuse this
|
|
/// optimization for slice-tail types more generally during valtree-to-constval conversion.
|
|
Slice {
|
|
/// The allocation storing the slice contents.
|
|
/// This always points to the beginning of the allocation.
|
|
data: ConstAllocation<'tcx>,
|
|
/// The metadata field of the reference.
|
|
/// This is a "target usize", so we use `u64` as in the interpreter.
|
|
meta: u64,
|
|
},
|
|
|
|
/// A value not representable by the other variants; needs to be stored in-memory.
|
|
///
|
|
/// Must *not* be used for scalars or ZST, but having `&str` or other slices in this variant is fine.
|
|
Indirect {
|
|
/// The backing memory of the value. May contain more memory than needed for just the value
|
|
/// if this points into some other larger ConstValue.
|
|
///
|
|
/// We use an `AllocId` here instead of a `ConstAllocation<'tcx>` to make sure that when a
|
|
/// raw constant (which is basically just an `AllocId`) is turned into a `ConstValue` and
|
|
/// back, we can preserve the original `AllocId`.
|
|
alloc_id: AllocId,
|
|
/// Offset into `alloc`
|
|
offset: Size,
|
|
},
|
|
}
|
|
|
|
#[cfg(target_pointer_width = "64")]
|
|
rustc_data_structures::static_assert_size!(ConstValue<'_>, 24);
|
|
|
|
impl<'tcx> ConstValue<'tcx> {
|
|
#[inline]
|
|
pub fn try_to_scalar(&self) -> Option<Scalar> {
|
|
match *self {
|
|
ConstValue::Indirect { .. } | ConstValue::Slice { .. } | ConstValue::ZeroSized => None,
|
|
ConstValue::Scalar(val) => Some(val),
|
|
}
|
|
}
|
|
|
|
pub fn try_to_scalar_int(&self) -> Option<ScalarInt> {
|
|
self.try_to_scalar()?.try_to_scalar_int().ok()
|
|
}
|
|
|
|
pub fn try_to_bits(&self, size: Size) -> Option<u128> {
|
|
Some(self.try_to_scalar_int()?.to_bits(size))
|
|
}
|
|
|
|
pub fn try_to_bool(&self) -> Option<bool> {
|
|
self.try_to_scalar_int()?.try_into().ok()
|
|
}
|
|
|
|
pub fn try_to_target_usize(&self, tcx: TyCtxt<'tcx>) -> Option<u64> {
|
|
Some(self.try_to_scalar_int()?.to_target_usize(tcx))
|
|
}
|
|
|
|
pub fn try_to_bits_for_ty(
|
|
&self,
|
|
tcx: TyCtxt<'tcx>,
|
|
typing_env: ty::TypingEnv<'tcx>,
|
|
ty: Ty<'tcx>,
|
|
) -> Option<u128> {
|
|
let size =
|
|
tcx.layout_of(typing_env.with_reveal_all_normalized(tcx).as_query_input(ty)).ok()?.size;
|
|
self.try_to_bits(size)
|
|
}
|
|
|
|
pub fn from_bool(b: bool) -> Self {
|
|
ConstValue::Scalar(Scalar::from_bool(b))
|
|
}
|
|
|
|
pub fn from_u64(i: u64) -> Self {
|
|
ConstValue::Scalar(Scalar::from_u64(i))
|
|
}
|
|
|
|
pub fn from_u128(i: u128) -> Self {
|
|
ConstValue::Scalar(Scalar::from_u128(i))
|
|
}
|
|
|
|
pub fn from_target_usize(i: u64, cx: &impl HasDataLayout) -> Self {
|
|
ConstValue::Scalar(Scalar::from_target_usize(i, cx))
|
|
}
|
|
|
|
/// Must only be called on constants of type `&str` or `&[u8]`!
|
|
pub fn try_get_slice_bytes_for_diagnostics(&self, tcx: TyCtxt<'tcx>) -> Option<&'tcx [u8]> {
|
|
let (data, start, end) = match self {
|
|
ConstValue::Scalar(_) | ConstValue::ZeroSized => {
|
|
bug!("`try_get_slice_bytes` on non-slice constant")
|
|
}
|
|
&ConstValue::Slice { data, meta } => (data, 0, meta),
|
|
&ConstValue::Indirect { alloc_id, offset } => {
|
|
// The reference itself is stored behind an indirection.
|
|
// Load the reference, and then load the actual slice contents.
|
|
let a = tcx.global_alloc(alloc_id).unwrap_memory().inner();
|
|
let ptr_size = tcx.data_layout.pointer_size;
|
|
if a.size() < offset + 2 * ptr_size {
|
|
// (partially) dangling reference
|
|
return None;
|
|
}
|
|
// Read the wide pointer components.
|
|
let ptr = a
|
|
.read_scalar(
|
|
&tcx,
|
|
alloc_range(offset, ptr_size),
|
|
/* read_provenance */ true,
|
|
)
|
|
.ok()?;
|
|
let ptr = ptr.to_pointer(&tcx).discard_err()?;
|
|
let len = a
|
|
.read_scalar(
|
|
&tcx,
|
|
alloc_range(offset + ptr_size, ptr_size),
|
|
/* read_provenance */ false,
|
|
)
|
|
.ok()?;
|
|
let len = len.to_target_usize(&tcx).discard_err()?;
|
|
if len == 0 {
|
|
return Some(&[]);
|
|
}
|
|
// Non-empty slice, must have memory. We know this is a relative pointer.
|
|
let (inner_prov, offset) = ptr.into_parts();
|
|
let data = tcx.global_alloc(inner_prov?.alloc_id()).unwrap_memory();
|
|
(data, offset.bytes(), offset.bytes() + len)
|
|
}
|
|
};
|
|
|
|
// This is for diagnostics only, so we are okay to use `inspect_with_uninit_and_ptr_outside_interpreter`.
|
|
let start = start.try_into().unwrap();
|
|
let end = end.try_into().unwrap();
|
|
Some(data.inner().inspect_with_uninit_and_ptr_outside_interpreter(start..end))
|
|
}
|
|
|
|
/// Check if a constant may contain provenance information. This is used by MIR opts.
|
|
/// Can return `true` even if there is no provenance.
|
|
pub fn may_have_provenance(&self, tcx: TyCtxt<'tcx>, size: Size) -> bool {
|
|
match *self {
|
|
ConstValue::ZeroSized | ConstValue::Scalar(Scalar::Int(_)) => return false,
|
|
ConstValue::Scalar(Scalar::Ptr(..)) => return true,
|
|
// It's hard to find out the part of the allocation we point to;
|
|
// just conservatively check everything.
|
|
ConstValue::Slice { data, meta: _ } => !data.inner().provenance().ptrs().is_empty(),
|
|
ConstValue::Indirect { alloc_id, offset } => !tcx
|
|
.global_alloc(alloc_id)
|
|
.unwrap_memory()
|
|
.inner()
|
|
.provenance()
|
|
.range_empty(super::AllocRange::from(offset..offset + size), &tcx),
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
/// Constants
|
|
|
|
#[derive(Clone, Copy, PartialEq, Eq, TyEncodable, TyDecodable, Hash, HashStable, Debug)]
|
|
#[derive(TypeFoldable, TypeVisitable, Lift)]
|
|
pub enum Const<'tcx> {
|
|
/// This constant came from the type system.
|
|
///
|
|
/// Any way of turning `ty::Const` into `ConstValue` should go through `valtree_to_const_val`;
|
|
/// this ensures that we consistently produce "clean" values without data in the padding or
|
|
/// anything like that.
|
|
///
|
|
/// FIXME(BoxyUwU): We should remove this `Ty` and look up the type for params via `ParamEnv`
|
|
Ty(Ty<'tcx>, ty::Const<'tcx>),
|
|
|
|
/// An unevaluated mir constant which is not part of the type system.
|
|
///
|
|
/// Note that `Ty(ty::ConstKind::Unevaluated)` and this variant are *not* identical! `Ty` will
|
|
/// always flow through a valtree, so all data not captured in the valtree is lost. This variant
|
|
/// directly uses the evaluated result of the given constant, including e.g. data stored in
|
|
/// padding.
|
|
Unevaluated(UnevaluatedConst<'tcx>, Ty<'tcx>),
|
|
|
|
/// This constant cannot go back into the type system, as it represents
|
|
/// something the type system cannot handle (e.g. pointers).
|
|
Val(ConstValue<'tcx>, Ty<'tcx>),
|
|
}
|
|
|
|
impl<'tcx> Const<'tcx> {
|
|
/// Creates an unevaluated const from a `DefId` for a const item.
|
|
/// The binders of the const item still need to be instantiated.
|
|
pub fn from_unevaluated(
|
|
tcx: TyCtxt<'tcx>,
|
|
def_id: DefId,
|
|
) -> ty::EarlyBinder<'tcx, Const<'tcx>> {
|
|
ty::EarlyBinder::bind(Const::Unevaluated(
|
|
UnevaluatedConst {
|
|
def: def_id,
|
|
args: ty::GenericArgs::identity_for_item(tcx, def_id),
|
|
promoted: None,
|
|
},
|
|
tcx.type_of(def_id).skip_binder(),
|
|
))
|
|
}
|
|
|
|
#[inline(always)]
|
|
pub fn ty(&self) -> Ty<'tcx> {
|
|
match self {
|
|
Const::Ty(ty, ct) => {
|
|
match ct.kind() {
|
|
// Dont use the outer ty as on invalid code we can wind up with them not being the same.
|
|
// this then results in allowing const eval to add `1_i64 + 1_usize` in cases where the mir
|
|
// was originally `({N: usize} + 1_usize)` under `generic_const_exprs`.
|
|
ty::ConstKind::Value(ty, _) => ty,
|
|
_ => *ty,
|
|
}
|
|
}
|
|
Const::Val(_, ty) | Const::Unevaluated(_, ty) => *ty,
|
|
}
|
|
}
|
|
|
|
/// Determines whether we need to add this const to `required_consts`. This is the case if and
|
|
/// only if evaluating it may error.
|
|
#[inline]
|
|
pub fn is_required_const(&self) -> bool {
|
|
match self {
|
|
Const::Ty(_, c) => match c.kind() {
|
|
ty::ConstKind::Value(_, _) => false, // already a value, cannot error
|
|
_ => true,
|
|
},
|
|
Const::Val(..) => false, // already a value, cannot error
|
|
Const::Unevaluated(..) => true,
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn try_to_scalar(self) -> Option<Scalar> {
|
|
match self {
|
|
Const::Ty(_, c) => match c.kind() {
|
|
ty::ConstKind::Value(ty, valtree) if ty.is_primitive() => {
|
|
// A valtree of a type where leaves directly represent the scalar const value.
|
|
// Just checking whether it is a leaf is insufficient as e.g. references are leafs
|
|
// but the leaf value is the value they point to, not the reference itself!
|
|
Some(valtree.unwrap_leaf().into())
|
|
}
|
|
_ => None,
|
|
},
|
|
Const::Val(val, _) => val.try_to_scalar(),
|
|
Const::Unevaluated(..) => None,
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn try_to_scalar_int(self) -> Option<ScalarInt> {
|
|
// This is equivalent to `self.try_to_scalar()?.try_to_int().ok()`, but measurably faster.
|
|
match self {
|
|
Const::Val(ConstValue::Scalar(Scalar::Int(x)), _) => Some(x),
|
|
Const::Ty(_, c) => match c.kind() {
|
|
ty::ConstKind::Value(ty, valtree) if ty.is_primitive() => {
|
|
Some(valtree.unwrap_leaf())
|
|
}
|
|
_ => None,
|
|
},
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn try_to_bits(self, size: Size) -> Option<u128> {
|
|
Some(self.try_to_scalar_int()?.to_bits(size))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn try_to_bool(self) -> Option<bool> {
|
|
self.try_to_scalar_int()?.try_into().ok()
|
|
}
|
|
|
|
#[inline]
|
|
pub fn eval(
|
|
self,
|
|
tcx: TyCtxt<'tcx>,
|
|
typing_env: ty::TypingEnv<'tcx>,
|
|
span: Span,
|
|
) -> Result<ConstValue<'tcx>, ErrorHandled> {
|
|
match self {
|
|
Const::Ty(_, c) => {
|
|
if c.has_non_region_param() {
|
|
return Err(ErrorHandled::TooGeneric(span));
|
|
}
|
|
|
|
match c.kind() {
|
|
ConstKind::Value(ty, val) => Ok(tcx.valtree_to_const_val((ty, val))),
|
|
ConstKind::Expr(_) => {
|
|
bug!("Normalization of `ty::ConstKind::Expr` is unimplemented")
|
|
}
|
|
_ => Err(tcx.dcx().delayed_bug("Unevaluated `ty::Const` in MIR body").into()),
|
|
}
|
|
}
|
|
Const::Unevaluated(uneval, _) => {
|
|
// FIXME: We might want to have a `try_eval`-like function on `Unevaluated`
|
|
tcx.const_eval_resolve(typing_env, uneval, span)
|
|
}
|
|
Const::Val(val, _) => Ok(val),
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn try_eval_scalar(
|
|
self,
|
|
tcx: TyCtxt<'tcx>,
|
|
typing_env: ty::TypingEnv<'tcx>,
|
|
) -> Option<Scalar> {
|
|
if let Const::Ty(_, c) = self
|
|
&& let ty::ConstKind::Value(ty, val) = c.kind()
|
|
&& ty.is_primitive()
|
|
{
|
|
// Avoid the `valtree_to_const_val` query. Can only be done on primitive types that
|
|
// are valtree leaves, and *not* on references. (References should return the
|
|
// pointer here, which valtrees don't represent.)
|
|
Some(val.unwrap_leaf().into())
|
|
} else {
|
|
self.eval(tcx, typing_env, DUMMY_SP).ok()?.try_to_scalar()
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn try_eval_scalar_int(
|
|
self,
|
|
tcx: TyCtxt<'tcx>,
|
|
typing_env: ty::TypingEnv<'tcx>,
|
|
) -> Option<ScalarInt> {
|
|
self.try_eval_scalar(tcx, typing_env)?.try_to_scalar_int().ok()
|
|
}
|
|
|
|
#[inline]
|
|
pub fn try_eval_bits(
|
|
&self,
|
|
tcx: TyCtxt<'tcx>,
|
|
typing_env: ty::TypingEnv<'tcx>,
|
|
) -> Option<u128> {
|
|
let int = self.try_eval_scalar_int(tcx, typing_env)?;
|
|
let size = tcx
|
|
.layout_of(typing_env.with_reveal_all_normalized(tcx).as_query_input(self.ty()))
|
|
.ok()?
|
|
.size;
|
|
Some(int.to_bits(size))
|
|
}
|
|
|
|
/// Panics if the value cannot be evaluated or doesn't contain a valid integer of the given type.
|
|
#[inline]
|
|
pub fn eval_bits(self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>) -> u128 {
|
|
self.try_eval_bits(tcx, typing_env)
|
|
.unwrap_or_else(|| bug!("expected bits of {:#?}, got {:#?}", self.ty(), self))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn try_eval_target_usize(
|
|
self,
|
|
tcx: TyCtxt<'tcx>,
|
|
typing_env: ty::TypingEnv<'tcx>,
|
|
) -> Option<u64> {
|
|
Some(self.try_eval_scalar_int(tcx, typing_env)?.to_target_usize(tcx))
|
|
}
|
|
|
|
#[inline]
|
|
/// Panics if the value cannot be evaluated or doesn't contain a valid `usize`.
|
|
pub fn eval_target_usize(self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>) -> u64 {
|
|
self.try_eval_target_usize(tcx, typing_env)
|
|
.unwrap_or_else(|| bug!("expected usize, got {:#?}", self))
|
|
}
|
|
|
|
#[inline]
|
|
pub fn try_eval_bool(self, tcx: TyCtxt<'tcx>, typing_env: ty::TypingEnv<'tcx>) -> Option<bool> {
|
|
self.try_eval_scalar_int(tcx, typing_env)?.try_into().ok()
|
|
}
|
|
|
|
#[inline]
|
|
pub fn from_value(val: ConstValue<'tcx>, ty: Ty<'tcx>) -> Self {
|
|
Self::Val(val, ty)
|
|
}
|
|
|
|
pub fn from_bits(
|
|
tcx: TyCtxt<'tcx>,
|
|
bits: u128,
|
|
typing_env: ty::TypingEnv<'tcx>,
|
|
ty: Ty<'tcx>,
|
|
) -> Self {
|
|
let size = tcx
|
|
.layout_of(typing_env.as_query_input(ty))
|
|
.unwrap_or_else(|e| bug!("could not compute layout for {ty:?}: {e:?}"))
|
|
.size;
|
|
let cv = ConstValue::Scalar(Scalar::from_uint(bits, size));
|
|
|
|
Self::Val(cv, ty)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn from_bool(tcx: TyCtxt<'tcx>, v: bool) -> Self {
|
|
let cv = ConstValue::from_bool(v);
|
|
Self::Val(cv, tcx.types.bool)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn zero_sized(ty: Ty<'tcx>) -> Self {
|
|
let cv = ConstValue::ZeroSized;
|
|
Self::Val(cv, ty)
|
|
}
|
|
|
|
pub fn from_usize(tcx: TyCtxt<'tcx>, n: u64) -> Self {
|
|
let ty = tcx.types.usize;
|
|
let typing_env = ty::TypingEnv::fully_monomorphized();
|
|
Self::from_bits(tcx, n as u128, typing_env, ty)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn from_scalar(_tcx: TyCtxt<'tcx>, s: Scalar, ty: Ty<'tcx>) -> Self {
|
|
let val = ConstValue::Scalar(s);
|
|
Self::Val(val, ty)
|
|
}
|
|
|
|
pub fn from_ty_const(c: ty::Const<'tcx>, ty: Ty<'tcx>, tcx: TyCtxt<'tcx>) -> Self {
|
|
match c.kind() {
|
|
ty::ConstKind::Value(ty, valtree) => {
|
|
// Make sure that if `c` is normalized, then the return value is normalized.
|
|
let const_val = tcx.valtree_to_const_val((ty, valtree));
|
|
Self::Val(const_val, ty)
|
|
}
|
|
_ => Self::Ty(ty, c),
|
|
}
|
|
}
|
|
|
|
/// Return true if any evaluation of this constant always returns the same value,
|
|
/// taking into account even pointer identity tests.
|
|
pub fn is_deterministic(&self) -> bool {
|
|
// Some constants may generate fresh allocations for pointers they contain,
|
|
// so using the same constant twice can yield two different results:
|
|
// - valtrees purposefully generate new allocations
|
|
// - ConstValue::Slice also generate new allocations
|
|
match self {
|
|
Const::Ty(_, c) => match c.kind() {
|
|
ty::ConstKind::Param(..) => true,
|
|
// A valtree may be a reference. Valtree references correspond to a
|
|
// different allocation each time they are evaluated. Valtrees for primitive
|
|
// types are fine though.
|
|
ty::ConstKind::Value(ty, _) => ty.is_primitive(),
|
|
ty::ConstKind::Unevaluated(..) | ty::ConstKind::Expr(..) => false,
|
|
// This can happen if evaluation of a constant failed. The result does not matter
|
|
// much since compilation is doomed.
|
|
ty::ConstKind::Error(..) => false,
|
|
// Should not appear in runtime MIR.
|
|
ty::ConstKind::Infer(..)
|
|
| ty::ConstKind::Bound(..)
|
|
| ty::ConstKind::Placeholder(..) => bug!(),
|
|
},
|
|
Const::Unevaluated(..) => false,
|
|
// If the same slice appears twice in the MIR, we cannot guarantee that we will
|
|
// give the same `AllocId` to the data.
|
|
Const::Val(ConstValue::Slice { .. }, _) => false,
|
|
Const::Val(
|
|
ConstValue::ZeroSized | ConstValue::Scalar(_) | ConstValue::Indirect { .. },
|
|
_,
|
|
) => true,
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An unevaluated (potentially generic) constant used in MIR.
|
|
#[derive(Copy, Clone, Debug, Eq, PartialEq, TyEncodable, TyDecodable)]
|
|
#[derive(Hash, HashStable, TypeFoldable, TypeVisitable, Lift)]
|
|
pub struct UnevaluatedConst<'tcx> {
|
|
pub def: DefId,
|
|
pub args: GenericArgsRef<'tcx>,
|
|
pub promoted: Option<Promoted>,
|
|
}
|
|
|
|
impl<'tcx> UnevaluatedConst<'tcx> {
|
|
#[inline]
|
|
pub fn shrink(self) -> ty::UnevaluatedConst<'tcx> {
|
|
assert_eq!(self.promoted, None);
|
|
ty::UnevaluatedConst { def: self.def, args: self.args }
|
|
}
|
|
}
|
|
|
|
impl<'tcx> UnevaluatedConst<'tcx> {
|
|
#[inline]
|
|
pub fn new(def: DefId, args: GenericArgsRef<'tcx>) -> UnevaluatedConst<'tcx> {
|
|
UnevaluatedConst { def, args, promoted: Default::default() }
|
|
}
|
|
|
|
#[inline]
|
|
pub fn from_instance(instance: ty::Instance<'tcx>) -> Self {
|
|
UnevaluatedConst::new(instance.def_id(), instance.args)
|
|
}
|
|
}
|
|
|
|
impl<'tcx> Display for Const<'tcx> {
|
|
fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
|
|
match *self {
|
|
Const::Ty(_, c) => pretty_print_const(c, fmt, true),
|
|
Const::Val(val, ty) => pretty_print_const_value(val, ty, fmt),
|
|
// FIXME(valtrees): Correctly print mir constants.
|
|
Const::Unevaluated(c, _ty) => {
|
|
ty::tls::with(move |tcx| {
|
|
let c = tcx.lift(c).unwrap();
|
|
// Matches `GlobalId` printing.
|
|
let instance =
|
|
with_no_trimmed_paths!(tcx.def_path_str_with_args(c.def, c.args));
|
|
write!(fmt, "{instance}")?;
|
|
if let Some(promoted) = c.promoted {
|
|
write!(fmt, "::{promoted:?}")?;
|
|
}
|
|
Ok(())
|
|
})
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////
|
|
/// Const-related utilities
|
|
|
|
impl<'tcx> TyCtxt<'tcx> {
|
|
pub fn span_as_caller_location(self, span: Span) -> ConstValue<'tcx> {
|
|
let topmost = span.ctxt().outer_expn().expansion_cause().unwrap_or(span);
|
|
let caller = self.sess.source_map().lookup_char_pos(topmost.lo());
|
|
self.const_caller_location(
|
|
rustc_span::symbol::Symbol::intern(
|
|
&caller
|
|
.file
|
|
.name
|
|
.for_scope(self.sess, RemapPathScopeComponents::MACRO)
|
|
.to_string_lossy(),
|
|
),
|
|
caller.line as u32,
|
|
caller.col_display as u32 + 1,
|
|
)
|
|
}
|
|
}
|