Files
rust/tests/codegen/union-aggregate.rs
Scott McMurray 8cf2c71243 Let rvalue_creates_operand return true for *all* Rvalue::Aggregates
Inspired by <https://github.com/rust-lang/rust/pull/138759#discussion_r2156375342> where I noticed that we were nearly at this point, plus the comments I was writing in 143410 that reminded me a type-dependent `true` is fine.

This PR splits the `OperandRef::builder` logic out to a separate type, with the updates needed to handle SIMD as well.  In doing so, that makes the existing `Aggregate` path in `codegen_rvalue_operand` capable of handing SIMD values just fine.

As a result, we no longer need to do layout calculations for aggregate result types when running the analysis to determine which things can be SSA in codegen.
2025-07-07 23:08:10 -07:00

109 lines
2.7 KiB
Rust

//@ compile-flags: -Copt-level=0 -Cno-prepopulate-passes
//@ min-llvm-version: 19
//@ only-64bit
#![crate_type = "lib"]
#![feature(transparent_unions)]
#![feature(repr_simd)]
#[repr(transparent)]
union MU<T: Copy> {
uninit: (),
value: T,
}
use std::cmp::Ordering;
use std::num::NonZero;
use std::ptr::NonNull;
#[no_mangle]
fn make_mu_bool(x: bool) -> MU<bool> {
// CHECK-LABEL: i8 @make_mu_bool(i1 zeroext %x)
// CHECK-NEXT: start:
// CHECK-NEXT: %[[WIDER:.+]] = zext i1 %x to i8
// CHECK-NEXT: ret i8 %[[WIDER]]
MU { value: x }
}
#[no_mangle]
fn make_mu_bool_uninit() -> MU<bool> {
// CHECK-LABEL: i8 @make_mu_bool_uninit()
// CHECK-NEXT: start:
// CHECK-NEXT: ret i8 undef
MU { uninit: () }
}
#[no_mangle]
fn make_mu_ref(x: &u16) -> MU<&u16> {
// CHECK-LABEL: ptr @make_mu_ref(ptr align 2 %x)
// CHECK-NEXT: start:
// CHECK-NEXT: ret ptr %x
MU { value: x }
}
#[no_mangle]
fn make_mu_ref_uninit<'a>() -> MU<&'a u16> {
// CHECK-LABEL: ptr @make_mu_ref_uninit()
// CHECK-NEXT: start:
// CHECK-NEXT: ret ptr undef
MU { uninit: () }
}
#[no_mangle]
fn make_mu_str(x: &str) -> MU<&str> {
// CHECK-LABEL: { ptr, i64 } @make_mu_str(ptr align 1 %x.0, i64 %x.1)
// CHECK-NEXT: start:
// CHECK-NEXT: %0 = insertvalue { ptr, i64 } poison, ptr %x.0, 0
// CHECK-NEXT: %1 = insertvalue { ptr, i64 } %0, i64 %x.1, 1
// CHECK-NEXT: ret { ptr, i64 } %1
MU { value: x }
}
#[no_mangle]
fn make_mu_str_uninit<'a>() -> MU<&'a str> {
// CHECK-LABEL: { ptr, i64 } @make_mu_str_uninit()
// CHECK-NEXT: start:
// CHECK-NEXT: ret { ptr, i64 } undef
MU { uninit: () }
}
#[no_mangle]
fn make_mu_pair(x: (u8, u32)) -> MU<(u8, u32)> {
// CHECK-LABEL: { i8, i32 } @make_mu_pair(i8 %x.0, i32 %x.1)
// CHECK-NEXT: start:
// CHECK-NEXT: %0 = insertvalue { i8, i32 } poison, i8 %x.0, 0
// CHECK-NEXT: %1 = insertvalue { i8, i32 } %0, i32 %x.1, 1
// CHECK-NEXT: ret { i8, i32 } %1
MU { value: x }
}
#[no_mangle]
fn make_mu_pair_uninit() -> MU<(u8, u32)> {
// CHECK-LABEL: { i8, i32 } @make_mu_pair_uninit()
// CHECK-NEXT: start:
// CHECK-NEXT: ret { i8, i32 } undef
MU { uninit: () }
}
#[repr(simd)]
#[derive(Copy, Clone)]
struct I32X32([i32; 32]);
#[no_mangle]
fn make_mu_simd(x: I32X32) -> MU<I32X32> {
// CHECK-LABEL: void @make_mu_simd(ptr{{.+}}%_0, ptr{{.+}}%x)
// CHECK-NEXT: start:
// CHECK-NEXT: %[[TEMP:.+]] = load <32 x i32>, ptr %x,
// CHECK-NEXT: store <32 x i32> %[[TEMP]], ptr %_0,
// CHECK-NEXT: ret void
MU { value: x }
}
#[no_mangle]
fn make_mu_simd_uninit() -> MU<I32X32> {
// CHECK-LABEL: void @make_mu_simd_uninit(ptr{{.+}}%_0)
// CHECK-NEXT: start:
// CHECK-NEXT: ret void
MU { uninit: () }
}