Files
rust/src/libstd/tuple.rs
Alex Crichton b78b749810 Remove all ToStr impls, add Show impls
This commit changes the ToStr trait to:

    impl<T: fmt::Show> ToStr for T {
        fn to_str(&self) -> ~str { format!("{}", *self) }
    }

The ToStr trait has been on the chopping block for quite awhile now, and this is
the final nail in its coffin. The trait and the corresponding method are not
being removed as part of this commit, but rather any implementations of the
`ToStr` trait are being forbidden because of the generic impl. The new way to
get the `to_str()` method to work is to implement `fmt::Show`.

Formatting into a `&mut Writer` (as `format!` does) is much more efficient than
`ToStr` when building up large strings. The `ToStr` trait forces many
intermediate allocations to be made while the `fmt::Show` trait allows
incremental buildup in the same heap allocated buffer. Additionally, the
`fmt::Show` trait is much more extensible in terms of interoperation with other
`Writer` instances and in more situations. By design the `ToStr` trait requires
at least one allocation whereas the `fmt::Show` trait does not require any
allocations.

Closes #8242
Closes #9806
2014-02-23 20:51:56 -08:00

361 lines
14 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Operations on tuples
#[allow(missing_doc)];
use clone::Clone;
#[cfg(not(test))] use cmp::*;
#[cfg(not(test))] use default::Default;
use fmt;
use result::{Ok, Err};
// macro for implementing n-ary tuple functions and operations
macro_rules! tuple_impls {
($(
$Tuple:ident {
$(($valN:ident, $refN:ident, $mutN:ident) -> $T:ident {
($($x:ident),+) => $ret:expr
})+
}
)+) => {
$(
pub trait $Tuple<$($T),+> {
$(fn $valN(self) -> $T;)+
$(fn $refN<'a>(&'a self) -> &'a $T;)+
$(fn $mutN<'a>(&'a mut self) -> &'a mut $T;)+
}
impl<$($T),+> $Tuple<$($T),+> for ($($T,)+) {
$(
#[inline]
#[allow(unused_variable)]
fn $valN(self) -> $T {
let ($($x,)+) = self; $ret
}
#[inline]
#[allow(unused_variable)]
fn $refN<'a>(&'a self) -> &'a $T {
let ($(ref $x,)+) = *self; $ret
}
#[inline]
#[allow(unused_variable)]
fn $mutN<'a>(&'a mut self) -> &'a mut $T {
let ($(ref mut $x,)+) = *self; $ret
}
)+
}
impl<$($T:Clone),+> Clone for ($($T,)+) {
fn clone(&self) -> ($($T,)+) {
($(self.$refN().clone(),)+)
}
}
#[cfg(not(test))]
impl<$($T:Eq),+> Eq for ($($T,)+) {
#[inline]
fn eq(&self, other: &($($T,)+)) -> bool {
$(*self.$refN() == *other.$refN())&&+
}
#[inline]
fn ne(&self, other: &($($T,)+)) -> bool {
$(*self.$refN() != *other.$refN())||+
}
}
#[cfg(not(test))]
impl<$($T:TotalEq),+> TotalEq for ($($T,)+) {
#[inline]
fn equals(&self, other: &($($T,)+)) -> bool {
$(self.$refN().equals(other.$refN()))&&+
}
}
#[cfg(not(test))]
impl<$($T:Ord + Eq),+> Ord for ($($T,)+) {
#[inline]
fn lt(&self, other: &($($T,)+)) -> bool {
lexical_ord!(lt, $(self.$refN(), other.$refN()),+)
}
#[inline]
fn le(&self, other: &($($T,)+)) -> bool {
lexical_ord!(le, $(self.$refN(), other.$refN()),+)
}
#[inline]
fn ge(&self, other: &($($T,)+)) -> bool {
lexical_ord!(ge, $(self.$refN(), other.$refN()),+)
}
#[inline]
fn gt(&self, other: &($($T,)+)) -> bool {
lexical_ord!(gt, $(self.$refN(), other.$refN()),+)
}
}
#[cfg(not(test))]
impl<$($T:TotalOrd),+> TotalOrd for ($($T,)+) {
#[inline]
fn cmp(&self, other: &($($T,)+)) -> Ordering {
lexical_cmp!($(self.$refN(), other.$refN()),+)
}
}
#[cfg(not(test))]
impl<$($T:Default),+> Default for ($($T,)+) {
#[inline]
fn default() -> ($($T,)+) {
($({ let x: $T = Default::default(); x},)+)
}
}
impl<$($T: fmt::Show),+> fmt::Show for ($($T,)+) {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write_tuple!(f.buf, $(self.$refN()),+)
}
}
)+
}
}
// Constructs an expression that performs a lexical ordering using method $rel.
// The values are interleaved, so the macro invocation for
// `(a1, a2, a3) < (b1, b2, b3)` would be `lexical_ord!(lt, a1, b1, a2, b2,
// a3, b3)` (and similarly for `lexical_cmp`)
macro_rules! lexical_ord {
($rel: ident, $a:expr, $b:expr, $($rest_a:expr, $rest_b:expr),+) => {
if *$a != *$b { lexical_ord!($rel, $a, $b) }
else { lexical_ord!($rel, $($rest_a, $rest_b),+) }
};
($rel: ident, $a:expr, $b:expr) => { (*$a) . $rel ($b) };
}
macro_rules! lexical_cmp {
($a:expr, $b:expr, $($rest_a:expr, $rest_b:expr),+) => {
match ($a).cmp($b) {
Equal => lexical_cmp!($($rest_a, $rest_b),+),
ordering => ordering
}
};
($a:expr, $b:expr) => { ($a).cmp($b) };
}
macro_rules! write_tuple {
($buf:expr, $x:expr) => (
write!($buf, "({},)", *$x)
);
($buf:expr, $hd:expr, $($tl:expr),+) => ({
try!(write!($buf, "("));
try!(write!($buf, "{}", *$hd));
$(try!(write!($buf, ", {}", *$tl));)+
write!($buf, ")")
});
}
tuple_impls! {
Tuple1 {
(val0, ref0, mut0) -> A { (a) => a }
}
Tuple2 {
(val0, ref0, mut0) -> A { (a, b) => a }
(val1, ref1, mut1) -> B { (a, b) => b }
}
Tuple3 {
(val0, ref0, mut0) -> A { (a, b, c) => a }
(val1, ref1, mut1) -> B { (a, b, c) => b }
(val2, ref2, mut2) -> C { (a, b, c) => c }
}
Tuple4 {
(val0, ref0, mut0) -> A { (a, b, c, d) => a }
(val1, ref1, mut1) -> B { (a, b, c, d) => b }
(val2, ref2, mut2) -> C { (a, b, c, d) => c }
(val3, ref3, mut3) -> D { (a, b, c, d) => d }
}
Tuple5 {
(val0, ref0, mut0) -> A { (a, b, c, d, e) => a }
(val1, ref1, mut1) -> B { (a, b, c, d, e) => b }
(val2, ref2, mut2) -> C { (a, b, c, d, e) => c }
(val3, ref3, mut3) -> D { (a, b, c, d, e) => d }
(val4, ref4, mut4) -> E { (a, b, c, d, e) => e }
}
Tuple6 {
(val0, ref0, mut0) -> A { (a, b, c, d, e, f) => a }
(val1, ref1, mut1) -> B { (a, b, c, d, e, f) => b }
(val2, ref2, mut2) -> C { (a, b, c, d, e, f) => c }
(val3, ref3, mut3) -> D { (a, b, c, d, e, f) => d }
(val4, ref4, mut4) -> E { (a, b, c, d, e, f) => e }
(val5, ref5, mut5) -> F { (a, b, c, d, e, f) => f }
}
Tuple7 {
(val0, ref0, mut0) -> A { (a, b, c, d, e, f, g) => a }
(val1, ref1, mut1) -> B { (a, b, c, d, e, f, g) => b }
(val2, ref2, mut2) -> C { (a, b, c, d, e, f, g) => c }
(val3, ref3, mut3) -> D { (a, b, c, d, e, f, g) => d }
(val4, ref4, mut4) -> E { (a, b, c, d, e, f, g) => e }
(val5, ref5, mut5) -> F { (a, b, c, d, e, f, g) => f }
(val6, ref6, mut6) -> G { (a, b, c, d, e, f, g) => g }
}
Tuple8 {
(val0, ref0, mut0) -> A { (a, b, c, d, e, f, g, h) => a }
(val1, ref1, mut1) -> B { (a, b, c, d, e, f, g, h) => b }
(val2, ref2, mut2) -> C { (a, b, c, d, e, f, g, h) => c }
(val3, ref3, mut3) -> D { (a, b, c, d, e, f, g, h) => d }
(val4, ref4, mut4) -> E { (a, b, c, d, e, f, g, h) => e }
(val5, ref5, mut5) -> F { (a, b, c, d, e, f, g, h) => f }
(val6, ref6, mut6) -> G { (a, b, c, d, e, f, g, h) => g }
(val7, ref7, mut7) -> H { (a, b, c, d, e, f, g, h) => h }
}
Tuple9 {
(val0, ref0, mut0) -> A { (a, b, c, d, e, f, g, h, i) => a }
(val1, ref1, mut1) -> B { (a, b, c, d, e, f, g, h, i) => b }
(val2, ref2, mut2) -> C { (a, b, c, d, e, f, g, h, i) => c }
(val3, ref3, mut3) -> D { (a, b, c, d, e, f, g, h, i) => d }
(val4, ref4, mut4) -> E { (a, b, c, d, e, f, g, h, i) => e }
(val5, ref5, mut5) -> F { (a, b, c, d, e, f, g, h, i) => f }
(val6, ref6, mut6) -> G { (a, b, c, d, e, f, g, h, i) => g }
(val7, ref7, mut7) -> H { (a, b, c, d, e, f, g, h, i) => h }
(val8, ref8, mut8) -> I { (a, b, c, d, e, f, g, h, i) => i }
}
Tuple10 {
(val0, ref0, mut0) -> A { (a, b, c, d, e, f, g, h, i, j) => a }
(val1, ref1, mut1) -> B { (a, b, c, d, e, f, g, h, i, j) => b }
(val2, ref2, mut2) -> C { (a, b, c, d, e, f, g, h, i, j) => c }
(val3, ref3, mut3) -> D { (a, b, c, d, e, f, g, h, i, j) => d }
(val4, ref4, mut4) -> E { (a, b, c, d, e, f, g, h, i, j) => e }
(val5, ref5, mut5) -> F { (a, b, c, d, e, f, g, h, i, j) => f }
(val6, ref6, mut6) -> G { (a, b, c, d, e, f, g, h, i, j) => g }
(val7, ref7, mut7) -> H { (a, b, c, d, e, f, g, h, i, j) => h }
(val8, ref8, mut8) -> I { (a, b, c, d, e, f, g, h, i, j) => i }
(val9, ref9, mut9) -> J { (a, b, c, d, e, f, g, h, i, j) => j }
}
Tuple11 {
(val0, ref0, mut0) -> A { (a, b, c, d, e, f, g, h, i, j, k) => a }
(val1, ref1, mut1) -> B { (a, b, c, d, e, f, g, h, i, j, k) => b }
(val2, ref2, mut2) -> C { (a, b, c, d, e, f, g, h, i, j, k) => c }
(val3, ref3, mut3) -> D { (a, b, c, d, e, f, g, h, i, j, k) => d }
(val4, ref4, mut4) -> E { (a, b, c, d, e, f, g, h, i, j, k) => e }
(val5, ref5, mut5) -> F { (a, b, c, d, e, f, g, h, i, j, k) => f }
(val6, ref6, mut6) -> G { (a, b, c, d, e, f, g, h, i, j, k) => g }
(val7, ref7, mut7) -> H { (a, b, c, d, e, f, g, h, i, j, k) => h }
(val8, ref8, mut8) -> I { (a, b, c, d, e, f, g, h, i, j, k) => i }
(val9, ref9, mut9) -> J { (a, b, c, d, e, f, g, h, i, j, k) => j }
(val10, ref10, mut10) -> K { (a, b, c, d, e, f, g, h, i, j, k) => k }
}
Tuple12 {
(val0, ref0, mut0) -> A { (a, b, c, d, e, f, g, h, i, j, k, l) => a }
(val1, ref1, mut1) -> B { (a, b, c, d, e, f, g, h, i, j, k, l) => b }
(val2, ref2, mut2) -> C { (a, b, c, d, e, f, g, h, i, j, k, l) => c }
(val3, ref3, mut3) -> D { (a, b, c, d, e, f, g, h, i, j, k, l) => d }
(val4, ref4, mut4) -> E { (a, b, c, d, e, f, g, h, i, j, k, l) => e }
(val5, ref5, mut5) -> F { (a, b, c, d, e, f, g, h, i, j, k, l) => f }
(val6, ref6, mut6) -> G { (a, b, c, d, e, f, g, h, i, j, k, l) => g }
(val7, ref7, mut7) -> H { (a, b, c, d, e, f, g, h, i, j, k, l) => h }
(val8, ref8, mut8) -> I { (a, b, c, d, e, f, g, h, i, j, k, l) => i }
(val9, ref9, mut9) -> J { (a, b, c, d, e, f, g, h, i, j, k, l) => j }
(val10, ref10, mut10) -> K { (a, b, c, d, e, f, g, h, i, j, k, l) => k }
(val11, ref11, mut11) -> L { (a, b, c, d, e, f, g, h, i, j, k, l) => l }
}
}
#[cfg(test)]
mod tests {
use super::*;
use clone::Clone;
use cmp::*;
#[test]
fn test_clone() {
let a = (1, ~"2");
let b = a.clone();
assert_eq!(a, b);
}
#[test]
fn test_getters() {
macro_rules! test_getter(
($x:expr, $valN:ident, $refN:ident, $mutN:ident,
$init:expr, $incr:expr, $result:expr) => ({
assert_eq!($x.$valN(), $init);
assert_eq!(*$x.$refN(), $init);
*$x.$mutN() += $incr;
assert_eq!(*$x.$refN(), $result);
})
)
let mut x = (0u8, 1u16, 2u32, 3u64, 4u, 5i8, 6i16, 7i32, 8i64, 9i, 10f32, 11f64);
test_getter!(x, val0, ref0, mut0, 0, 1, 1);
test_getter!(x, val1, ref1, mut1, 1, 1, 2);
test_getter!(x, val2, ref2, mut2, 2, 1, 3);
test_getter!(x, val3, ref3, mut3, 3, 1, 4);
test_getter!(x, val4, ref4, mut4, 4, 1, 5);
test_getter!(x, val5, ref5, mut5, 5, 1, 6);
test_getter!(x, val6, ref6, mut6, 6, 1, 7);
test_getter!(x, val7, ref7, mut7, 7, 1, 8);
test_getter!(x, val8, ref8, mut8, 8, 1, 9);
test_getter!(x, val9, ref9, mut9, 9, 1, 10);
test_getter!(x, val10, ref10, mut10, 10.0, 1.0, 11.0);
test_getter!(x, val11, ref11, mut11, 11.0, 1.0, 12.0);
}
#[test]
fn test_tuple_cmp() {
let (small, big) = ((1u, 2u, 3u), (3u, 2u, 1u));
let nan = 0.0/0.0;
// Eq
assert_eq!(small, small);
assert_eq!(big, big);
assert!(small != big);
assert!(big != small);
// Ord
assert!(small < big);
assert!(!(small < small));
assert!(!(big < small));
assert!(!(big < big));
assert!(small <= small);
assert!(big <= big);
assert!(big > small);
assert!(small >= small);
assert!(big >= small);
assert!(big >= big);
assert!(!((1.0, 2.0) < (nan, 3.0)));
assert!(!((1.0, 2.0) <= (nan, 3.0)));
assert!(!((1.0, 2.0) > (nan, 3.0)));
assert!(!((1.0, 2.0) >= (nan, 3.0)));
assert!(((1.0, 2.0) < (2.0, nan)));
assert!(!((2.0, 2.0) < (2.0, nan)));
// TotalEq
assert!(small.equals(&small));
assert!(big.equals(&big));
assert!(!small.equals(&big));
assert!(!big.equals(&small));
// TotalOrd
assert_eq!(small.cmp(&small), Equal);
assert_eq!(big.cmp(&big), Equal);
assert_eq!(small.cmp(&big), Less);
assert_eq!(big.cmp(&small), Greater);
}
#[test]
fn test_show() {
assert_eq!(format!("{}", (1,)), ~"(1,)");
assert_eq!(format!("{}", (1, true)), ~"(1, true)");
assert_eq!(format!("{}", (1, ~"hi", true)), ~"(1, hi, true)");
}
}