Exhaustiveness: Statically enforce revealing of opaques In https://github.com/rust-lang/rust/pull/116821 it was decided that exhaustiveness should operate on the hidden type of an opaque type when relevant. This PR makes sure we consistently reveal opaques within exhaustiveness. This makes it possible to remove `reveal_opaque_ty` from the `TypeCx` trait which was an unfortunate implementation detail. r? `@compiler-errors`
282 lines
12 KiB
Rust
282 lines
12 KiB
Rust
use smallvec::SmallVec;
|
|
|
|
use rustc_data_structures::captures::Captures;
|
|
use rustc_middle::ty;
|
|
use rustc_session::lint;
|
|
use rustc_session::lint::builtin::NON_EXHAUSTIVE_OMITTED_PATTERNS;
|
|
use rustc_span::Span;
|
|
|
|
use crate::constructor::{IntRange, MaybeInfiniteInt};
|
|
use crate::errors::{
|
|
NonExhaustiveOmittedPattern, NonExhaustiveOmittedPatternLintOnArm, Overlap,
|
|
OverlappingRangeEndpoints, Uncovered,
|
|
};
|
|
use crate::rustc::{
|
|
Constructor, DeconstructedPat, MatchArm, MatchCtxt, PlaceCtxt, RevealedTy, RustcMatchCheckCtxt,
|
|
SplitConstructorSet, WitnessPat,
|
|
};
|
|
|
|
/// A column of patterns in the matrix, where a column is the intuitive notion of "subpatterns that
|
|
/// inspect the same subvalue/place".
|
|
/// This is used to traverse patterns column-by-column for lints. Despite similarities with the
|
|
/// algorithm in [`crate::usefulness`], this does a different traversal. Notably this is linear in
|
|
/// the depth of patterns, whereas `compute_exhaustiveness_and_usefulness` is worst-case exponential
|
|
/// (exhaustiveness is NP-complete). The core difference is that we treat sub-columns separately.
|
|
///
|
|
/// This must not contain an or-pattern. `specialize` takes care to expand them.
|
|
///
|
|
/// This is not used in the main algorithm; only in lints.
|
|
#[derive(Debug)]
|
|
pub(crate) struct PatternColumn<'p, 'tcx> {
|
|
patterns: Vec<&'p DeconstructedPat<'p, 'tcx>>,
|
|
}
|
|
|
|
impl<'p, 'tcx> PatternColumn<'p, 'tcx> {
|
|
pub(crate) fn new(arms: &[MatchArm<'p, 'tcx>]) -> Self {
|
|
let mut patterns = Vec::with_capacity(arms.len());
|
|
for arm in arms {
|
|
if arm.pat.is_or_pat() {
|
|
patterns.extend(arm.pat.flatten_or_pat())
|
|
} else {
|
|
patterns.push(arm.pat)
|
|
}
|
|
}
|
|
Self { patterns }
|
|
}
|
|
|
|
fn is_empty(&self) -> bool {
|
|
self.patterns.is_empty()
|
|
}
|
|
fn head_ty(&self) -> Option<RevealedTy<'tcx>> {
|
|
self.patterns.first().map(|pat| pat.ty())
|
|
}
|
|
|
|
/// Do constructor splitting on the constructors of the column.
|
|
fn analyze_ctors(&self, pcx: &PlaceCtxt<'_, 'p, 'tcx>) -> SplitConstructorSet<'p, 'tcx> {
|
|
let column_ctors = self.patterns.iter().map(|p| p.ctor());
|
|
pcx.ctors_for_ty().split(pcx, column_ctors)
|
|
}
|
|
|
|
fn iter(&self) -> impl Iterator<Item = &'p DeconstructedPat<'p, 'tcx>> + Captures<'_> {
|
|
self.patterns.iter().copied()
|
|
}
|
|
|
|
/// Does specialization: given a constructor, this takes the patterns from the column that match
|
|
/// the constructor, and outputs their fields.
|
|
/// This returns one column per field of the constructor. They usually all have the same length
|
|
/// (the number of patterns in `self` that matched `ctor`), except that we expand or-patterns
|
|
/// which may change the lengths.
|
|
fn specialize(
|
|
&self,
|
|
pcx: &PlaceCtxt<'_, 'p, 'tcx>,
|
|
ctor: &Constructor<'p, 'tcx>,
|
|
) -> Vec<PatternColumn<'p, 'tcx>> {
|
|
let arity = ctor.arity(pcx);
|
|
if arity == 0 {
|
|
return Vec::new();
|
|
}
|
|
|
|
// We specialize the column by `ctor`. This gives us `arity`-many columns of patterns. These
|
|
// columns may have different lengths in the presence of or-patterns (this is why we can't
|
|
// reuse `Matrix`).
|
|
let mut specialized_columns: Vec<_> =
|
|
(0..arity).map(|_| Self { patterns: Vec::new() }).collect();
|
|
let relevant_patterns =
|
|
self.patterns.iter().filter(|pat| ctor.is_covered_by(pcx, pat.ctor()));
|
|
for pat in relevant_patterns {
|
|
let specialized = pat.specialize(pcx, ctor);
|
|
for (subpat, column) in specialized.iter().zip(&mut specialized_columns) {
|
|
if subpat.is_or_pat() {
|
|
column.patterns.extend(subpat.flatten_or_pat())
|
|
} else {
|
|
column.patterns.push(subpat)
|
|
}
|
|
}
|
|
}
|
|
|
|
assert!(
|
|
!specialized_columns[0].is_empty(),
|
|
"ctor {ctor:?} was listed as present but isn't;
|
|
there is an inconsistency between `Constructor::is_covered_by` and `ConstructorSet::split`"
|
|
);
|
|
specialized_columns
|
|
}
|
|
}
|
|
|
|
/// Traverse the patterns to collect any variants of a non_exhaustive enum that fail to be mentioned
|
|
/// in a given column.
|
|
#[instrument(level = "debug", skip(cx), ret)]
|
|
fn collect_nonexhaustive_missing_variants<'a, 'p, 'tcx>(
|
|
cx: MatchCtxt<'a, 'p, 'tcx>,
|
|
column: &PatternColumn<'p, 'tcx>,
|
|
) -> Vec<WitnessPat<'p, 'tcx>> {
|
|
let Some(ty) = column.head_ty() else {
|
|
return Vec::new();
|
|
};
|
|
let pcx = &PlaceCtxt::new_dummy(cx, ty);
|
|
|
|
let set = column.analyze_ctors(pcx);
|
|
if set.present.is_empty() {
|
|
// We can't consistently handle the case where no constructors are present (since this would
|
|
// require digging deep through any type in case there's a non_exhaustive enum somewhere),
|
|
// so for consistency we refuse to handle the top-level case, where we could handle it.
|
|
return vec![];
|
|
}
|
|
|
|
let mut witnesses = Vec::new();
|
|
if cx.tycx.is_foreign_non_exhaustive_enum(ty) {
|
|
witnesses.extend(
|
|
set.missing
|
|
.into_iter()
|
|
// This will list missing visible variants.
|
|
.filter(|c| !matches!(c, Constructor::Hidden | Constructor::NonExhaustive))
|
|
.map(|missing_ctor| WitnessPat::wild_from_ctor(pcx, missing_ctor)),
|
|
)
|
|
}
|
|
|
|
// Recurse into the fields.
|
|
for ctor in set.present {
|
|
let specialized_columns = column.specialize(pcx, &ctor);
|
|
let wild_pat = WitnessPat::wild_from_ctor(pcx, ctor);
|
|
for (i, col_i) in specialized_columns.iter().enumerate() {
|
|
// Compute witnesses for each column.
|
|
let wits_for_col_i = collect_nonexhaustive_missing_variants(cx, col_i);
|
|
// For each witness, we build a new pattern in the shape of `ctor(_, _, wit, _, _)`,
|
|
// adding enough wildcards to match `arity`.
|
|
for wit in wits_for_col_i {
|
|
let mut pat = wild_pat.clone();
|
|
pat.fields[i] = wit;
|
|
witnesses.push(pat);
|
|
}
|
|
}
|
|
}
|
|
witnesses
|
|
}
|
|
|
|
pub(crate) fn lint_nonexhaustive_missing_variants<'a, 'p, 'tcx>(
|
|
cx: MatchCtxt<'a, 'p, 'tcx>,
|
|
arms: &[MatchArm<'p, 'tcx>],
|
|
pat_column: &PatternColumn<'p, 'tcx>,
|
|
scrut_ty: RevealedTy<'tcx>,
|
|
) {
|
|
let rcx: &RustcMatchCheckCtxt<'_, '_> = cx.tycx;
|
|
if !matches!(
|
|
rcx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, rcx.match_lint_level).0,
|
|
rustc_session::lint::Level::Allow
|
|
) {
|
|
let witnesses = collect_nonexhaustive_missing_variants(cx, pat_column);
|
|
if !witnesses.is_empty() {
|
|
// Report that a match of a `non_exhaustive` enum marked with `non_exhaustive_omitted_patterns`
|
|
// is not exhaustive enough.
|
|
//
|
|
// NB: The partner lint for structs lives in `compiler/rustc_hir_analysis/src/check/pat.rs`.
|
|
rcx.tcx.emit_spanned_lint(
|
|
NON_EXHAUSTIVE_OMITTED_PATTERNS,
|
|
rcx.match_lint_level,
|
|
rcx.scrut_span,
|
|
NonExhaustiveOmittedPattern {
|
|
scrut_ty: scrut_ty.inner(),
|
|
uncovered: Uncovered::new(rcx.scrut_span, rcx, witnesses),
|
|
},
|
|
);
|
|
}
|
|
} else {
|
|
// We used to allow putting the `#[allow(non_exhaustive_omitted_patterns)]` on a match
|
|
// arm. This no longer makes sense so we warn users, to avoid silently breaking their
|
|
// usage of the lint.
|
|
for arm in arms {
|
|
let (lint_level, lint_level_source) =
|
|
rcx.tcx.lint_level_at_node(NON_EXHAUSTIVE_OMITTED_PATTERNS, arm.arm_data);
|
|
if !matches!(lint_level, rustc_session::lint::Level::Allow) {
|
|
let decorator = NonExhaustiveOmittedPatternLintOnArm {
|
|
lint_span: lint_level_source.span(),
|
|
suggest_lint_on_match: rcx.whole_match_span.map(|span| span.shrink_to_lo()),
|
|
lint_level: lint_level.as_str(),
|
|
lint_name: "non_exhaustive_omitted_patterns",
|
|
};
|
|
|
|
use rustc_errors::DecorateLint;
|
|
let mut err = rcx.tcx.dcx().struct_span_warn(arm.pat.data().unwrap().span, "");
|
|
err.primary_message(decorator.msg());
|
|
decorator.decorate_lint(&mut err);
|
|
err.emit();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Traverse the patterns to warn the user about ranges that overlap on their endpoints.
|
|
#[instrument(level = "debug", skip(cx))]
|
|
pub(crate) fn lint_overlapping_range_endpoints<'a, 'p, 'tcx>(
|
|
cx: MatchCtxt<'a, 'p, 'tcx>,
|
|
column: &PatternColumn<'p, 'tcx>,
|
|
) {
|
|
let Some(ty) = column.head_ty() else {
|
|
return;
|
|
};
|
|
let pcx = &PlaceCtxt::new_dummy(cx, ty);
|
|
let rcx: &RustcMatchCheckCtxt<'_, '_> = cx.tycx;
|
|
|
|
let set = column.analyze_ctors(pcx);
|
|
|
|
if matches!(ty.kind(), ty::Char | ty::Int(_) | ty::Uint(_)) {
|
|
let emit_lint = |overlap: &IntRange, this_span: Span, overlapped_spans: &[Span]| {
|
|
let overlap_as_pat = rcx.hoist_pat_range(overlap, ty);
|
|
let overlaps: Vec<_> = overlapped_spans
|
|
.iter()
|
|
.copied()
|
|
.map(|span| Overlap { range: overlap_as_pat.clone(), span })
|
|
.collect();
|
|
rcx.tcx.emit_spanned_lint(
|
|
lint::builtin::OVERLAPPING_RANGE_ENDPOINTS,
|
|
rcx.match_lint_level,
|
|
this_span,
|
|
OverlappingRangeEndpoints { overlap: overlaps, range: this_span },
|
|
);
|
|
};
|
|
|
|
// If two ranges overlapped, the split set will contain their intersection as a singleton.
|
|
let split_int_ranges = set.present.iter().filter_map(|c| c.as_int_range());
|
|
for overlap_range in split_int_ranges.clone() {
|
|
if overlap_range.is_singleton() {
|
|
let overlap: MaybeInfiniteInt = overlap_range.lo;
|
|
// Ranges that look like `lo..=overlap`.
|
|
let mut prefixes: SmallVec<[_; 1]> = Default::default();
|
|
// Ranges that look like `overlap..=hi`.
|
|
let mut suffixes: SmallVec<[_; 1]> = Default::default();
|
|
// Iterate on patterns that contained `overlap`.
|
|
for pat in column.iter() {
|
|
let Constructor::IntRange(this_range) = pat.ctor() else { continue };
|
|
let this_span = pat.data().unwrap().span;
|
|
if this_range.is_singleton() {
|
|
// Don't lint when one of the ranges is a singleton.
|
|
continue;
|
|
}
|
|
if this_range.lo == overlap {
|
|
// `this_range` looks like `overlap..=this_range.hi`; it overlaps with any
|
|
// ranges that look like `lo..=overlap`.
|
|
if !prefixes.is_empty() {
|
|
emit_lint(overlap_range, this_span, &prefixes);
|
|
}
|
|
suffixes.push(this_span)
|
|
} else if this_range.hi == overlap.plus_one() {
|
|
// `this_range` looks like `this_range.lo..=overlap`; it overlaps with any
|
|
// ranges that look like `overlap..=hi`.
|
|
if !suffixes.is_empty() {
|
|
emit_lint(overlap_range, this_span, &suffixes);
|
|
}
|
|
prefixes.push(this_span)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// Recurse into the fields.
|
|
for ctor in set.present {
|
|
for col in column.specialize(pcx, &ctor) {
|
|
lint_overlapping_range_endpoints(cx, &col);
|
|
}
|
|
}
|
|
}
|
|
}
|