This commit adds the needed modifications to compile the std crate
for the L4 Runtime environment (L4Re).
A target for the L4Re was introduced in commit:
c151220a84
In many aspects implementations for linux also apply for the L4Re
microkernel.
Two uncommon characteristics had to be resolved:
* L4Re has no network funktionality
* L4Re has a maximum stacksize of 1Mb for threads
Co-authored-by: Sebastian Humenda <sebastian.humenda@tu-dresden.de>
187 lines
7.0 KiB
Rust
187 lines
7.0 KiB
Rust
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
use cell::UnsafeCell;
|
|
use libc;
|
|
use sys::mutex::{self, Mutex};
|
|
use time::Duration;
|
|
|
|
pub struct Condvar { inner: UnsafeCell<libc::pthread_cond_t> }
|
|
|
|
unsafe impl Send for Condvar {}
|
|
unsafe impl Sync for Condvar {}
|
|
|
|
const TIMESPEC_MAX: libc::timespec = libc::timespec {
|
|
tv_sec: <libc::time_t>::max_value(),
|
|
tv_nsec: 1_000_000_000 - 1,
|
|
};
|
|
|
|
fn saturating_cast_to_time_t(value: u64) -> libc::time_t {
|
|
if value > <libc::time_t>::max_value() as u64 {
|
|
<libc::time_t>::max_value()
|
|
} else {
|
|
value as libc::time_t
|
|
}
|
|
}
|
|
|
|
impl Condvar {
|
|
pub const fn new() -> Condvar {
|
|
// Might be moved and address is changing it is better to avoid
|
|
// initialization of potentially opaque OS data before it landed
|
|
Condvar { inner: UnsafeCell::new(libc::PTHREAD_COND_INITIALIZER) }
|
|
}
|
|
|
|
#[cfg(any(target_os = "macos",
|
|
target_os = "ios",
|
|
target_os = "l4re",
|
|
target_os = "android"))]
|
|
pub unsafe fn init(&mut self) {}
|
|
|
|
#[cfg(not(any(target_os = "macos",
|
|
target_os = "ios",
|
|
target_os = "l4re",
|
|
target_os = "android")))]
|
|
pub unsafe fn init(&mut self) {
|
|
use mem;
|
|
let mut attr: libc::pthread_condattr_t = mem::uninitialized();
|
|
let r = libc::pthread_condattr_init(&mut attr);
|
|
assert_eq!(r, 0);
|
|
let r = libc::pthread_condattr_setclock(&mut attr, libc::CLOCK_MONOTONIC);
|
|
assert_eq!(r, 0);
|
|
let r = libc::pthread_cond_init(self.inner.get(), &attr);
|
|
assert_eq!(r, 0);
|
|
let r = libc::pthread_condattr_destroy(&mut attr);
|
|
assert_eq!(r, 0);
|
|
}
|
|
|
|
#[inline]
|
|
pub unsafe fn notify_one(&self) {
|
|
let r = libc::pthread_cond_signal(self.inner.get());
|
|
debug_assert_eq!(r, 0);
|
|
}
|
|
|
|
#[inline]
|
|
pub unsafe fn notify_all(&self) {
|
|
let r = libc::pthread_cond_broadcast(self.inner.get());
|
|
debug_assert_eq!(r, 0);
|
|
}
|
|
|
|
#[inline]
|
|
pub unsafe fn wait(&self, mutex: &Mutex) {
|
|
let r = libc::pthread_cond_wait(self.inner.get(), mutex::raw(mutex));
|
|
debug_assert_eq!(r, 0);
|
|
}
|
|
|
|
// This implementation is used on systems that support pthread_condattr_setclock
|
|
// where we configure condition variable to use monotonic clock (instead of
|
|
// default system clock). This approach avoids all problems that result
|
|
// from changes made to the system time.
|
|
#[cfg(not(any(target_os = "macos", target_os = "ios", target_os = "android")))]
|
|
pub unsafe fn wait_timeout(&self, mutex: &Mutex, dur: Duration) -> bool {
|
|
use mem;
|
|
|
|
let mut now: libc::timespec = mem::zeroed();
|
|
let r = libc::clock_gettime(libc::CLOCK_MONOTONIC, &mut now);
|
|
assert_eq!(r, 0);
|
|
|
|
// Nanosecond calculations can't overflow because both values are below 1e9.
|
|
let nsec = dur.subsec_nanos() as libc::c_long + now.tv_nsec as libc::c_long;
|
|
let sec = saturating_cast_to_time_t(dur.as_secs())
|
|
.checked_add((nsec / 1_000_000_000) as libc::time_t)
|
|
.and_then(|s| s.checked_add(now.tv_sec));
|
|
let nsec = nsec % 1_000_000_000;
|
|
|
|
let timeout = sec.map(|s| {
|
|
libc::timespec { tv_sec: s, tv_nsec: nsec }
|
|
}).unwrap_or(TIMESPEC_MAX);
|
|
|
|
let r = libc::pthread_cond_timedwait(self.inner.get(), mutex::raw(mutex),
|
|
&timeout);
|
|
assert!(r == libc::ETIMEDOUT || r == 0);
|
|
r == 0
|
|
}
|
|
|
|
|
|
// This implementation is modeled after libcxx's condition_variable
|
|
// https://github.com/llvm-mirror/libcxx/blob/release_35/src/condition_variable.cpp#L46
|
|
// https://github.com/llvm-mirror/libcxx/blob/release_35/include/__mutex_base#L367
|
|
#[cfg(any(target_os = "macos", target_os = "ios", target_os = "android"))]
|
|
pub unsafe fn wait_timeout(&self, mutex: &Mutex, mut dur: Duration) -> bool {
|
|
use ptr;
|
|
use time::Instant;
|
|
|
|
// 1000 years
|
|
let max_dur = Duration::from_secs(1000 * 365 * 86400);
|
|
|
|
if dur > max_dur {
|
|
// OSX implementation of `pthread_cond_timedwait` is buggy
|
|
// with super long durations. When duration is greater than
|
|
// 0x100_0000_0000_0000 seconds, `pthread_cond_timedwait`
|
|
// in macOS Sierra return error 316.
|
|
//
|
|
// This program demonstrates the issue:
|
|
// https://gist.github.com/stepancheg/198db4623a20aad2ad7cddb8fda4a63c
|
|
//
|
|
// To work around this issue, and possible bugs of other OSes, timeout
|
|
// is clamped to 1000 years, which is allowable per the API of `wait_timeout`
|
|
// because of spurious wakeups.
|
|
|
|
dur = max_dur;
|
|
}
|
|
|
|
// First, figure out what time it currently is, in both system and
|
|
// stable time. pthread_cond_timedwait uses system time, but we want to
|
|
// report timeout based on stable time.
|
|
let mut sys_now = libc::timeval { tv_sec: 0, tv_usec: 0 };
|
|
let stable_now = Instant::now();
|
|
let r = libc::gettimeofday(&mut sys_now, ptr::null_mut());
|
|
debug_assert_eq!(r, 0);
|
|
|
|
let nsec = dur.subsec_nanos() as libc::c_long +
|
|
(sys_now.tv_usec * 1000) as libc::c_long;
|
|
let extra = (nsec / 1_000_000_000) as libc::time_t;
|
|
let nsec = nsec % 1_000_000_000;
|
|
let seconds = saturating_cast_to_time_t(dur.as_secs());
|
|
|
|
let timeout = sys_now.tv_sec.checked_add(extra).and_then(|s| {
|
|
s.checked_add(seconds)
|
|
}).map(|s| {
|
|
libc::timespec { tv_sec: s, tv_nsec: nsec }
|
|
}).unwrap_or(TIMESPEC_MAX);
|
|
|
|
// And wait!
|
|
let r = libc::pthread_cond_timedwait(self.inner.get(), mutex::raw(mutex),
|
|
&timeout);
|
|
debug_assert!(r == libc::ETIMEDOUT || r == 0);
|
|
|
|
// ETIMEDOUT is not a totally reliable method of determining timeout due
|
|
// to clock shifts, so do the check ourselves
|
|
stable_now.elapsed() < dur
|
|
}
|
|
|
|
#[inline]
|
|
#[cfg(not(target_os = "dragonfly"))]
|
|
pub unsafe fn destroy(&self) {
|
|
let r = libc::pthread_cond_destroy(self.inner.get());
|
|
debug_assert_eq!(r, 0);
|
|
}
|
|
|
|
#[inline]
|
|
#[cfg(target_os = "dragonfly")]
|
|
pub unsafe fn destroy(&self) {
|
|
let r = libc::pthread_cond_destroy(self.inner.get());
|
|
// On DragonFly pthread_cond_destroy() returns EINVAL if called on
|
|
// a condvar that was just initialized with
|
|
// libc::PTHREAD_COND_INITIALIZER. Once it is used or
|
|
// pthread_cond_init() is called, this behaviour no longer occurs.
|
|
debug_assert!(r == 0 || r == libc::EINVAL);
|
|
}
|
|
}
|