Files
rust/compiler/rustc_lint/src/internal.rs
lcnr 9cba14b95b use TypingEnv when no infcx is available
the behavior of the type system not only depends on the current
assumptions, but also the currentnphase of the compiler. This is
mostly necessary as we need to decide whether and how to reveal
opaque types. We track this via the `TypingMode`.
2024-11-18 10:38:56 +01:00

660 lines
26 KiB
Rust

//! Some lints that are only useful in the compiler or crates that use compiler internals, such as
//! Clippy.
use rustc_ast as ast;
use rustc_hir::def::Res;
use rustc_hir::def_id::DefId;
use rustc_hir::{
BinOp, BinOpKind, Expr, ExprKind, GenericArg, HirId, Impl, Item, ItemKind, Node, Pat, PatKind,
Path, PathSegment, QPath, Ty, TyKind,
};
use rustc_middle::ty::{self, GenericArgsRef, Ty as MiddleTy};
use rustc_session::{declare_lint_pass, declare_tool_lint};
use rustc_span::Span;
use rustc_span::hygiene::{ExpnKind, MacroKind};
use rustc_span::symbol::{Symbol, kw, sym};
use tracing::debug;
use crate::lints::{
BadOptAccessDiag, DefaultHashTypesDiag, DiagOutOfImpl, LintPassByHand, NonExistentDocKeyword,
NonGlobImportTypeIrInherent, QueryInstability, QueryUntracked, SpanUseEqCtxtDiag, TyQualified,
TykindDiag, TykindKind, TypeIrInherentUsage, UntranslatableDiag,
};
use crate::{EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext};
declare_tool_lint! {
/// The `default_hash_type` lint detects use of [`std::collections::HashMap`] and
/// [`std::collections::HashSet`], suggesting the use of `FxHashMap`/`FxHashSet`.
///
/// This can help as `FxHasher` can perform better than the default hasher. DOS protection is
/// not required as input is assumed to be trusted.
pub rustc::DEFAULT_HASH_TYPES,
Allow,
"forbid HashMap and HashSet and suggest the FxHash* variants",
report_in_external_macro: true
}
declare_lint_pass!(DefaultHashTypes => [DEFAULT_HASH_TYPES]);
impl LateLintPass<'_> for DefaultHashTypes {
fn check_path(&mut self, cx: &LateContext<'_>, path: &Path<'_>, hir_id: HirId) {
let Res::Def(rustc_hir::def::DefKind::Struct, def_id) = path.res else { return };
if matches!(cx.tcx.hir_node(hir_id), Node::Item(Item { kind: ItemKind::Use(..), .. })) {
// Don't lint imports, only actual usages.
return;
}
let preferred = match cx.tcx.get_diagnostic_name(def_id) {
Some(sym::HashMap) => "FxHashMap",
Some(sym::HashSet) => "FxHashSet",
_ => return,
};
cx.emit_span_lint(DEFAULT_HASH_TYPES, path.span, DefaultHashTypesDiag {
preferred,
used: cx.tcx.item_name(def_id),
});
}
}
/// Helper function for lints that check for expressions with calls and use typeck results to
/// get the `DefId` and `GenericArgsRef` of the function.
fn typeck_results_of_method_fn<'tcx>(
cx: &LateContext<'tcx>,
expr: &Expr<'_>,
) -> Option<(Span, DefId, ty::GenericArgsRef<'tcx>)> {
match expr.kind {
ExprKind::MethodCall(segment, ..)
if let Some(def_id) = cx.typeck_results().type_dependent_def_id(expr.hir_id) =>
{
Some((segment.ident.span, def_id, cx.typeck_results().node_args(expr.hir_id)))
}
_ => match cx.typeck_results().node_type(expr.hir_id).kind() {
&ty::FnDef(def_id, args) => Some((expr.span, def_id, args)),
_ => None,
},
}
}
declare_tool_lint! {
/// The `potential_query_instability` lint detects use of methods which can lead to
/// potential query instability, such as iterating over a `HashMap`.
///
/// Due to the [incremental compilation](https://rustc-dev-guide.rust-lang.org/queries/incremental-compilation.html) model,
/// queries must return deterministic, stable results. `HashMap` iteration order can change
/// between compilations, and will introduce instability if query results expose the order.
pub rustc::POTENTIAL_QUERY_INSTABILITY,
Allow,
"require explicit opt-in when using potentially unstable methods or functions",
report_in_external_macro: true
}
declare_tool_lint! {
/// The `untracked_query_information` lint detects use of methods which leak information not
/// tracked by the query system, such as whether a `Steal<T>` value has already been stolen. In
/// order not to break incremental compilation, such methods must be used very carefully or not
/// at all.
pub rustc::UNTRACKED_QUERY_INFORMATION,
Allow,
"require explicit opt-in when accessing information not tracked by the query system",
report_in_external_macro: true
}
declare_lint_pass!(QueryStability => [POTENTIAL_QUERY_INSTABILITY, UNTRACKED_QUERY_INFORMATION]);
impl LateLintPass<'_> for QueryStability {
fn check_expr(&mut self, cx: &LateContext<'_>, expr: &Expr<'_>) {
let Some((span, def_id, args)) = typeck_results_of_method_fn(cx, expr) else { return };
if let Ok(Some(instance)) = ty::Instance::try_resolve(cx.tcx, cx.typing_env(), def_id, args)
{
let def_id = instance.def_id();
if cx.tcx.has_attr(def_id, sym::rustc_lint_query_instability) {
cx.emit_span_lint(POTENTIAL_QUERY_INSTABILITY, span, QueryInstability {
query: cx.tcx.item_name(def_id),
});
}
if cx.tcx.has_attr(def_id, sym::rustc_lint_untracked_query_information) {
cx.emit_span_lint(UNTRACKED_QUERY_INFORMATION, span, QueryUntracked {
method: cx.tcx.item_name(def_id),
});
}
}
}
}
declare_tool_lint! {
/// The `usage_of_ty_tykind` lint detects usages of `ty::TyKind::<kind>`,
/// where `ty::<kind>` would suffice.
pub rustc::USAGE_OF_TY_TYKIND,
Allow,
"usage of `ty::TyKind` outside of the `ty::sty` module",
report_in_external_macro: true
}
declare_tool_lint! {
/// The `usage_of_qualified_ty` lint detects usages of `ty::TyKind`,
/// where `Ty` should be used instead.
pub rustc::USAGE_OF_QUALIFIED_TY,
Allow,
"using `ty::{Ty,TyCtxt}` instead of importing it",
report_in_external_macro: true
}
declare_lint_pass!(TyTyKind => [
USAGE_OF_TY_TYKIND,
USAGE_OF_QUALIFIED_TY,
]);
impl<'tcx> LateLintPass<'tcx> for TyTyKind {
fn check_path(
&mut self,
cx: &LateContext<'tcx>,
path: &rustc_hir::Path<'tcx>,
_: rustc_hir::HirId,
) {
if let Some(segment) = path.segments.iter().nth_back(1)
&& lint_ty_kind_usage(cx, &segment.res)
{
let span =
path.span.with_hi(segment.args.map_or(segment.ident.span, |a| a.span_ext).hi());
cx.emit_span_lint(USAGE_OF_TY_TYKIND, path.span, TykindKind { suggestion: span });
}
}
fn check_ty(&mut self, cx: &LateContext<'_>, ty: &'tcx Ty<'tcx>) {
match &ty.kind {
TyKind::Path(QPath::Resolved(_, path)) => {
if lint_ty_kind_usage(cx, &path.res) {
let span = match cx.tcx.parent_hir_node(ty.hir_id) {
Node::Pat(Pat {
kind:
PatKind::Path(qpath)
| PatKind::TupleStruct(qpath, ..)
| PatKind::Struct(qpath, ..),
..
}) => {
if let QPath::TypeRelative(qpath_ty, ..) = qpath
&& qpath_ty.hir_id == ty.hir_id
{
Some(path.span)
} else {
None
}
}
Node::Expr(Expr { kind: ExprKind::Path(qpath), .. }) => {
if let QPath::TypeRelative(qpath_ty, ..) = qpath
&& qpath_ty.hir_id == ty.hir_id
{
Some(path.span)
} else {
None
}
}
// Can't unify these two branches because qpath below is `&&` and above is `&`
// and `A | B` paths don't play well together with adjustments, apparently.
Node::Expr(Expr { kind: ExprKind::Struct(qpath, ..), .. }) => {
if let QPath::TypeRelative(qpath_ty, ..) = qpath
&& qpath_ty.hir_id == ty.hir_id
{
Some(path.span)
} else {
None
}
}
_ => None,
};
match span {
Some(span) => {
cx.emit_span_lint(USAGE_OF_TY_TYKIND, path.span, TykindKind {
suggestion: span,
});
}
None => cx.emit_span_lint(USAGE_OF_TY_TYKIND, path.span, TykindDiag),
}
} else if !ty.span.from_expansion()
&& path.segments.len() > 1
&& let Some(ty) = is_ty_or_ty_ctxt(cx, path)
{
cx.emit_span_lint(USAGE_OF_QUALIFIED_TY, path.span, TyQualified {
ty,
suggestion: path.span,
});
}
}
_ => {}
}
}
}
fn lint_ty_kind_usage(cx: &LateContext<'_>, res: &Res) -> bool {
if let Some(did) = res.opt_def_id() {
cx.tcx.is_diagnostic_item(sym::TyKind, did) || cx.tcx.is_diagnostic_item(sym::IrTyKind, did)
} else {
false
}
}
fn is_ty_or_ty_ctxt(cx: &LateContext<'_>, path: &Path<'_>) -> Option<String> {
match &path.res {
Res::Def(_, def_id) => {
if let Some(name @ (sym::Ty | sym::TyCtxt)) = cx.tcx.get_diagnostic_name(*def_id) {
return Some(format!("{}{}", name, gen_args(path.segments.last().unwrap())));
}
}
// Only lint on `&Ty` and `&TyCtxt` if it is used outside of a trait.
Res::SelfTyAlias { alias_to: did, is_trait_impl: false, .. } => {
if let ty::Adt(adt, args) = cx.tcx.type_of(did).instantiate_identity().kind() {
if let Some(name @ (sym::Ty | sym::TyCtxt)) = cx.tcx.get_diagnostic_name(adt.did())
{
// NOTE: This path is currently unreachable as `Ty<'tcx>` is
// defined as a type alias meaning that `impl<'tcx> Ty<'tcx>`
// is not actually allowed.
//
// I(@lcnr) still kept this branch in so we don't miss this
// if we ever change it in the future.
return Some(format!("{}<{}>", name, args[0]));
}
}
}
_ => (),
}
None
}
fn gen_args(segment: &PathSegment<'_>) -> String {
if let Some(args) = &segment.args {
let lifetimes = args
.args
.iter()
.filter_map(|arg| {
if let GenericArg::Lifetime(lt) = arg { Some(lt.ident.to_string()) } else { None }
})
.collect::<Vec<_>>();
if !lifetimes.is_empty() {
return format!("<{}>", lifetimes.join(", "));
}
}
String::new()
}
declare_tool_lint! {
/// The `non_glob_import_of_type_ir_inherent_item` lint detects
/// non-glob imports of module `rustc_type_ir::inherent`.
pub rustc::NON_GLOB_IMPORT_OF_TYPE_IR_INHERENT,
Allow,
"non-glob import of `rustc_type_ir::inherent`",
report_in_external_macro: true
}
declare_tool_lint! {
/// The `usage_of_type_ir_inherent` lint detects usage `rustc_type_ir::inherent`.
///
/// This module should only be used within the trait solver.
pub rustc::USAGE_OF_TYPE_IR_INHERENT,
Allow,
"usage `rustc_type_ir::inherent` outside of trait system",
report_in_external_macro: true
}
declare_lint_pass!(TypeIr => [NON_GLOB_IMPORT_OF_TYPE_IR_INHERENT, USAGE_OF_TYPE_IR_INHERENT]);
impl<'tcx> LateLintPass<'tcx> for TypeIr {
fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx Item<'tcx>) {
let rustc_hir::ItemKind::Use(path, kind) = item.kind else { return };
let is_mod_inherent = |def_id| cx.tcx.is_diagnostic_item(sym::type_ir_inherent, def_id);
// Path segments except for the final.
if let Some(seg) =
path.segments.iter().find(|seg| seg.res.opt_def_id().is_some_and(is_mod_inherent))
{
cx.emit_span_lint(USAGE_OF_TYPE_IR_INHERENT, seg.ident.span, TypeIrInherentUsage);
}
// Final path resolutions, like `use rustc_type_ir::inherent`
else if path.res.iter().any(|res| res.opt_def_id().is_some_and(is_mod_inherent)) {
cx.emit_span_lint(
USAGE_OF_TYPE_IR_INHERENT,
path.segments.last().unwrap().ident.span,
TypeIrInherentUsage,
);
}
let (lo, hi, snippet) = match path.segments {
[.., penultimate, segment]
if penultimate.res.opt_def_id().is_some_and(is_mod_inherent) =>
{
(segment.ident.span, item.ident.span, "*")
}
[.., segment]
if path.res.iter().flat_map(Res::opt_def_id).any(is_mod_inherent)
&& let rustc_hir::UseKind::Single = kind =>
{
let (lo, snippet) =
match cx.tcx.sess.source_map().span_to_snippet(path.span).as_deref() {
Ok("self") => (path.span, "*"),
_ => (segment.ident.span.shrink_to_hi(), "::*"),
};
(lo, if segment.ident == item.ident { lo } else { item.ident.span }, snippet)
}
_ => return,
};
cx.emit_span_lint(
NON_GLOB_IMPORT_OF_TYPE_IR_INHERENT,
path.span,
NonGlobImportTypeIrInherent { suggestion: lo.eq_ctxt(hi).then(|| lo.to(hi)), snippet },
);
}
}
declare_tool_lint! {
/// The `lint_pass_impl_without_macro` detects manual implementations of a lint
/// pass, without using [`declare_lint_pass`] or [`impl_lint_pass`].
pub rustc::LINT_PASS_IMPL_WITHOUT_MACRO,
Allow,
"`impl LintPass` without the `declare_lint_pass!` or `impl_lint_pass!` macros"
}
declare_lint_pass!(LintPassImpl => [LINT_PASS_IMPL_WITHOUT_MACRO]);
impl EarlyLintPass for LintPassImpl {
fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) {
if let ast::ItemKind::Impl(box ast::Impl { of_trait: Some(lint_pass), .. }) = &item.kind {
if let Some(last) = lint_pass.path.segments.last() {
if last.ident.name == sym::LintPass {
let expn_data = lint_pass.path.span.ctxt().outer_expn_data();
let call_site = expn_data.call_site;
if expn_data.kind != ExpnKind::Macro(MacroKind::Bang, sym::impl_lint_pass)
&& call_site.ctxt().outer_expn_data().kind
!= ExpnKind::Macro(MacroKind::Bang, sym::declare_lint_pass)
{
cx.emit_span_lint(
LINT_PASS_IMPL_WITHOUT_MACRO,
lint_pass.path.span,
LintPassByHand,
);
}
}
}
}
}
}
declare_tool_lint! {
/// The `existing_doc_keyword` lint detects use `#[doc()]` keywords
/// that don't exist, e.g. `#[doc(keyword = "..")]`.
pub rustc::EXISTING_DOC_KEYWORD,
Allow,
"Check that documented keywords in std and core actually exist",
report_in_external_macro: true
}
declare_lint_pass!(ExistingDocKeyword => [EXISTING_DOC_KEYWORD]);
fn is_doc_keyword(s: Symbol) -> bool {
s <= kw::Union
}
impl<'tcx> LateLintPass<'tcx> for ExistingDocKeyword {
fn check_item(&mut self, cx: &LateContext<'_>, item: &rustc_hir::Item<'_>) {
for attr in cx.tcx.hir().attrs(item.hir_id()) {
if !attr.has_name(sym::doc) {
continue;
}
if let Some(list) = attr.meta_item_list() {
for nested in list {
if nested.has_name(sym::keyword) {
let keyword = nested
.value_str()
.expect("#[doc(keyword = \"...\")] expected a value!");
if is_doc_keyword(keyword) {
return;
}
cx.emit_span_lint(EXISTING_DOC_KEYWORD, attr.span, NonExistentDocKeyword {
keyword,
});
}
}
}
}
}
}
declare_tool_lint! {
/// The `untranslatable_diagnostic` lint detects messages passed to functions with `impl
/// Into<{D,Subd}iagMessage` parameters without using translatable Fluent strings.
///
/// More details on translatable diagnostics can be found
/// [here](https://rustc-dev-guide.rust-lang.org/diagnostics/translation.html).
pub rustc::UNTRANSLATABLE_DIAGNOSTIC,
Allow,
"prevent creation of diagnostics which cannot be translated",
report_in_external_macro: true,
@eval_always = true
}
declare_tool_lint! {
/// The `diagnostic_outside_of_impl` lint detects calls to functions annotated with
/// `#[rustc_lint_diagnostics]` that are outside an `Diagnostic`, `Subdiagnostic`, or
/// `LintDiagnostic` impl (either hand-written or derived).
///
/// More details on diagnostics implementations can be found
/// [here](https://rustc-dev-guide.rust-lang.org/diagnostics/diagnostic-structs.html).
pub rustc::DIAGNOSTIC_OUTSIDE_OF_IMPL,
Allow,
"prevent diagnostic creation outside of `Diagnostic`/`Subdiagnostic`/`LintDiagnostic` impls",
report_in_external_macro: true,
@eval_always = true
}
declare_lint_pass!(Diagnostics => [UNTRANSLATABLE_DIAGNOSTIC, DIAGNOSTIC_OUTSIDE_OF_IMPL]);
impl LateLintPass<'_> for Diagnostics {
fn check_expr(&mut self, cx: &LateContext<'_>, expr: &Expr<'_>) {
let collect_args_tys_and_spans = |args: &[Expr<'_>], reserve_one_extra: bool| {
let mut result = Vec::with_capacity(args.len() + usize::from(reserve_one_extra));
result.extend(args.iter().map(|arg| (cx.typeck_results().expr_ty(arg), arg.span)));
result
};
// Only check function calls and method calls.
let (span, def_id, fn_gen_args, arg_tys_and_spans) = match expr.kind {
ExprKind::Call(callee, args) => {
match cx.typeck_results().node_type(callee.hir_id).kind() {
&ty::FnDef(def_id, fn_gen_args) => {
(callee.span, def_id, fn_gen_args, collect_args_tys_and_spans(args, false))
}
_ => return, // occurs for fns passed as args
}
}
ExprKind::MethodCall(_segment, _recv, args, _span) => {
let Some((span, def_id, fn_gen_args)) = typeck_results_of_method_fn(cx, expr)
else {
return;
};
let mut args = collect_args_tys_and_spans(args, true);
args.insert(0, (cx.tcx.types.self_param, _recv.span)); // dummy inserted for `self`
(span, def_id, fn_gen_args, args)
}
_ => return,
};
Self::diagnostic_outside_of_impl(cx, span, expr.hir_id, def_id, fn_gen_args);
Self::untranslatable_diagnostic(cx, def_id, &arg_tys_and_spans);
}
}
impl Diagnostics {
// Is the type `{D,Subd}iagMessage`?
fn is_diag_message<'cx>(cx: &LateContext<'cx>, ty: MiddleTy<'cx>) -> bool {
if let Some(adt_def) = ty.ty_adt_def()
&& let Some(name) = cx.tcx.get_diagnostic_name(adt_def.did())
&& matches!(name, sym::DiagMessage | sym::SubdiagMessage)
{
true
} else {
false
}
}
fn untranslatable_diagnostic<'cx>(
cx: &LateContext<'cx>,
def_id: DefId,
arg_tys_and_spans: &[(MiddleTy<'cx>, Span)],
) {
let fn_sig = cx.tcx.fn_sig(def_id).instantiate_identity().skip_binder();
let predicates = cx.tcx.predicates_of(def_id).instantiate_identity(cx.tcx).predicates;
for (i, &param_ty) in fn_sig.inputs().iter().enumerate() {
if let ty::Param(sig_param) = param_ty.kind() {
// It is a type parameter. Check if it is `impl Into<{D,Subd}iagMessage>`.
for pred in predicates.iter() {
if let Some(trait_pred) = pred.as_trait_clause()
&& let trait_ref = trait_pred.skip_binder().trait_ref
&& trait_ref.self_ty() == param_ty // correct predicate for the param?
&& cx.tcx.is_diagnostic_item(sym::Into, trait_ref.def_id)
&& let ty1 = trait_ref.args.type_at(1)
&& Self::is_diag_message(cx, ty1)
{
// Calls to methods with an `impl Into<{D,Subd}iagMessage>` parameter must be passed an arg
// with type `{D,Subd}iagMessage` or `impl Into<{D,Subd}iagMessage>`. Otherwise, emit an
// `UNTRANSLATABLE_DIAGNOSTIC` lint.
let (arg_ty, arg_span) = arg_tys_and_spans[i];
// Is the arg type `{Sub,D}iagMessage`or `impl Into<{Sub,D}iagMessage>`?
let is_translatable = Self::is_diag_message(cx, arg_ty)
|| matches!(arg_ty.kind(), ty::Param(arg_param) if arg_param.name == sig_param.name);
if !is_translatable {
cx.emit_span_lint(
UNTRANSLATABLE_DIAGNOSTIC,
arg_span,
UntranslatableDiag,
);
}
}
}
}
}
}
fn diagnostic_outside_of_impl<'cx>(
cx: &LateContext<'cx>,
span: Span,
current_id: HirId,
def_id: DefId,
fn_gen_args: GenericArgsRef<'cx>,
) {
// Is the callee marked with `#[rustc_lint_diagnostics]`?
let Some(inst) =
ty::Instance::try_resolve(cx.tcx, cx.typing_env(), def_id, fn_gen_args).ok().flatten()
else {
return;
};
let has_attr = cx.tcx.has_attr(inst.def_id(), sym::rustc_lint_diagnostics);
if !has_attr {
return;
};
for (hir_id, _parent) in cx.tcx.hir().parent_iter(current_id) {
if let Some(owner_did) = hir_id.as_owner()
&& cx.tcx.has_attr(owner_did, sym::rustc_lint_diagnostics)
{
// The parent method is marked with `#[rustc_lint_diagnostics]`
return;
}
}
// Calls to `#[rustc_lint_diagnostics]`-marked functions should only occur:
// - inside an impl of `Diagnostic`, `Subdiagnostic`, or `LintDiagnostic`, or
// - inside a parent function that is itself marked with `#[rustc_lint_diagnostics]`.
//
// Otherwise, emit a `DIAGNOSTIC_OUTSIDE_OF_IMPL` lint.
let mut is_inside_appropriate_impl = false;
for (_hir_id, parent) in cx.tcx.hir().parent_iter(current_id) {
debug!(?parent);
if let Node::Item(Item { kind: ItemKind::Impl(impl_), .. }) = parent
&& let Impl { of_trait: Some(of_trait), .. } = impl_
&& let Some(def_id) = of_trait.trait_def_id()
&& let Some(name) = cx.tcx.get_diagnostic_name(def_id)
&& matches!(name, sym::Diagnostic | sym::Subdiagnostic | sym::LintDiagnostic)
{
is_inside_appropriate_impl = true;
break;
}
}
debug!(?is_inside_appropriate_impl);
if !is_inside_appropriate_impl {
cx.emit_span_lint(DIAGNOSTIC_OUTSIDE_OF_IMPL, span, DiagOutOfImpl);
}
}
}
declare_tool_lint! {
/// The `bad_opt_access` lint detects accessing options by field instead of
/// the wrapper function.
pub rustc::BAD_OPT_ACCESS,
Deny,
"prevent using options by field access when there is a wrapper function",
report_in_external_macro: true
}
declare_lint_pass!(BadOptAccess => [BAD_OPT_ACCESS]);
impl LateLintPass<'_> for BadOptAccess {
fn check_expr(&mut self, cx: &LateContext<'_>, expr: &Expr<'_>) {
let ExprKind::Field(base, target) = expr.kind else { return };
let Some(adt_def) = cx.typeck_results().expr_ty(base).ty_adt_def() else { return };
// Skip types without `#[rustc_lint_opt_ty]` - only so that the rest of the lint can be
// avoided.
if !cx.tcx.has_attr(adt_def.did(), sym::rustc_lint_opt_ty) {
return;
}
for field in adt_def.all_fields() {
if field.name == target.name
&& let Some(attr) =
cx.tcx.get_attr(field.did, sym::rustc_lint_opt_deny_field_access)
&& let Some(items) = attr.meta_item_list()
&& let Some(item) = items.first()
&& let Some(lit) = item.lit()
&& let ast::LitKind::Str(val, _) = lit.kind
{
cx.emit_span_lint(BAD_OPT_ACCESS, expr.span, BadOptAccessDiag {
msg: val.as_str(),
});
}
}
}
}
declare_tool_lint! {
pub rustc::SPAN_USE_EQ_CTXT,
Allow,
"forbid uses of `==` with `Span::ctxt`, suggest `Span::eq_ctxt` instead",
report_in_external_macro: true
}
declare_lint_pass!(SpanUseEqCtxt => [SPAN_USE_EQ_CTXT]);
impl<'tcx> LateLintPass<'tcx> for SpanUseEqCtxt {
fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &Expr<'_>) {
if let ExprKind::Binary(BinOp { node: BinOpKind::Eq | BinOpKind::Ne, .. }, lhs, rhs) =
expr.kind
{
if is_span_ctxt_call(cx, lhs) && is_span_ctxt_call(cx, rhs) {
cx.emit_span_lint(SPAN_USE_EQ_CTXT, expr.span, SpanUseEqCtxtDiag);
}
}
}
}
fn is_span_ctxt_call(cx: &LateContext<'_>, expr: &Expr<'_>) -> bool {
match &expr.kind {
ExprKind::MethodCall(..) => cx
.typeck_results()
.type_dependent_def_id(expr.hir_id)
.is_some_and(|call_did| cx.tcx.is_diagnostic_item(sym::SpanCtxt, call_did)),
_ => false,
}
}