Add simple async drop glue generation This is a prototype of the async drop glue generation for some simple types. Async drop glue is intended to behave very similar to the regular drop glue except for being asynchronous. Currently it does not execute synchronous drops but only calls user implementations of `AsyncDrop::async_drop` associative function and awaits the returned future. It is not complete as it only recurses into arrays, slices, tuples, and structs and does not have same sensible restrictions as the old `Drop` trait implementation like having the same bounds as the type definition, while code assumes their existence (requires a future work). This current design uses a workaround as it does not create any custom async destructor state machine types for ADTs, but instead uses types defined in the std library called future combinators (deferred_async_drop, chain, ready_unit). Also I recommend reading my [explainer](https://zetanumbers.github.io/book/async-drop-design.html). This is a part of the [MCP: Low level components for async drop](https://github.com/rust-lang/compiler-team/issues/727) work. Feature completeness: - [x] `AsyncDrop` trait - [ ] `async_drop_in_place_raw`/async drop glue generation support for - [x] Trivially destructible types (integers, bools, floats, string slices, pointers, references, etc.) - [x] Arrays and slices (array pointer is unsized into slice pointer) - [x] ADTs (enums, structs, unions) - [x] tuple-like types (tuples, closures) - [ ] Dynamic types (`dyn Trait`, see explainer's [proposed design](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#async-drop-glue-for-dyn-trait)) - [ ] coroutines (https://github.com/rust-lang/rust/pull/123948) - [x] Async drop glue includes sync drop glue code - [x] Cleanup branch generation for `async_drop_in_place_raw` - [ ] Union rejects non-trivially async destructible fields - [ ] `AsyncDrop` implementation requires same bounds as type definition - [ ] Skip trivially destructible fields (optimization) - [ ] New [`TyKind::AdtAsyncDestructor`](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#adt-async-destructor-types) and get rid of combinators - [ ] [Synchronously undroppable types](https://github.com/zetanumbers/posts/blob/main/async-drop-design.md#exclusively-async-drop) - [ ] Automatic async drop at the end of the scope in async context
2175 lines
87 KiB
Rust
2175 lines
87 KiB
Rust
//! Code for projecting associated types out of trait references.
|
|
|
|
use std::ops::ControlFlow;
|
|
|
|
use super::specialization_graph;
|
|
use super::translate_args;
|
|
use super::util;
|
|
use super::MismatchedProjectionTypes;
|
|
use super::Obligation;
|
|
use super::ObligationCause;
|
|
use super::PredicateObligation;
|
|
use super::Selection;
|
|
use super::SelectionContext;
|
|
use super::SelectionError;
|
|
use super::{Normalized, NormalizedTy, ProjectionCacheEntry, ProjectionCacheKey};
|
|
use rustc_middle::traits::BuiltinImplSource;
|
|
use rustc_middle::traits::ImplSource;
|
|
use rustc_middle::traits::ImplSourceUserDefinedData;
|
|
|
|
use crate::errors::InherentProjectionNormalizationOverflow;
|
|
use crate::infer::type_variable::TypeVariableOrigin;
|
|
use crate::infer::{BoundRegionConversionTime, InferOk};
|
|
use crate::traits::normalize::normalize_with_depth;
|
|
use crate::traits::normalize::normalize_with_depth_to;
|
|
use crate::traits::query::evaluate_obligation::InferCtxtExt as _;
|
|
use crate::traits::select::ProjectionMatchesProjection;
|
|
use rustc_data_structures::sso::SsoHashSet;
|
|
use rustc_data_structures::stack::ensure_sufficient_stack;
|
|
use rustc_errors::ErrorGuaranteed;
|
|
use rustc_hir::def::DefKind;
|
|
use rustc_hir::lang_items::LangItem;
|
|
use rustc_infer::infer::resolve::OpportunisticRegionResolver;
|
|
use rustc_infer::infer::DefineOpaqueTypes;
|
|
use rustc_middle::traits::select::OverflowError;
|
|
use rustc_middle::ty::fold::TypeFoldable;
|
|
use rustc_middle::ty::visit::{MaxUniverse, TypeVisitable, TypeVisitableExt};
|
|
use rustc_middle::ty::{self, Term, ToPredicate, Ty, TyCtxt};
|
|
use rustc_span::symbol::sym;
|
|
|
|
pub use rustc_middle::traits::Reveal;
|
|
|
|
pub type PolyProjectionObligation<'tcx> = Obligation<'tcx, ty::PolyProjectionPredicate<'tcx>>;
|
|
|
|
pub type ProjectionObligation<'tcx> = Obligation<'tcx, ty::ProjectionPredicate<'tcx>>;
|
|
|
|
pub type ProjectionTyObligation<'tcx> = Obligation<'tcx, ty::AliasTy<'tcx>>;
|
|
|
|
pub(super) struct InProgress;
|
|
|
|
/// When attempting to resolve `<T as TraitRef>::Name` ...
|
|
#[derive(Debug)]
|
|
pub enum ProjectionError<'tcx> {
|
|
/// ...we found multiple sources of information and couldn't resolve the ambiguity.
|
|
TooManyCandidates,
|
|
|
|
/// ...an error occurred matching `T : TraitRef`
|
|
TraitSelectionError(SelectionError<'tcx>),
|
|
}
|
|
|
|
#[derive(PartialEq, Eq, Debug)]
|
|
enum ProjectionCandidate<'tcx> {
|
|
/// From a where-clause in the env or object type
|
|
ParamEnv(ty::PolyProjectionPredicate<'tcx>),
|
|
|
|
/// From the definition of `Trait` when you have something like
|
|
/// `<<A as Trait>::B as Trait2>::C`.
|
|
TraitDef(ty::PolyProjectionPredicate<'tcx>),
|
|
|
|
/// Bounds specified on an object type
|
|
Object(ty::PolyProjectionPredicate<'tcx>),
|
|
|
|
/// From an "impl" (or a "pseudo-impl" returned by select)
|
|
Select(Selection<'tcx>),
|
|
}
|
|
|
|
enum ProjectionCandidateSet<'tcx> {
|
|
None,
|
|
Single(ProjectionCandidate<'tcx>),
|
|
Ambiguous,
|
|
Error(SelectionError<'tcx>),
|
|
}
|
|
|
|
impl<'tcx> ProjectionCandidateSet<'tcx> {
|
|
fn mark_ambiguous(&mut self) {
|
|
*self = ProjectionCandidateSet::Ambiguous;
|
|
}
|
|
|
|
fn mark_error(&mut self, err: SelectionError<'tcx>) {
|
|
*self = ProjectionCandidateSet::Error(err);
|
|
}
|
|
|
|
// Returns true if the push was successful, or false if the candidate
|
|
// was discarded -- this could be because of ambiguity, or because
|
|
// a higher-priority candidate is already there.
|
|
fn push_candidate(&mut self, candidate: ProjectionCandidate<'tcx>) -> bool {
|
|
use self::ProjectionCandidate::*;
|
|
use self::ProjectionCandidateSet::*;
|
|
|
|
// This wacky variable is just used to try and
|
|
// make code readable and avoid confusing paths.
|
|
// It is assigned a "value" of `()` only on those
|
|
// paths in which we wish to convert `*self` to
|
|
// ambiguous (and return false, because the candidate
|
|
// was not used). On other paths, it is not assigned,
|
|
// and hence if those paths *could* reach the code that
|
|
// comes after the match, this fn would not compile.
|
|
let convert_to_ambiguous;
|
|
|
|
match self {
|
|
None => {
|
|
*self = Single(candidate);
|
|
return true;
|
|
}
|
|
|
|
Single(current) => {
|
|
// Duplicates can happen inside ParamEnv. In the case, we
|
|
// perform a lazy deduplication.
|
|
if current == &candidate {
|
|
return false;
|
|
}
|
|
|
|
// Prefer where-clauses. As in select, if there are multiple
|
|
// candidates, we prefer where-clause candidates over impls. This
|
|
// may seem a bit surprising, since impls are the source of
|
|
// "truth" in some sense, but in fact some of the impls that SEEM
|
|
// applicable are not, because of nested obligations. Where
|
|
// clauses are the safer choice. See the comment on
|
|
// `select::SelectionCandidate` and #21974 for more details.
|
|
match (current, candidate) {
|
|
(ParamEnv(..), ParamEnv(..)) => convert_to_ambiguous = (),
|
|
(ParamEnv(..), _) => return false,
|
|
(_, ParamEnv(..)) => bug!(
|
|
"should never prefer non-param-env candidates over param-env candidates"
|
|
),
|
|
(_, _) => convert_to_ambiguous = (),
|
|
}
|
|
}
|
|
|
|
Ambiguous | Error(..) => {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// We only ever get here when we moved from a single candidate
|
|
// to ambiguous.
|
|
let () = convert_to_ambiguous;
|
|
*self = Ambiguous;
|
|
false
|
|
}
|
|
}
|
|
|
|
/// States returned from `poly_project_and_unify_type`. Takes the place
|
|
/// of the old return type, which was:
|
|
/// ```ignore (not-rust)
|
|
/// Result<
|
|
/// Result<Option<Vec<PredicateObligation<'tcx>>>, InProgress>,
|
|
/// MismatchedProjectionTypes<'tcx>,
|
|
/// >
|
|
/// ```
|
|
pub(super) enum ProjectAndUnifyResult<'tcx> {
|
|
/// The projection bound holds subject to the given obligations. If the
|
|
/// projection cannot be normalized because the required trait bound does
|
|
/// not hold, this is returned, with `obligations` being a predicate that
|
|
/// cannot be proven.
|
|
Holds(Vec<PredicateObligation<'tcx>>),
|
|
/// The projection cannot be normalized due to ambiguity. Resolving some
|
|
/// inference variables in the projection may fix this.
|
|
FailedNormalization,
|
|
/// The project cannot be normalized because `poly_project_and_unify_type`
|
|
/// is called recursively while normalizing the same projection.
|
|
Recursive,
|
|
// the projection can be normalized, but is not equal to the expected type.
|
|
// Returns the type error that arose from the mismatch.
|
|
MismatchedProjectionTypes(MismatchedProjectionTypes<'tcx>),
|
|
}
|
|
|
|
/// Evaluates constraints of the form:
|
|
/// ```ignore (not-rust)
|
|
/// for<...> <T as Trait>::U == V
|
|
/// ```
|
|
/// If successful, this may result in additional obligations. Also returns
|
|
/// the projection cache key used to track these additional obligations.
|
|
#[instrument(level = "debug", skip(selcx))]
|
|
pub(super) fn poly_project_and_unify_type<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &PolyProjectionObligation<'tcx>,
|
|
) -> ProjectAndUnifyResult<'tcx> {
|
|
let infcx = selcx.infcx;
|
|
let r = infcx.commit_if_ok(|_snapshot| {
|
|
let old_universe = infcx.universe();
|
|
let placeholder_predicate = infcx.enter_forall_and_leak_universe(obligation.predicate);
|
|
let new_universe = infcx.universe();
|
|
|
|
let placeholder_obligation = obligation.with(infcx.tcx, placeholder_predicate);
|
|
match project_and_unify_type(selcx, &placeholder_obligation) {
|
|
ProjectAndUnifyResult::MismatchedProjectionTypes(e) => Err(e),
|
|
ProjectAndUnifyResult::Holds(obligations)
|
|
if old_universe != new_universe
|
|
&& selcx.tcx().features().generic_associated_types_extended =>
|
|
{
|
|
// If the `generic_associated_types_extended` feature is active, then we ignore any
|
|
// obligations references lifetimes from any universe greater than or equal to the
|
|
// universe just created. Otherwise, we can end up with something like `for<'a> I: 'a`,
|
|
// which isn't quite what we want. Ideally, we want either an implied
|
|
// `for<'a where I: 'a> I: 'a` or we want to "lazily" check these hold when we
|
|
// instantiate concrete regions. There is design work to be done here; until then,
|
|
// however, this allows experimenting potential GAT features without running into
|
|
// well-formedness issues.
|
|
let new_obligations = obligations
|
|
.into_iter()
|
|
.filter(|obligation| {
|
|
let mut visitor = MaxUniverse::new();
|
|
obligation.predicate.visit_with(&mut visitor);
|
|
visitor.max_universe() < new_universe
|
|
})
|
|
.collect();
|
|
Ok(ProjectAndUnifyResult::Holds(new_obligations))
|
|
}
|
|
other => Ok(other),
|
|
}
|
|
});
|
|
|
|
match r {
|
|
Ok(inner) => inner,
|
|
Err(err) => ProjectAndUnifyResult::MismatchedProjectionTypes(err),
|
|
}
|
|
}
|
|
|
|
/// Evaluates constraints of the form:
|
|
/// ```ignore (not-rust)
|
|
/// <T as Trait>::U == V
|
|
/// ```
|
|
/// If successful, this may result in additional obligations.
|
|
///
|
|
/// See [poly_project_and_unify_type] for an explanation of the return value.
|
|
#[instrument(level = "debug", skip(selcx))]
|
|
fn project_and_unify_type<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionObligation<'tcx>,
|
|
) -> ProjectAndUnifyResult<'tcx> {
|
|
let mut obligations = vec![];
|
|
|
|
let infcx = selcx.infcx;
|
|
let normalized = match opt_normalize_projection_type(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.predicate.projection_ty,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth,
|
|
&mut obligations,
|
|
) {
|
|
Ok(Some(n)) => n,
|
|
Ok(None) => return ProjectAndUnifyResult::FailedNormalization,
|
|
Err(InProgress) => return ProjectAndUnifyResult::Recursive,
|
|
};
|
|
debug!(?normalized, ?obligations, "project_and_unify_type result");
|
|
let actual = obligation.predicate.term;
|
|
// For an example where this is necessary see tests/ui/impl-trait/nested-return-type2.rs
|
|
// This allows users to omit re-mentioning all bounds on an associated type and just use an
|
|
// `impl Trait` for the assoc type to add more bounds.
|
|
let InferOk { value: actual, obligations: new } =
|
|
selcx.infcx.replace_opaque_types_with_inference_vars(
|
|
actual,
|
|
obligation.cause.body_id,
|
|
obligation.cause.span,
|
|
obligation.param_env,
|
|
);
|
|
obligations.extend(new);
|
|
|
|
// Need to define opaque types to support nested opaque types like `impl Fn() -> impl Trait`
|
|
match infcx.at(&obligation.cause, obligation.param_env).eq(
|
|
DefineOpaqueTypes::Yes,
|
|
normalized,
|
|
actual,
|
|
) {
|
|
Ok(InferOk { obligations: inferred_obligations, value: () }) => {
|
|
obligations.extend(inferred_obligations);
|
|
ProjectAndUnifyResult::Holds(obligations)
|
|
}
|
|
Err(err) => {
|
|
debug!("equating types encountered error {:?}", err);
|
|
ProjectAndUnifyResult::MismatchedProjectionTypes(MismatchedProjectionTypes { err })
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The guts of `normalize`: normalize a specific projection like `<T
|
|
/// as Trait>::Item`. The result is always a type (and possibly
|
|
/// additional obligations). If ambiguity arises, which implies that
|
|
/// there are unresolved type variables in the projection, we will
|
|
/// instantiate it with a fresh type variable `$X` and generate a new
|
|
/// obligation `<T as Trait>::Item == $X` for later.
|
|
pub fn normalize_projection_type<'a, 'b, 'tcx>(
|
|
selcx: &'a mut SelectionContext<'b, 'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
projection_ty: ty::AliasTy<'tcx>,
|
|
cause: ObligationCause<'tcx>,
|
|
depth: usize,
|
|
obligations: &mut Vec<PredicateObligation<'tcx>>,
|
|
) -> Term<'tcx> {
|
|
opt_normalize_projection_type(
|
|
selcx,
|
|
param_env,
|
|
projection_ty,
|
|
cause.clone(),
|
|
depth,
|
|
obligations,
|
|
)
|
|
.ok()
|
|
.flatten()
|
|
.unwrap_or_else(move || {
|
|
// if we bottom out in ambiguity, create a type variable
|
|
// and a deferred predicate to resolve this when more type
|
|
// information is available.
|
|
|
|
selcx.infcx.infer_projection(param_env, projection_ty, cause, depth + 1, obligations).into()
|
|
})
|
|
}
|
|
|
|
/// The guts of `normalize`: normalize a specific projection like `<T
|
|
/// as Trait>::Item`. The result is always a type (and possibly
|
|
/// additional obligations). Returns `None` in the case of ambiguity,
|
|
/// which indicates that there are unbound type variables.
|
|
///
|
|
/// This function used to return `Option<NormalizedTy<'tcx>>`, which contains a
|
|
/// `Ty<'tcx>` and an obligations vector. But that obligation vector was very
|
|
/// often immediately appended to another obligations vector. So now this
|
|
/// function takes an obligations vector and appends to it directly, which is
|
|
/// slightly uglier but avoids the need for an extra short-lived allocation.
|
|
#[instrument(level = "debug", skip(selcx, param_env, cause, obligations))]
|
|
pub(super) fn opt_normalize_projection_type<'a, 'b, 'tcx>(
|
|
selcx: &'a mut SelectionContext<'b, 'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
projection_ty: ty::AliasTy<'tcx>,
|
|
cause: ObligationCause<'tcx>,
|
|
depth: usize,
|
|
obligations: &mut Vec<PredicateObligation<'tcx>>,
|
|
) -> Result<Option<Term<'tcx>>, InProgress> {
|
|
let infcx = selcx.infcx;
|
|
debug_assert!(!selcx.infcx.next_trait_solver());
|
|
// Don't use the projection cache in intercrate mode -
|
|
// the `infcx` may be re-used between intercrate in non-intercrate
|
|
// mode, which could lead to using incorrect cache results.
|
|
let use_cache = !selcx.is_intercrate();
|
|
|
|
let projection_ty = infcx.resolve_vars_if_possible(projection_ty);
|
|
let cache_key = ProjectionCacheKey::new(projection_ty, param_env);
|
|
|
|
// FIXME(#20304) For now, I am caching here, which is good, but it
|
|
// means we don't capture the type variables that are created in
|
|
// the case of ambiguity. Which means we may create a large stream
|
|
// of such variables. OTOH, if we move the caching up a level, we
|
|
// would not benefit from caching when proving `T: Trait<U=Foo>`
|
|
// bounds. It might be the case that we want two distinct caches,
|
|
// or else another kind of cache entry.
|
|
|
|
let cache_result = if use_cache {
|
|
infcx.inner.borrow_mut().projection_cache().try_start(cache_key)
|
|
} else {
|
|
Ok(())
|
|
};
|
|
match cache_result {
|
|
Ok(()) => debug!("no cache"),
|
|
Err(ProjectionCacheEntry::Ambiguous) => {
|
|
// If we found ambiguity the last time, that means we will continue
|
|
// to do so until some type in the key changes (and we know it
|
|
// hasn't, because we just fully resolved it).
|
|
debug!("found cache entry: ambiguous");
|
|
return Ok(None);
|
|
}
|
|
Err(ProjectionCacheEntry::InProgress) => {
|
|
// Under lazy normalization, this can arise when
|
|
// bootstrapping. That is, imagine an environment with a
|
|
// where-clause like `A::B == u32`. Now, if we are asked
|
|
// to normalize `A::B`, we will want to check the
|
|
// where-clauses in scope. So we will try to unify `A::B`
|
|
// with `A::B`, which can trigger a recursive
|
|
// normalization.
|
|
|
|
debug!("found cache entry: in-progress");
|
|
|
|
// Cache that normalizing this projection resulted in a cycle. This
|
|
// should ensure that, unless this happens within a snapshot that's
|
|
// rolled back, fulfillment or evaluation will notice the cycle.
|
|
|
|
if use_cache {
|
|
infcx.inner.borrow_mut().projection_cache().recur(cache_key);
|
|
}
|
|
return Err(InProgress);
|
|
}
|
|
Err(ProjectionCacheEntry::Recur) => {
|
|
debug!("recur cache");
|
|
return Err(InProgress);
|
|
}
|
|
Err(ProjectionCacheEntry::NormalizedTy { ty, complete: _ }) => {
|
|
// This is the hottest path in this function.
|
|
//
|
|
// If we find the value in the cache, then return it along
|
|
// with the obligations that went along with it. Note
|
|
// that, when using a fulfillment context, these
|
|
// obligations could in principle be ignored: they have
|
|
// already been registered when the cache entry was
|
|
// created (and hence the new ones will quickly be
|
|
// discarded as duplicated). But when doing trait
|
|
// evaluation this is not the case, and dropping the trait
|
|
// evaluations can causes ICEs (e.g., #43132).
|
|
debug!(?ty, "found normalized ty");
|
|
obligations.extend(ty.obligations);
|
|
return Ok(Some(ty.value));
|
|
}
|
|
Err(ProjectionCacheEntry::Error) => {
|
|
debug!("opt_normalize_projection_type: found error");
|
|
let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
|
|
obligations.extend(result.obligations);
|
|
return Ok(Some(result.value.into()));
|
|
}
|
|
}
|
|
|
|
let obligation =
|
|
Obligation::with_depth(selcx.tcx(), cause.clone(), depth, param_env, projection_ty);
|
|
|
|
match project(selcx, &obligation) {
|
|
Ok(Projected::Progress(Progress {
|
|
term: projected_term,
|
|
obligations: mut projected_obligations,
|
|
})) => {
|
|
// if projection succeeded, then what we get out of this
|
|
// is also non-normalized (consider: it was derived from
|
|
// an impl, where-clause etc) and hence we must
|
|
// re-normalize it
|
|
|
|
let projected_term = selcx.infcx.resolve_vars_if_possible(projected_term);
|
|
|
|
let mut result = if projected_term.has_aliases() {
|
|
let normalized_ty = normalize_with_depth_to(
|
|
selcx,
|
|
param_env,
|
|
cause,
|
|
depth + 1,
|
|
projected_term,
|
|
&mut projected_obligations,
|
|
);
|
|
|
|
Normalized { value: normalized_ty, obligations: projected_obligations }
|
|
} else {
|
|
Normalized { value: projected_term, obligations: projected_obligations }
|
|
};
|
|
|
|
let mut deduped = SsoHashSet::with_capacity(result.obligations.len());
|
|
result.obligations.retain(|obligation| deduped.insert(obligation.clone()));
|
|
|
|
if use_cache {
|
|
infcx.inner.borrow_mut().projection_cache().insert_term(cache_key, result.clone());
|
|
}
|
|
obligations.extend(result.obligations);
|
|
Ok(Some(result.value))
|
|
}
|
|
Ok(Projected::NoProgress(projected_ty)) => {
|
|
let result = Normalized { value: projected_ty, obligations: vec![] };
|
|
if use_cache {
|
|
infcx.inner.borrow_mut().projection_cache().insert_term(cache_key, result.clone());
|
|
}
|
|
// No need to extend `obligations`.
|
|
Ok(Some(result.value))
|
|
}
|
|
Err(ProjectionError::TooManyCandidates) => {
|
|
debug!("opt_normalize_projection_type: too many candidates");
|
|
if use_cache {
|
|
infcx.inner.borrow_mut().projection_cache().ambiguous(cache_key);
|
|
}
|
|
Ok(None)
|
|
}
|
|
Err(ProjectionError::TraitSelectionError(_)) => {
|
|
debug!("opt_normalize_projection_type: ERROR");
|
|
// if we got an error processing the `T as Trait` part,
|
|
// just return `ty::err` but add the obligation `T :
|
|
// Trait`, which when processed will cause the error to be
|
|
// reported later
|
|
|
|
if use_cache {
|
|
infcx.inner.borrow_mut().projection_cache().error(cache_key);
|
|
}
|
|
let result = normalize_to_error(selcx, param_env, projection_ty, cause, depth);
|
|
obligations.extend(result.obligations);
|
|
Ok(Some(result.value.into()))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// If we are projecting `<T as Trait>::Item`, but `T: Trait` does not
|
|
/// hold. In various error cases, we cannot generate a valid
|
|
/// normalized projection. Therefore, we create an inference variable
|
|
/// return an associated obligation that, when fulfilled, will lead to
|
|
/// an error.
|
|
///
|
|
/// Note that we used to return `Error` here, but that was quite
|
|
/// dubious -- the premise was that an error would *eventually* be
|
|
/// reported, when the obligation was processed. But in general once
|
|
/// you see an `Error` you are supposed to be able to assume that an
|
|
/// error *has been* reported, so that you can take whatever heuristic
|
|
/// paths you want to take. To make things worse, it was possible for
|
|
/// cycles to arise, where you basically had a setup like `<MyType<$0>
|
|
/// as Trait>::Foo == $0`. Here, normalizing `<MyType<$0> as
|
|
/// Trait>::Foo>` to `[type error]` would lead to an obligation of
|
|
/// `<MyType<[type error]> as Trait>::Foo`. We are supposed to report
|
|
/// an error for this obligation, but we legitimately should not,
|
|
/// because it contains `[type error]`. Yuck! (See issue #29857 for
|
|
/// one case where this arose.)
|
|
fn normalize_to_error<'a, 'tcx>(
|
|
selcx: &SelectionContext<'a, 'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
projection_ty: ty::AliasTy<'tcx>,
|
|
cause: ObligationCause<'tcx>,
|
|
depth: usize,
|
|
) -> NormalizedTy<'tcx> {
|
|
let trait_ref = ty::Binder::dummy(projection_ty.trait_ref(selcx.tcx()));
|
|
let trait_obligation = Obligation {
|
|
cause,
|
|
recursion_depth: depth,
|
|
param_env,
|
|
predicate: trait_ref.to_predicate(selcx.tcx()),
|
|
};
|
|
let tcx = selcx.infcx.tcx;
|
|
let new_value = selcx.infcx.next_ty_var(TypeVariableOrigin {
|
|
param_def_id: None,
|
|
span: tcx.def_span(projection_ty.def_id),
|
|
});
|
|
Normalized { value: new_value, obligations: vec![trait_obligation] }
|
|
}
|
|
|
|
/// Confirm and normalize the given inherent projection.
|
|
#[instrument(level = "debug", skip(selcx, param_env, cause, obligations))]
|
|
pub fn normalize_inherent_projection<'a, 'b, 'tcx>(
|
|
selcx: &'a mut SelectionContext<'b, 'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
alias_ty: ty::AliasTy<'tcx>,
|
|
cause: ObligationCause<'tcx>,
|
|
depth: usize,
|
|
obligations: &mut Vec<PredicateObligation<'tcx>>,
|
|
) -> Ty<'tcx> {
|
|
let tcx = selcx.tcx();
|
|
|
|
if !tcx.recursion_limit().value_within_limit(depth) {
|
|
// Halt compilation because it is important that overflows never be masked.
|
|
tcx.dcx().emit_fatal(InherentProjectionNormalizationOverflow {
|
|
span: cause.span,
|
|
ty: alias_ty.to_string(),
|
|
});
|
|
}
|
|
|
|
let args = compute_inherent_assoc_ty_args(
|
|
selcx,
|
|
param_env,
|
|
alias_ty,
|
|
cause.clone(),
|
|
depth,
|
|
obligations,
|
|
);
|
|
|
|
// Register the obligations arising from the impl and from the associated type itself.
|
|
let predicates = tcx.predicates_of(alias_ty.def_id).instantiate(tcx, args);
|
|
for (predicate, span) in predicates {
|
|
let predicate = normalize_with_depth_to(
|
|
selcx,
|
|
param_env,
|
|
cause.clone(),
|
|
depth + 1,
|
|
predicate,
|
|
obligations,
|
|
);
|
|
|
|
let nested_cause = ObligationCause::new(
|
|
cause.span,
|
|
cause.body_id,
|
|
// FIXME(inherent_associated_types): Since we can't pass along the self type to the
|
|
// cause code, inherent projections will be printed with identity instantiation in
|
|
// diagnostics which is not ideal.
|
|
// Consider creating separate cause codes for this specific situation.
|
|
if span.is_dummy() {
|
|
super::ItemObligation(alias_ty.def_id)
|
|
} else {
|
|
super::BindingObligation(alias_ty.def_id, span)
|
|
},
|
|
);
|
|
|
|
obligations.push(Obligation::with_depth(
|
|
tcx,
|
|
nested_cause,
|
|
depth + 1,
|
|
param_env,
|
|
predicate,
|
|
));
|
|
}
|
|
|
|
let ty = tcx.type_of(alias_ty.def_id).instantiate(tcx, args);
|
|
|
|
let mut ty = selcx.infcx.resolve_vars_if_possible(ty);
|
|
if ty.has_aliases() {
|
|
ty = normalize_with_depth_to(selcx, param_env, cause.clone(), depth + 1, ty, obligations);
|
|
}
|
|
|
|
ty
|
|
}
|
|
|
|
pub fn compute_inherent_assoc_ty_args<'a, 'b, 'tcx>(
|
|
selcx: &'a mut SelectionContext<'b, 'tcx>,
|
|
param_env: ty::ParamEnv<'tcx>,
|
|
alias_ty: ty::AliasTy<'tcx>,
|
|
cause: ObligationCause<'tcx>,
|
|
depth: usize,
|
|
obligations: &mut Vec<PredicateObligation<'tcx>>,
|
|
) -> ty::GenericArgsRef<'tcx> {
|
|
let tcx = selcx.tcx();
|
|
|
|
let impl_def_id = tcx.parent(alias_ty.def_id);
|
|
let impl_args = selcx.infcx.fresh_args_for_item(cause.span, impl_def_id);
|
|
|
|
let mut impl_ty = tcx.type_of(impl_def_id).instantiate(tcx, impl_args);
|
|
if !selcx.infcx.next_trait_solver() {
|
|
impl_ty = normalize_with_depth_to(
|
|
selcx,
|
|
param_env,
|
|
cause.clone(),
|
|
depth + 1,
|
|
impl_ty,
|
|
obligations,
|
|
);
|
|
}
|
|
|
|
// Infer the generic parameters of the impl by unifying the
|
|
// impl type with the self type of the projection.
|
|
let mut self_ty = alias_ty.self_ty();
|
|
if !selcx.infcx.next_trait_solver() {
|
|
self_ty = normalize_with_depth_to(
|
|
selcx,
|
|
param_env,
|
|
cause.clone(),
|
|
depth + 1,
|
|
self_ty,
|
|
obligations,
|
|
);
|
|
}
|
|
|
|
match selcx.infcx.at(&cause, param_env).eq(DefineOpaqueTypes::Yes, impl_ty, self_ty) {
|
|
Ok(mut ok) => obligations.append(&mut ok.obligations),
|
|
Err(_) => {
|
|
tcx.dcx().span_bug(
|
|
cause.span,
|
|
format!("{self_ty:?} was equal to {impl_ty:?} during selection but now it is not"),
|
|
);
|
|
}
|
|
}
|
|
|
|
alias_ty.rebase_inherent_args_onto_impl(impl_args, tcx)
|
|
}
|
|
|
|
enum Projected<'tcx> {
|
|
Progress(Progress<'tcx>),
|
|
NoProgress(ty::Term<'tcx>),
|
|
}
|
|
|
|
struct Progress<'tcx> {
|
|
term: ty::Term<'tcx>,
|
|
obligations: Vec<PredicateObligation<'tcx>>,
|
|
}
|
|
|
|
impl<'tcx> Progress<'tcx> {
|
|
fn error(tcx: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> Self {
|
|
Progress { term: Ty::new_error(tcx, guar).into(), obligations: vec![] }
|
|
}
|
|
|
|
fn with_addl_obligations(mut self, mut obligations: Vec<PredicateObligation<'tcx>>) -> Self {
|
|
self.obligations.append(&mut obligations);
|
|
self
|
|
}
|
|
}
|
|
|
|
/// Computes the result of a projection type (if we can).
|
|
///
|
|
/// IMPORTANT:
|
|
/// - `obligation` must be fully normalized
|
|
#[instrument(level = "info", skip(selcx))]
|
|
fn project<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
) -> Result<Projected<'tcx>, ProjectionError<'tcx>> {
|
|
if !selcx.tcx().recursion_limit().value_within_limit(obligation.recursion_depth) {
|
|
// This should really be an immediate error, but some existing code
|
|
// relies on being able to recover from this.
|
|
return Err(ProjectionError::TraitSelectionError(SelectionError::Overflow(
|
|
OverflowError::Canonical,
|
|
)));
|
|
}
|
|
|
|
if let Err(guar) = obligation.predicate.error_reported() {
|
|
return Ok(Projected::Progress(Progress::error(selcx.tcx(), guar)));
|
|
}
|
|
|
|
let mut candidates = ProjectionCandidateSet::None;
|
|
|
|
// Make sure that the following procedures are kept in order. ParamEnv
|
|
// needs to be first because it has highest priority, and Select checks
|
|
// the return value of push_candidate which assumes it's ran at last.
|
|
assemble_candidates_from_param_env(selcx, obligation, &mut candidates);
|
|
|
|
assemble_candidates_from_trait_def(selcx, obligation, &mut candidates);
|
|
|
|
assemble_candidates_from_object_ty(selcx, obligation, &mut candidates);
|
|
|
|
if let ProjectionCandidateSet::Single(ProjectionCandidate::Object(_)) = candidates {
|
|
// Avoid normalization cycle from selection (see
|
|
// `assemble_candidates_from_object_ty`).
|
|
// FIXME(lazy_normalization): Lazy normalization should save us from
|
|
// having to special case this.
|
|
} else {
|
|
assemble_candidates_from_impls(selcx, obligation, &mut candidates);
|
|
};
|
|
|
|
match candidates {
|
|
ProjectionCandidateSet::Single(candidate) => {
|
|
Ok(Projected::Progress(confirm_candidate(selcx, obligation, candidate)))
|
|
}
|
|
ProjectionCandidateSet::None => {
|
|
let tcx = selcx.tcx();
|
|
let term = match tcx.def_kind(obligation.predicate.def_id) {
|
|
DefKind::AssocTy => {
|
|
Ty::new_projection(tcx, obligation.predicate.def_id, obligation.predicate.args)
|
|
.into()
|
|
}
|
|
DefKind::AssocConst => ty::Const::new_unevaluated(
|
|
tcx,
|
|
ty::UnevaluatedConst::new(
|
|
obligation.predicate.def_id,
|
|
obligation.predicate.args,
|
|
),
|
|
tcx.type_of(obligation.predicate.def_id)
|
|
.instantiate(tcx, obligation.predicate.args),
|
|
)
|
|
.into(),
|
|
kind => {
|
|
bug!("unknown projection def-id: {}", kind.descr(obligation.predicate.def_id))
|
|
}
|
|
};
|
|
|
|
Ok(Projected::NoProgress(term))
|
|
}
|
|
// Error occurred while trying to processing impls.
|
|
ProjectionCandidateSet::Error(e) => Err(ProjectionError::TraitSelectionError(e)),
|
|
// Inherent ambiguity that prevents us from even enumerating the
|
|
// candidates.
|
|
ProjectionCandidateSet::Ambiguous => Err(ProjectionError::TooManyCandidates),
|
|
}
|
|
}
|
|
|
|
/// The first thing we have to do is scan through the parameter
|
|
/// environment to see whether there are any projection predicates
|
|
/// there that can answer this question.
|
|
fn assemble_candidates_from_param_env<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
candidate_set: &mut ProjectionCandidateSet<'tcx>,
|
|
) {
|
|
assemble_candidates_from_predicates(
|
|
selcx,
|
|
obligation,
|
|
candidate_set,
|
|
ProjectionCandidate::ParamEnv,
|
|
obligation.param_env.caller_bounds().iter(),
|
|
false,
|
|
);
|
|
}
|
|
|
|
/// In the case of a nested projection like `<<A as Foo>::FooT as Bar>::BarT`, we may find
|
|
/// that the definition of `Foo` has some clues:
|
|
///
|
|
/// ```ignore (illustrative)
|
|
/// trait Foo {
|
|
/// type FooT : Bar<BarT=i32>
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Here, for example, we could conclude that the result is `i32`.
|
|
fn assemble_candidates_from_trait_def<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
candidate_set: &mut ProjectionCandidateSet<'tcx>,
|
|
) {
|
|
debug!("assemble_candidates_from_trait_def(..)");
|
|
let mut ambiguous = false;
|
|
selcx.for_each_item_bound(
|
|
obligation.predicate.self_ty(),
|
|
|selcx, clause, _| {
|
|
let Some(clause) = clause.as_projection_clause() else {
|
|
return ControlFlow::Continue(());
|
|
};
|
|
if clause.projection_def_id() != obligation.predicate.def_id {
|
|
return ControlFlow::Continue(());
|
|
}
|
|
|
|
let is_match =
|
|
selcx.infcx.probe(|_| selcx.match_projection_projections(obligation, clause, true));
|
|
|
|
match is_match {
|
|
ProjectionMatchesProjection::Yes => {
|
|
candidate_set.push_candidate(ProjectionCandidate::TraitDef(clause));
|
|
|
|
if !obligation.predicate.has_non_region_infer() {
|
|
// HACK: Pick the first trait def candidate for a fully
|
|
// inferred predicate. This is to allow duplicates that
|
|
// differ only in normalization.
|
|
return ControlFlow::Break(());
|
|
}
|
|
}
|
|
ProjectionMatchesProjection::Ambiguous => {
|
|
candidate_set.mark_ambiguous();
|
|
}
|
|
ProjectionMatchesProjection::No => {}
|
|
}
|
|
|
|
ControlFlow::Continue(())
|
|
},
|
|
// `ProjectionCandidateSet` is borrowed in the above closure,
|
|
// so just mark ambiguous outside of the closure.
|
|
|| ambiguous = true,
|
|
);
|
|
|
|
if ambiguous {
|
|
candidate_set.mark_ambiguous();
|
|
}
|
|
}
|
|
|
|
/// In the case of a trait object like
|
|
/// `<dyn Iterator<Item = ()> as Iterator>::Item` we can use the existential
|
|
/// predicate in the trait object.
|
|
///
|
|
/// We don't go through the select candidate for these bounds to avoid cycles:
|
|
/// In the above case, `dyn Iterator<Item = ()>: Iterator` would create a
|
|
/// nested obligation of `<dyn Iterator<Item = ()> as Iterator>::Item: Sized`,
|
|
/// this then has to be normalized without having to prove
|
|
/// `dyn Iterator<Item = ()>: Iterator` again.
|
|
fn assemble_candidates_from_object_ty<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
candidate_set: &mut ProjectionCandidateSet<'tcx>,
|
|
) {
|
|
debug!("assemble_candidates_from_object_ty(..)");
|
|
|
|
let tcx = selcx.tcx();
|
|
|
|
if !tcx.trait_def(obligation.predicate.trait_def_id(tcx)).implement_via_object {
|
|
return;
|
|
}
|
|
|
|
let self_ty = obligation.predicate.self_ty();
|
|
let object_ty = selcx.infcx.shallow_resolve(self_ty);
|
|
let data = match object_ty.kind() {
|
|
ty::Dynamic(data, ..) => data,
|
|
ty::Infer(ty::TyVar(_)) => {
|
|
// If the self-type is an inference variable, then it MAY wind up
|
|
// being an object type, so induce an ambiguity.
|
|
candidate_set.mark_ambiguous();
|
|
return;
|
|
}
|
|
_ => return,
|
|
};
|
|
let env_predicates = data
|
|
.projection_bounds()
|
|
.filter(|bound| bound.item_def_id() == obligation.predicate.def_id)
|
|
.map(|p| p.with_self_ty(tcx, object_ty).to_predicate(tcx));
|
|
|
|
assemble_candidates_from_predicates(
|
|
selcx,
|
|
obligation,
|
|
candidate_set,
|
|
ProjectionCandidate::Object,
|
|
env_predicates,
|
|
false,
|
|
);
|
|
}
|
|
|
|
#[instrument(
|
|
level = "debug",
|
|
skip(selcx, candidate_set, ctor, env_predicates, potentially_unnormalized_candidates)
|
|
)]
|
|
fn assemble_candidates_from_predicates<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
candidate_set: &mut ProjectionCandidateSet<'tcx>,
|
|
ctor: fn(ty::PolyProjectionPredicate<'tcx>) -> ProjectionCandidate<'tcx>,
|
|
env_predicates: impl Iterator<Item = ty::Clause<'tcx>>,
|
|
potentially_unnormalized_candidates: bool,
|
|
) {
|
|
let infcx = selcx.infcx;
|
|
for predicate in env_predicates {
|
|
let bound_predicate = predicate.kind();
|
|
if let ty::ClauseKind::Projection(data) = predicate.kind().skip_binder() {
|
|
let data = bound_predicate.rebind(data);
|
|
if data.projection_def_id() != obligation.predicate.def_id {
|
|
continue;
|
|
}
|
|
|
|
let is_match = infcx.probe(|_| {
|
|
selcx.match_projection_projections(
|
|
obligation,
|
|
data,
|
|
potentially_unnormalized_candidates,
|
|
)
|
|
});
|
|
|
|
match is_match {
|
|
ProjectionMatchesProjection::Yes => {
|
|
candidate_set.push_candidate(ctor(data));
|
|
|
|
if potentially_unnormalized_candidates
|
|
&& !obligation.predicate.has_non_region_infer()
|
|
{
|
|
// HACK: Pick the first trait def candidate for a fully
|
|
// inferred predicate. This is to allow duplicates that
|
|
// differ only in normalization.
|
|
return;
|
|
}
|
|
}
|
|
ProjectionMatchesProjection::Ambiguous => {
|
|
candidate_set.mark_ambiguous();
|
|
}
|
|
ProjectionMatchesProjection::No => {}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[instrument(level = "debug", skip(selcx, obligation, candidate_set))]
|
|
fn assemble_candidates_from_impls<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
candidate_set: &mut ProjectionCandidateSet<'tcx>,
|
|
) {
|
|
// If we are resolving `<T as TraitRef<...>>::Item == Type`,
|
|
// start out by selecting the predicate `T as TraitRef<...>`:
|
|
let trait_ref = obligation.predicate.trait_ref(selcx.tcx());
|
|
let trait_obligation = obligation.with(selcx.tcx(), trait_ref);
|
|
let _ = selcx.infcx.commit_if_ok(|_| {
|
|
let impl_source = match selcx.select(&trait_obligation) {
|
|
Ok(Some(impl_source)) => impl_source,
|
|
Ok(None) => {
|
|
candidate_set.mark_ambiguous();
|
|
return Err(());
|
|
}
|
|
Err(e) => {
|
|
debug!(error = ?e, "selection error");
|
|
candidate_set.mark_error(e);
|
|
return Err(());
|
|
}
|
|
};
|
|
|
|
let eligible = match &impl_source {
|
|
ImplSource::UserDefined(impl_data) => {
|
|
// We have to be careful when projecting out of an
|
|
// impl because of specialization. If we are not in
|
|
// codegen (i.e., projection mode is not "any"), and the
|
|
// impl's type is declared as default, then we disable
|
|
// projection (even if the trait ref is fully
|
|
// monomorphic). In the case where trait ref is not
|
|
// fully monomorphic (i.e., includes type parameters),
|
|
// this is because those type parameters may
|
|
// ultimately be bound to types from other crates that
|
|
// may have specialized impls we can't see. In the
|
|
// case where the trait ref IS fully monomorphic, this
|
|
// is a policy decision that we made in the RFC in
|
|
// order to preserve flexibility for the crate that
|
|
// defined the specializable impl to specialize later
|
|
// for existing types.
|
|
//
|
|
// In either case, we handle this by not adding a
|
|
// candidate for an impl if it contains a `default`
|
|
// type.
|
|
//
|
|
// NOTE: This should be kept in sync with the similar code in
|
|
// `rustc_ty_utils::instance::resolve_associated_item()`.
|
|
let node_item =
|
|
specialization_graph::assoc_def(selcx.tcx(), impl_data.impl_def_id, obligation.predicate.def_id)
|
|
.map_err(|ErrorGuaranteed { .. }| ())?;
|
|
|
|
if node_item.is_final() {
|
|
// Non-specializable items are always projectable.
|
|
true
|
|
} else {
|
|
// Only reveal a specializable default if we're past type-checking
|
|
// and the obligation is monomorphic, otherwise passes such as
|
|
// transmute checking and polymorphic MIR optimizations could
|
|
// get a result which isn't correct for all monomorphizations.
|
|
if obligation.param_env.reveal() == Reveal::All {
|
|
// NOTE(eddyb) inference variables can resolve to parameters, so
|
|
// assume `poly_trait_ref` isn't monomorphic, if it contains any.
|
|
let poly_trait_ref = selcx.infcx.resolve_vars_if_possible(trait_ref);
|
|
!poly_trait_ref.still_further_specializable()
|
|
} else {
|
|
debug!(
|
|
assoc_ty = ?selcx.tcx().def_path_str(node_item.item.def_id),
|
|
?obligation.predicate,
|
|
"assemble_candidates_from_impls: not eligible due to default",
|
|
);
|
|
false
|
|
}
|
|
}
|
|
}
|
|
ImplSource::Builtin(BuiltinImplSource::Misc, _) => {
|
|
// While a builtin impl may be known to exist, the associated type may not yet
|
|
// be known. Any type with multiple potential associated types is therefore
|
|
// not eligible.
|
|
let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
|
|
|
|
let lang_items = selcx.tcx().lang_items();
|
|
if [
|
|
lang_items.coroutine_trait(),
|
|
lang_items.future_trait(),
|
|
lang_items.iterator_trait(),
|
|
lang_items.async_iterator_trait(),
|
|
lang_items.fn_trait(),
|
|
lang_items.fn_mut_trait(),
|
|
lang_items.fn_once_trait(),
|
|
lang_items.async_fn_trait(),
|
|
lang_items.async_fn_mut_trait(),
|
|
lang_items.async_fn_once_trait(),
|
|
].contains(&Some(trait_ref.def_id))
|
|
{
|
|
true
|
|
} else if lang_items.async_fn_kind_helper() == Some(trait_ref.def_id) {
|
|
// FIXME(async_closures): Validity constraints here could be cleaned up.
|
|
if obligation.predicate.args.type_at(0).is_ty_var()
|
|
|| obligation.predicate.args.type_at(4).is_ty_var()
|
|
|| obligation.predicate.args.type_at(5).is_ty_var()
|
|
{
|
|
candidate_set.mark_ambiguous();
|
|
true
|
|
} else {
|
|
obligation.predicate.args.type_at(0).to_opt_closure_kind().is_some()
|
|
&& obligation.predicate.args.type_at(1).to_opt_closure_kind().is_some()
|
|
}
|
|
} else if lang_items.discriminant_kind_trait() == Some(trait_ref.def_id) {
|
|
match self_ty.kind() {
|
|
ty::Bool
|
|
| ty::Char
|
|
| ty::Int(_)
|
|
| ty::Uint(_)
|
|
| ty::Float(_)
|
|
| ty::Adt(..)
|
|
| ty::Foreign(_)
|
|
| ty::Str
|
|
| ty::Array(..)
|
|
| ty::Pat(..)
|
|
| ty::Slice(_)
|
|
| ty::RawPtr(..)
|
|
| ty::Ref(..)
|
|
| ty::FnDef(..)
|
|
| ty::FnPtr(..)
|
|
| ty::Dynamic(..)
|
|
| ty::Closure(..)
|
|
| ty::CoroutineClosure(..)
|
|
| ty::Coroutine(..)
|
|
| ty::CoroutineWitness(..)
|
|
| ty::Never
|
|
| ty::Tuple(..)
|
|
// Integers and floats always have `u8` as their discriminant.
|
|
| ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(..)) => true,
|
|
|
|
// type parameters, opaques, and unnormalized projections don't have
|
|
// a known discriminant and may need to be normalized further or rely
|
|
// on param env for discriminant projections
|
|
ty::Param(_)
|
|
| ty::Alias(..)
|
|
| ty::Bound(..)
|
|
| ty::Placeholder(..)
|
|
| ty::Infer(..)
|
|
| ty::Error(_) => false,
|
|
}
|
|
} else if lang_items.async_destruct_trait() == Some(trait_ref.def_id) {
|
|
match self_ty.kind() {
|
|
ty::Bool
|
|
| ty::Char
|
|
| ty::Int(_)
|
|
| ty::Uint(_)
|
|
| ty::Float(_)
|
|
| ty::Adt(..)
|
|
| ty::Str
|
|
| ty::Array(..)
|
|
| ty::Slice(_)
|
|
| ty::RawPtr(..)
|
|
| ty::Ref(..)
|
|
| ty::FnDef(..)
|
|
| ty::FnPtr(..)
|
|
| ty::Dynamic(..)
|
|
| ty::Closure(..)
|
|
| ty::CoroutineClosure(..)
|
|
| ty::Coroutine(..)
|
|
| ty::CoroutineWitness(..)
|
|
| ty::Pat(..)
|
|
| ty::Never
|
|
| ty::Tuple(..)
|
|
| ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(..)) => true,
|
|
|
|
// type parameters, opaques, and unnormalized projections don't have
|
|
// a known async destructor and may need to be normalized further or rely
|
|
// on param env for async destructor projections
|
|
ty::Param(_)
|
|
| ty::Foreign(_)
|
|
| ty::Alias(..)
|
|
| ty::Bound(..)
|
|
| ty::Placeholder(..)
|
|
| ty::Infer(_)
|
|
| ty::Error(_) => false,
|
|
}
|
|
} else if lang_items.pointee_trait() == Some(trait_ref.def_id) {
|
|
let tail = selcx.tcx().struct_tail_with_normalize(
|
|
self_ty,
|
|
|ty| {
|
|
// We throw away any obligations we get from this, since we normalize
|
|
// and confirm these obligations once again during confirmation
|
|
normalize_with_depth(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
ty,
|
|
)
|
|
.value
|
|
},
|
|
|| {},
|
|
);
|
|
|
|
match tail.kind() {
|
|
ty::Bool
|
|
| ty::Char
|
|
| ty::Int(_)
|
|
| ty::Uint(_)
|
|
| ty::Float(_)
|
|
| ty::Str
|
|
| ty::Array(..)
|
|
| ty::Pat(..)
|
|
| ty::Slice(_)
|
|
| ty::RawPtr(..)
|
|
| ty::Ref(..)
|
|
| ty::FnDef(..)
|
|
| ty::FnPtr(..)
|
|
| ty::Dynamic(..)
|
|
| ty::Closure(..)
|
|
| ty::CoroutineClosure(..)
|
|
| ty::Coroutine(..)
|
|
| ty::CoroutineWitness(..)
|
|
| ty::Never
|
|
// Extern types have unit metadata, according to RFC 2850
|
|
| ty::Foreign(_)
|
|
// If returned by `struct_tail_without_normalization` this is a unit struct
|
|
// without any fields, or not a struct, and therefore is Sized.
|
|
| ty::Adt(..)
|
|
// If returned by `struct_tail_without_normalization` this is the empty tuple.
|
|
| ty::Tuple(..)
|
|
// Integers and floats are always Sized, and so have unit type metadata.
|
|
| ty::Infer(ty::InferTy::IntVar(_) | ty::InferTy::FloatVar(..)) => true,
|
|
|
|
// We normalize from `Wrapper<Tail>::Metadata` to `Tail::Metadata` if able.
|
|
// Otherwise, type parameters, opaques, and unnormalized projections have
|
|
// unit metadata if they're known (e.g. by the param_env) to be sized.
|
|
ty::Param(_) | ty::Alias(..)
|
|
if self_ty != tail || selcx.infcx.predicate_must_hold_modulo_regions(
|
|
&obligation.with(
|
|
selcx.tcx(),
|
|
ty::TraitRef::from_lang_item(selcx.tcx(), LangItem::Sized, obligation.cause.span(),[self_ty]),
|
|
),
|
|
) =>
|
|
{
|
|
true
|
|
}
|
|
|
|
// FIXME(compiler-errors): are Bound and Placeholder types ever known sized?
|
|
ty::Param(_)
|
|
| ty::Alias(..)
|
|
| ty::Bound(..)
|
|
| ty::Placeholder(..)
|
|
| ty::Infer(..)
|
|
| ty::Error(_) => {
|
|
if tail.has_infer_types() {
|
|
candidate_set.mark_ambiguous();
|
|
}
|
|
false
|
|
}
|
|
}
|
|
} else {
|
|
bug!("unexpected builtin trait with associated type: {trait_ref:?}")
|
|
}
|
|
}
|
|
ImplSource::Param(..) => {
|
|
// This case tell us nothing about the value of an
|
|
// associated type. Consider:
|
|
//
|
|
// ```
|
|
// trait SomeTrait { type Foo; }
|
|
// fn foo<T:SomeTrait>(...) { }
|
|
// ```
|
|
//
|
|
// If the user writes `<T as SomeTrait>::Foo`, then the `T
|
|
// : SomeTrait` binding does not help us decide what the
|
|
// type `Foo` is (at least, not more specifically than
|
|
// what we already knew).
|
|
//
|
|
// But wait, you say! What about an example like this:
|
|
//
|
|
// ```
|
|
// fn bar<T:SomeTrait<Foo=usize>>(...) { ... }
|
|
// ```
|
|
//
|
|
// Doesn't the `T : SomeTrait<Foo=usize>` predicate help
|
|
// resolve `T::Foo`? And of course it does, but in fact
|
|
// that single predicate is desugared into two predicates
|
|
// in the compiler: a trait predicate (`T : SomeTrait`) and a
|
|
// projection. And the projection where clause is handled
|
|
// in `assemble_candidates_from_param_env`.
|
|
false
|
|
}
|
|
ImplSource::Builtin(BuiltinImplSource::Object { .. }, _) => {
|
|
// Handled by the `Object` projection candidate. See
|
|
// `assemble_candidates_from_object_ty` for an explanation of
|
|
// why we special case object types.
|
|
false
|
|
}
|
|
ImplSource::Builtin(BuiltinImplSource::TraitUpcasting { .. }, _)
|
|
| ImplSource::Builtin(BuiltinImplSource::TupleUnsizing, _) => {
|
|
// These traits have no associated types.
|
|
selcx.tcx().dcx().span_delayed_bug(
|
|
obligation.cause.span,
|
|
format!("Cannot project an associated type from `{impl_source:?}`"),
|
|
);
|
|
return Err(())
|
|
}
|
|
};
|
|
|
|
if eligible {
|
|
if candidate_set.push_candidate(ProjectionCandidate::Select(impl_source)) {
|
|
Ok(())
|
|
} else {
|
|
Err(())
|
|
}
|
|
} else {
|
|
Err(())
|
|
}
|
|
});
|
|
}
|
|
|
|
fn confirm_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
candidate: ProjectionCandidate<'tcx>,
|
|
) -> Progress<'tcx> {
|
|
debug!(?obligation, ?candidate, "confirm_candidate");
|
|
let mut progress = match candidate {
|
|
ProjectionCandidate::ParamEnv(poly_projection)
|
|
| ProjectionCandidate::Object(poly_projection) => {
|
|
confirm_param_env_candidate(selcx, obligation, poly_projection, false)
|
|
}
|
|
|
|
ProjectionCandidate::TraitDef(poly_projection) => {
|
|
confirm_param_env_candidate(selcx, obligation, poly_projection, true)
|
|
}
|
|
|
|
ProjectionCandidate::Select(impl_source) => {
|
|
confirm_select_candidate(selcx, obligation, impl_source)
|
|
}
|
|
};
|
|
|
|
// When checking for cycle during evaluation, we compare predicates with
|
|
// "syntactic" equality. Since normalization generally introduces a type
|
|
// with new region variables, we need to resolve them to existing variables
|
|
// when possible for this to work. See `auto-trait-projection-recursion.rs`
|
|
// for a case where this matters.
|
|
if progress.term.has_infer_regions() {
|
|
progress.term = progress.term.fold_with(&mut OpportunisticRegionResolver::new(selcx.infcx));
|
|
}
|
|
progress
|
|
}
|
|
|
|
fn confirm_select_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
impl_source: Selection<'tcx>,
|
|
) -> Progress<'tcx> {
|
|
match impl_source {
|
|
ImplSource::UserDefined(data) => confirm_impl_candidate(selcx, obligation, data),
|
|
ImplSource::Builtin(BuiltinImplSource::Misc, data) => {
|
|
let trait_def_id = obligation.predicate.trait_def_id(selcx.tcx());
|
|
let lang_items = selcx.tcx().lang_items();
|
|
if lang_items.coroutine_trait() == Some(trait_def_id) {
|
|
confirm_coroutine_candidate(selcx, obligation, data)
|
|
} else if lang_items.future_trait() == Some(trait_def_id) {
|
|
confirm_future_candidate(selcx, obligation, data)
|
|
} else if lang_items.iterator_trait() == Some(trait_def_id) {
|
|
confirm_iterator_candidate(selcx, obligation, data)
|
|
} else if lang_items.async_iterator_trait() == Some(trait_def_id) {
|
|
confirm_async_iterator_candidate(selcx, obligation, data)
|
|
} else if selcx.tcx().fn_trait_kind_from_def_id(trait_def_id).is_some() {
|
|
if obligation.predicate.self_ty().is_closure()
|
|
|| obligation.predicate.self_ty().is_coroutine_closure()
|
|
{
|
|
confirm_closure_candidate(selcx, obligation, data)
|
|
} else {
|
|
confirm_fn_pointer_candidate(selcx, obligation, data)
|
|
}
|
|
} else if selcx.tcx().async_fn_trait_kind_from_def_id(trait_def_id).is_some() {
|
|
confirm_async_closure_candidate(selcx, obligation, data)
|
|
} else if lang_items.async_fn_kind_helper() == Some(trait_def_id) {
|
|
confirm_async_fn_kind_helper_candidate(selcx, obligation, data)
|
|
} else {
|
|
confirm_builtin_candidate(selcx, obligation, data)
|
|
}
|
|
}
|
|
ImplSource::Builtin(BuiltinImplSource::Object { .. }, _)
|
|
| ImplSource::Param(..)
|
|
| ImplSource::Builtin(BuiltinImplSource::TraitUpcasting { .. }, _)
|
|
| ImplSource::Builtin(BuiltinImplSource::TupleUnsizing, _) => {
|
|
// we don't create Select candidates with this kind of resolution
|
|
span_bug!(
|
|
obligation.cause.span,
|
|
"Cannot project an associated type from `{:?}`",
|
|
impl_source
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn confirm_coroutine_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
nested: Vec<PredicateObligation<'tcx>>,
|
|
) -> Progress<'tcx> {
|
|
let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
|
|
let ty::Coroutine(_, args) = self_ty.kind() else {
|
|
unreachable!(
|
|
"expected coroutine self type for built-in coroutine candidate, found {self_ty}"
|
|
)
|
|
};
|
|
let coroutine_sig = args.as_coroutine().sig();
|
|
let Normalized { value: coroutine_sig, obligations } = normalize_with_depth(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
coroutine_sig,
|
|
);
|
|
|
|
debug!(?obligation, ?coroutine_sig, ?obligations, "confirm_coroutine_candidate");
|
|
|
|
let tcx = selcx.tcx();
|
|
|
|
let coroutine_def_id = tcx.require_lang_item(LangItem::Coroutine, None);
|
|
|
|
let (trait_ref, yield_ty, return_ty) = super::util::coroutine_trait_ref_and_outputs(
|
|
tcx,
|
|
coroutine_def_id,
|
|
obligation.predicate.self_ty(),
|
|
coroutine_sig,
|
|
);
|
|
|
|
let name = tcx.associated_item(obligation.predicate.def_id).name;
|
|
let ty = if name == sym::Return {
|
|
return_ty
|
|
} else if name == sym::Yield {
|
|
yield_ty
|
|
} else {
|
|
span_bug!(
|
|
tcx.def_span(obligation.predicate.def_id),
|
|
"unexpected associated type: `Coroutine::{name}`"
|
|
);
|
|
};
|
|
|
|
let predicate = ty::ProjectionPredicate {
|
|
projection_ty: ty::AliasTy::new(tcx, obligation.predicate.def_id, trait_ref.args),
|
|
term: ty.into(),
|
|
};
|
|
|
|
confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
|
|
.with_addl_obligations(nested)
|
|
.with_addl_obligations(obligations)
|
|
}
|
|
|
|
fn confirm_future_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
nested: Vec<PredicateObligation<'tcx>>,
|
|
) -> Progress<'tcx> {
|
|
let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
|
|
let ty::Coroutine(_, args) = self_ty.kind() else {
|
|
unreachable!(
|
|
"expected coroutine self type for built-in async future candidate, found {self_ty}"
|
|
)
|
|
};
|
|
let coroutine_sig = args.as_coroutine().sig();
|
|
let Normalized { value: coroutine_sig, obligations } = normalize_with_depth(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
coroutine_sig,
|
|
);
|
|
|
|
debug!(?obligation, ?coroutine_sig, ?obligations, "confirm_future_candidate");
|
|
|
|
let tcx = selcx.tcx();
|
|
let fut_def_id = tcx.require_lang_item(LangItem::Future, None);
|
|
|
|
let (trait_ref, return_ty) = super::util::future_trait_ref_and_outputs(
|
|
tcx,
|
|
fut_def_id,
|
|
obligation.predicate.self_ty(),
|
|
coroutine_sig,
|
|
);
|
|
|
|
debug_assert_eq!(tcx.associated_item(obligation.predicate.def_id).name, sym::Output);
|
|
|
|
let predicate = ty::ProjectionPredicate {
|
|
projection_ty: ty::AliasTy::new(tcx, obligation.predicate.def_id, trait_ref.args),
|
|
term: return_ty.into(),
|
|
};
|
|
|
|
confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
|
|
.with_addl_obligations(nested)
|
|
.with_addl_obligations(obligations)
|
|
}
|
|
|
|
fn confirm_iterator_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
nested: Vec<PredicateObligation<'tcx>>,
|
|
) -> Progress<'tcx> {
|
|
let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
|
|
let ty::Coroutine(_, args) = self_ty.kind() else {
|
|
unreachable!("expected coroutine self type for built-in gen candidate, found {self_ty}")
|
|
};
|
|
let gen_sig = args.as_coroutine().sig();
|
|
let Normalized { value: gen_sig, obligations } = normalize_with_depth(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
gen_sig,
|
|
);
|
|
|
|
debug!(?obligation, ?gen_sig, ?obligations, "confirm_iterator_candidate");
|
|
|
|
let tcx = selcx.tcx();
|
|
let iter_def_id = tcx.require_lang_item(LangItem::Iterator, None);
|
|
|
|
let (trait_ref, yield_ty) = super::util::iterator_trait_ref_and_outputs(
|
|
tcx,
|
|
iter_def_id,
|
|
obligation.predicate.self_ty(),
|
|
gen_sig,
|
|
);
|
|
|
|
debug_assert_eq!(tcx.associated_item(obligation.predicate.def_id).name, sym::Item);
|
|
|
|
let predicate = ty::ProjectionPredicate {
|
|
projection_ty: ty::AliasTy::new(tcx, obligation.predicate.def_id, trait_ref.args),
|
|
term: yield_ty.into(),
|
|
};
|
|
|
|
confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
|
|
.with_addl_obligations(nested)
|
|
.with_addl_obligations(obligations)
|
|
}
|
|
|
|
fn confirm_async_iterator_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
nested: Vec<PredicateObligation<'tcx>>,
|
|
) -> Progress<'tcx> {
|
|
let ty::Coroutine(_, args) = selcx.infcx.shallow_resolve(obligation.predicate.self_ty()).kind()
|
|
else {
|
|
unreachable!()
|
|
};
|
|
let gen_sig = args.as_coroutine().sig();
|
|
let Normalized { value: gen_sig, obligations } = normalize_with_depth(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
gen_sig,
|
|
);
|
|
|
|
debug!(?obligation, ?gen_sig, ?obligations, "confirm_async_iterator_candidate");
|
|
|
|
let tcx = selcx.tcx();
|
|
let iter_def_id = tcx.require_lang_item(LangItem::AsyncIterator, None);
|
|
|
|
let (trait_ref, yield_ty) = super::util::async_iterator_trait_ref_and_outputs(
|
|
tcx,
|
|
iter_def_id,
|
|
obligation.predicate.self_ty(),
|
|
gen_sig,
|
|
);
|
|
|
|
debug_assert_eq!(tcx.associated_item(obligation.predicate.def_id).name, sym::Item);
|
|
|
|
let ty::Adt(_poll_adt, args) = *yield_ty.kind() else {
|
|
bug!();
|
|
};
|
|
let ty::Adt(_option_adt, args) = *args.type_at(0).kind() else {
|
|
bug!();
|
|
};
|
|
let item_ty = args.type_at(0);
|
|
|
|
let predicate = ty::ProjectionPredicate {
|
|
projection_ty: ty::AliasTy::new(tcx, obligation.predicate.def_id, trait_ref.args),
|
|
term: item_ty.into(),
|
|
};
|
|
|
|
confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
|
|
.with_addl_obligations(nested)
|
|
.with_addl_obligations(obligations)
|
|
}
|
|
|
|
fn confirm_builtin_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
data: Vec<PredicateObligation<'tcx>>,
|
|
) -> Progress<'tcx> {
|
|
let tcx = selcx.tcx();
|
|
let self_ty = obligation.predicate.self_ty();
|
|
let lang_items = tcx.lang_items();
|
|
let item_def_id = obligation.predicate.def_id;
|
|
let trait_def_id = tcx.trait_of_item(item_def_id).unwrap();
|
|
let args = tcx.mk_args(&[self_ty.into()]);
|
|
let (term, obligations) = if lang_items.discriminant_kind_trait() == Some(trait_def_id) {
|
|
let discriminant_def_id = tcx.require_lang_item(LangItem::Discriminant, None);
|
|
assert_eq!(discriminant_def_id, item_def_id);
|
|
|
|
(self_ty.discriminant_ty(tcx).into(), Vec::new())
|
|
} else if lang_items.async_destruct_trait() == Some(trait_def_id) {
|
|
let destructor_def_id = tcx.associated_item_def_ids(trait_def_id)[0];
|
|
assert_eq!(destructor_def_id, item_def_id);
|
|
|
|
(self_ty.async_destructor_ty(tcx, obligation.param_env).into(), Vec::new())
|
|
} else if lang_items.pointee_trait() == Some(trait_def_id) {
|
|
let metadata_def_id = tcx.require_lang_item(LangItem::Metadata, None);
|
|
assert_eq!(metadata_def_id, item_def_id);
|
|
|
|
let mut obligations = Vec::new();
|
|
let normalize = |ty| {
|
|
normalize_with_depth_to(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
ty,
|
|
&mut obligations,
|
|
)
|
|
};
|
|
let metadata_ty = self_ty.ptr_metadata_ty_or_tail(tcx, normalize).unwrap_or_else(|tail| {
|
|
if tail == self_ty {
|
|
// This is the "fallback impl" for type parameters, unnormalizable projections
|
|
// and opaque types: If the `self_ty` is `Sized`, then the metadata is `()`.
|
|
// FIXME(ptr_metadata): This impl overlaps with the other impls and shouldn't
|
|
// exist. Instead, `Pointee<Metadata = ()>` should be a supertrait of `Sized`.
|
|
let sized_predicate = ty::TraitRef::from_lang_item(
|
|
tcx,
|
|
LangItem::Sized,
|
|
obligation.cause.span(),
|
|
[self_ty],
|
|
);
|
|
obligations.push(obligation.with(tcx, sized_predicate));
|
|
tcx.types.unit
|
|
} else {
|
|
// We know that `self_ty` has the same metadata as `tail`. This allows us
|
|
// to prove predicates like `Wrapper<Tail>::Metadata == Tail::Metadata`.
|
|
Ty::new_projection(tcx, metadata_def_id, [tail])
|
|
}
|
|
});
|
|
(metadata_ty.into(), obligations)
|
|
} else {
|
|
bug!("unexpected builtin trait with associated type: {:?}", obligation.predicate);
|
|
};
|
|
|
|
let predicate =
|
|
ty::ProjectionPredicate { projection_ty: ty::AliasTy::new(tcx, item_def_id, args), term };
|
|
|
|
confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
|
|
.with_addl_obligations(obligations)
|
|
.with_addl_obligations(data)
|
|
}
|
|
|
|
fn confirm_fn_pointer_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
nested: Vec<PredicateObligation<'tcx>>,
|
|
) -> Progress<'tcx> {
|
|
let tcx = selcx.tcx();
|
|
let fn_type = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
|
|
let sig = fn_type.fn_sig(tcx);
|
|
let Normalized { value: sig, obligations } = normalize_with_depth(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
sig,
|
|
);
|
|
|
|
let host_effect_param = match *fn_type.kind() {
|
|
ty::FnDef(def_id, args) => tcx
|
|
.generics_of(def_id)
|
|
.host_effect_index
|
|
.map_or(tcx.consts.true_, |idx| args.const_at(idx)),
|
|
ty::FnPtr(_) => tcx.consts.true_,
|
|
_ => unreachable!("only expected FnPtr or FnDef in `confirm_fn_pointer_candidate`"),
|
|
};
|
|
|
|
confirm_callable_candidate(
|
|
selcx,
|
|
obligation,
|
|
sig,
|
|
util::TupleArgumentsFlag::Yes,
|
|
host_effect_param,
|
|
)
|
|
.with_addl_obligations(nested)
|
|
.with_addl_obligations(obligations)
|
|
}
|
|
|
|
fn confirm_closure_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
nested: Vec<PredicateObligation<'tcx>>,
|
|
) -> Progress<'tcx> {
|
|
let tcx = selcx.tcx();
|
|
let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
|
|
let closure_sig = match *self_ty.kind() {
|
|
ty::Closure(_, args) => args.as_closure().sig(),
|
|
|
|
// Construct a "normal" `FnOnce` signature for coroutine-closure. This is
|
|
// basically duplicated with the `AsyncFnOnce::CallOnce` confirmation, but
|
|
// I didn't see a good way to unify those.
|
|
ty::CoroutineClosure(def_id, args) => {
|
|
let args = args.as_coroutine_closure();
|
|
let kind_ty = args.kind_ty();
|
|
args.coroutine_closure_sig().map_bound(|sig| {
|
|
// If we know the kind and upvars, use that directly.
|
|
// Otherwise, defer to `AsyncFnKindHelper::Upvars` to delay
|
|
// the projection, like the `AsyncFn*` traits do.
|
|
let output_ty = if let Some(_) = kind_ty.to_opt_closure_kind()
|
|
// Fall back to projection if upvars aren't constrained
|
|
&& !args.tupled_upvars_ty().is_ty_var()
|
|
{
|
|
sig.to_coroutine_given_kind_and_upvars(
|
|
tcx,
|
|
args.parent_args(),
|
|
tcx.coroutine_for_closure(def_id),
|
|
ty::ClosureKind::FnOnce,
|
|
tcx.lifetimes.re_static,
|
|
args.tupled_upvars_ty(),
|
|
args.coroutine_captures_by_ref_ty(),
|
|
)
|
|
} else {
|
|
let async_fn_kind_trait_def_id =
|
|
tcx.require_lang_item(LangItem::AsyncFnKindHelper, None);
|
|
let upvars_projection_def_id = tcx
|
|
.associated_items(async_fn_kind_trait_def_id)
|
|
.filter_by_name_unhygienic(sym::Upvars)
|
|
.next()
|
|
.unwrap()
|
|
.def_id;
|
|
let tupled_upvars_ty = Ty::new_projection(
|
|
tcx,
|
|
upvars_projection_def_id,
|
|
[
|
|
ty::GenericArg::from(kind_ty),
|
|
Ty::from_closure_kind(tcx, ty::ClosureKind::FnOnce).into(),
|
|
tcx.lifetimes.re_static.into(),
|
|
sig.tupled_inputs_ty.into(),
|
|
args.tupled_upvars_ty().into(),
|
|
args.coroutine_captures_by_ref_ty().into(),
|
|
],
|
|
);
|
|
sig.to_coroutine(
|
|
tcx,
|
|
args.parent_args(),
|
|
Ty::from_closure_kind(tcx, ty::ClosureKind::FnOnce),
|
|
tcx.coroutine_for_closure(def_id),
|
|
tupled_upvars_ty,
|
|
)
|
|
};
|
|
tcx.mk_fn_sig(
|
|
[sig.tupled_inputs_ty],
|
|
output_ty,
|
|
sig.c_variadic,
|
|
sig.unsafety,
|
|
sig.abi,
|
|
)
|
|
})
|
|
}
|
|
|
|
_ => {
|
|
unreachable!("expected closure self type for closure candidate, found {self_ty}");
|
|
}
|
|
};
|
|
|
|
let Normalized { value: closure_sig, obligations } = normalize_with_depth(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
closure_sig,
|
|
);
|
|
|
|
debug!(?obligation, ?closure_sig, ?obligations, "confirm_closure_candidate");
|
|
|
|
confirm_callable_candidate(
|
|
selcx,
|
|
obligation,
|
|
closure_sig,
|
|
util::TupleArgumentsFlag::No,
|
|
// FIXME(effects): This doesn't handle const closures correctly!
|
|
selcx.tcx().consts.true_,
|
|
)
|
|
.with_addl_obligations(nested)
|
|
.with_addl_obligations(obligations)
|
|
}
|
|
|
|
fn confirm_callable_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
fn_sig: ty::PolyFnSig<'tcx>,
|
|
flag: util::TupleArgumentsFlag,
|
|
fn_host_effect: ty::Const<'tcx>,
|
|
) -> Progress<'tcx> {
|
|
let tcx = selcx.tcx();
|
|
|
|
debug!(?obligation, ?fn_sig, "confirm_callable_candidate");
|
|
|
|
let fn_once_def_id = tcx.require_lang_item(LangItem::FnOnce, None);
|
|
let fn_once_output_def_id = tcx.require_lang_item(LangItem::FnOnceOutput, None);
|
|
|
|
let predicate = super::util::closure_trait_ref_and_return_type(
|
|
tcx,
|
|
fn_once_def_id,
|
|
obligation.predicate.self_ty(),
|
|
fn_sig,
|
|
flag,
|
|
fn_host_effect,
|
|
)
|
|
.map_bound(|(trait_ref, ret_type)| ty::ProjectionPredicate {
|
|
projection_ty: ty::AliasTy::new(tcx, fn_once_output_def_id, trait_ref.args),
|
|
term: ret_type.into(),
|
|
});
|
|
|
|
confirm_param_env_candidate(selcx, obligation, predicate, true)
|
|
}
|
|
|
|
fn confirm_async_closure_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
nested: Vec<PredicateObligation<'tcx>>,
|
|
) -> Progress<'tcx> {
|
|
let tcx = selcx.tcx();
|
|
let self_ty = selcx.infcx.shallow_resolve(obligation.predicate.self_ty());
|
|
|
|
let goal_kind =
|
|
tcx.async_fn_trait_kind_from_def_id(obligation.predicate.trait_def_id(tcx)).unwrap();
|
|
let env_region = match goal_kind {
|
|
ty::ClosureKind::Fn | ty::ClosureKind::FnMut => obligation.predicate.args.region_at(2),
|
|
ty::ClosureKind::FnOnce => tcx.lifetimes.re_static,
|
|
};
|
|
let item_name = tcx.item_name(obligation.predicate.def_id);
|
|
|
|
let poly_cache_entry = match *self_ty.kind() {
|
|
ty::CoroutineClosure(def_id, args) => {
|
|
let args = args.as_coroutine_closure();
|
|
let kind_ty = args.kind_ty();
|
|
let sig = args.coroutine_closure_sig().skip_binder();
|
|
|
|
let term = match item_name {
|
|
sym::CallOnceFuture | sym::CallRefFuture => {
|
|
if let Some(closure_kind) = kind_ty.to_opt_closure_kind()
|
|
// Fall back to projection if upvars aren't constrained
|
|
&& !args.tupled_upvars_ty().is_ty_var()
|
|
{
|
|
if !closure_kind.extends(goal_kind) {
|
|
bug!("we should not be confirming if the closure kind is not met");
|
|
}
|
|
sig.to_coroutine_given_kind_and_upvars(
|
|
tcx,
|
|
args.parent_args(),
|
|
tcx.coroutine_for_closure(def_id),
|
|
goal_kind,
|
|
env_region,
|
|
args.tupled_upvars_ty(),
|
|
args.coroutine_captures_by_ref_ty(),
|
|
)
|
|
} else {
|
|
let async_fn_kind_trait_def_id =
|
|
tcx.require_lang_item(LangItem::AsyncFnKindHelper, None);
|
|
let upvars_projection_def_id = tcx
|
|
.associated_items(async_fn_kind_trait_def_id)
|
|
.filter_by_name_unhygienic(sym::Upvars)
|
|
.next()
|
|
.unwrap()
|
|
.def_id;
|
|
// When we don't know the closure kind (and therefore also the closure's upvars,
|
|
// which are computed at the same time), we must delay the computation of the
|
|
// generator's upvars. We do this using the `AsyncFnKindHelper`, which as a trait
|
|
// goal functions similarly to the old `ClosureKind` predicate, and ensures that
|
|
// the goal kind <= the closure kind. As a projection `AsyncFnKindHelper::Upvars`
|
|
// will project to the right upvars for the generator, appending the inputs and
|
|
// coroutine upvars respecting the closure kind.
|
|
// N.B. No need to register a `AsyncFnKindHelper` goal here, it's already in `nested`.
|
|
let tupled_upvars_ty = Ty::new_projection(
|
|
tcx,
|
|
upvars_projection_def_id,
|
|
[
|
|
ty::GenericArg::from(kind_ty),
|
|
Ty::from_closure_kind(tcx, goal_kind).into(),
|
|
env_region.into(),
|
|
sig.tupled_inputs_ty.into(),
|
|
args.tupled_upvars_ty().into(),
|
|
args.coroutine_captures_by_ref_ty().into(),
|
|
],
|
|
);
|
|
sig.to_coroutine(
|
|
tcx,
|
|
args.parent_args(),
|
|
Ty::from_closure_kind(tcx, goal_kind),
|
|
tcx.coroutine_for_closure(def_id),
|
|
tupled_upvars_ty,
|
|
)
|
|
}
|
|
}
|
|
sym::Output => sig.return_ty,
|
|
name => bug!("no such associated type: {name}"),
|
|
};
|
|
let projection_ty = match item_name {
|
|
sym::CallOnceFuture | sym::Output => ty::AliasTy::new(
|
|
tcx,
|
|
obligation.predicate.def_id,
|
|
[self_ty, sig.tupled_inputs_ty],
|
|
),
|
|
sym::CallRefFuture => ty::AliasTy::new(
|
|
tcx,
|
|
obligation.predicate.def_id,
|
|
[ty::GenericArg::from(self_ty), sig.tupled_inputs_ty.into(), env_region.into()],
|
|
),
|
|
name => bug!("no such associated type: {name}"),
|
|
};
|
|
|
|
args.coroutine_closure_sig()
|
|
.rebind(ty::ProjectionPredicate { projection_ty, term: term.into() })
|
|
}
|
|
ty::FnDef(..) | ty::FnPtr(..) => {
|
|
let bound_sig = self_ty.fn_sig(tcx);
|
|
let sig = bound_sig.skip_binder();
|
|
|
|
let term = match item_name {
|
|
sym::CallOnceFuture | sym::CallRefFuture => sig.output(),
|
|
sym::Output => {
|
|
let future_trait_def_id = tcx.require_lang_item(LangItem::Future, None);
|
|
let future_output_def_id = tcx
|
|
.associated_items(future_trait_def_id)
|
|
.filter_by_name_unhygienic(sym::Output)
|
|
.next()
|
|
.unwrap()
|
|
.def_id;
|
|
Ty::new_projection(tcx, future_output_def_id, [sig.output()])
|
|
}
|
|
name => bug!("no such associated type: {name}"),
|
|
};
|
|
let projection_ty = match item_name {
|
|
sym::CallOnceFuture | sym::Output => ty::AliasTy::new(
|
|
tcx,
|
|
obligation.predicate.def_id,
|
|
[self_ty, Ty::new_tup(tcx, sig.inputs())],
|
|
),
|
|
sym::CallRefFuture => ty::AliasTy::new(
|
|
tcx,
|
|
obligation.predicate.def_id,
|
|
[
|
|
ty::GenericArg::from(self_ty),
|
|
Ty::new_tup(tcx, sig.inputs()).into(),
|
|
env_region.into(),
|
|
],
|
|
),
|
|
name => bug!("no such associated type: {name}"),
|
|
};
|
|
|
|
bound_sig.rebind(ty::ProjectionPredicate { projection_ty, term: term.into() })
|
|
}
|
|
ty::Closure(_, args) => {
|
|
let args = args.as_closure();
|
|
let bound_sig = args.sig();
|
|
let sig = bound_sig.skip_binder();
|
|
|
|
let term = match item_name {
|
|
sym::CallOnceFuture | sym::CallRefFuture => sig.output(),
|
|
sym::Output => {
|
|
let future_trait_def_id = tcx.require_lang_item(LangItem::Future, None);
|
|
let future_output_def_id = tcx
|
|
.associated_items(future_trait_def_id)
|
|
.filter_by_name_unhygienic(sym::Output)
|
|
.next()
|
|
.unwrap()
|
|
.def_id;
|
|
Ty::new_projection(tcx, future_output_def_id, [sig.output()])
|
|
}
|
|
name => bug!("no such associated type: {name}"),
|
|
};
|
|
let projection_ty = match item_name {
|
|
sym::CallOnceFuture | sym::Output => {
|
|
ty::AliasTy::new(tcx, obligation.predicate.def_id, [self_ty, sig.inputs()[0]])
|
|
}
|
|
sym::CallRefFuture => ty::AliasTy::new(
|
|
tcx,
|
|
obligation.predicate.def_id,
|
|
[ty::GenericArg::from(self_ty), sig.inputs()[0].into(), env_region.into()],
|
|
),
|
|
name => bug!("no such associated type: {name}"),
|
|
};
|
|
|
|
bound_sig.rebind(ty::ProjectionPredicate { projection_ty, term: term.into() })
|
|
}
|
|
_ => bug!("expected callable type for AsyncFn candidate"),
|
|
};
|
|
|
|
confirm_param_env_candidate(selcx, obligation, poly_cache_entry, true)
|
|
.with_addl_obligations(nested)
|
|
}
|
|
|
|
fn confirm_async_fn_kind_helper_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
nested: Vec<PredicateObligation<'tcx>>,
|
|
) -> Progress<'tcx> {
|
|
let [
|
|
// We already checked that the goal_kind >= closure_kind
|
|
_closure_kind_ty,
|
|
goal_kind_ty,
|
|
borrow_region,
|
|
tupled_inputs_ty,
|
|
tupled_upvars_ty,
|
|
coroutine_captures_by_ref_ty,
|
|
] = **obligation.predicate.args
|
|
else {
|
|
bug!();
|
|
};
|
|
|
|
let predicate = ty::ProjectionPredicate {
|
|
projection_ty: ty::AliasTy::new(
|
|
selcx.tcx(),
|
|
obligation.predicate.def_id,
|
|
obligation.predicate.args,
|
|
),
|
|
term: ty::CoroutineClosureSignature::tupled_upvars_by_closure_kind(
|
|
selcx.tcx(),
|
|
goal_kind_ty.expect_ty().to_opt_closure_kind().unwrap(),
|
|
tupled_inputs_ty.expect_ty(),
|
|
tupled_upvars_ty.expect_ty(),
|
|
coroutine_captures_by_ref_ty.expect_ty(),
|
|
borrow_region.expect_region(),
|
|
)
|
|
.into(),
|
|
};
|
|
|
|
confirm_param_env_candidate(selcx, obligation, ty::Binder::dummy(predicate), false)
|
|
.with_addl_obligations(nested)
|
|
}
|
|
|
|
fn confirm_param_env_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
poly_cache_entry: ty::PolyProjectionPredicate<'tcx>,
|
|
potentially_unnormalized_candidate: bool,
|
|
) -> Progress<'tcx> {
|
|
let infcx = selcx.infcx;
|
|
let cause = &obligation.cause;
|
|
let param_env = obligation.param_env;
|
|
|
|
let cache_entry = infcx.instantiate_binder_with_fresh_vars(
|
|
cause.span,
|
|
BoundRegionConversionTime::HigherRankedType,
|
|
poly_cache_entry,
|
|
);
|
|
|
|
let cache_projection = cache_entry.projection_ty;
|
|
let mut nested_obligations = Vec::new();
|
|
let obligation_projection = obligation.predicate;
|
|
let obligation_projection = ensure_sufficient_stack(|| {
|
|
normalize_with_depth_to(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
obligation_projection,
|
|
&mut nested_obligations,
|
|
)
|
|
});
|
|
let cache_projection = if potentially_unnormalized_candidate {
|
|
ensure_sufficient_stack(|| {
|
|
normalize_with_depth_to(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
cache_projection,
|
|
&mut nested_obligations,
|
|
)
|
|
})
|
|
} else {
|
|
cache_projection
|
|
};
|
|
|
|
debug!(?cache_projection, ?obligation_projection);
|
|
|
|
match infcx.at(cause, param_env).eq(
|
|
DefineOpaqueTypes::Yes,
|
|
cache_projection,
|
|
obligation_projection,
|
|
) {
|
|
Ok(InferOk { value: _, obligations }) => {
|
|
nested_obligations.extend(obligations);
|
|
assoc_ty_own_obligations(selcx, obligation, &mut nested_obligations);
|
|
// FIXME(associated_const_equality): Handle consts here as well? Maybe this progress type should just take
|
|
// a term instead.
|
|
Progress { term: cache_entry.term, obligations: nested_obligations }
|
|
}
|
|
Err(e) => {
|
|
let msg = format!(
|
|
"Failed to unify obligation `{obligation:?}` with poly_projection `{poly_cache_entry:?}`: {e:?}",
|
|
);
|
|
debug!("confirm_param_env_candidate: {}", msg);
|
|
let err = Ty::new_error_with_message(infcx.tcx, obligation.cause.span, msg);
|
|
Progress { term: err.into(), obligations: vec![] }
|
|
}
|
|
}
|
|
}
|
|
|
|
fn confirm_impl_candidate<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
impl_impl_source: ImplSourceUserDefinedData<'tcx, PredicateObligation<'tcx>>,
|
|
) -> Progress<'tcx> {
|
|
let tcx = selcx.tcx();
|
|
|
|
let ImplSourceUserDefinedData { impl_def_id, args, mut nested } = impl_impl_source;
|
|
let assoc_item_id = obligation.predicate.def_id;
|
|
let trait_def_id = tcx.trait_id_of_impl(impl_def_id).unwrap();
|
|
|
|
let param_env = obligation.param_env;
|
|
let assoc_ty = match specialization_graph::assoc_def(tcx, impl_def_id, assoc_item_id) {
|
|
Ok(assoc_ty) => assoc_ty,
|
|
Err(guar) => return Progress::error(tcx, guar),
|
|
};
|
|
|
|
if !assoc_ty.item.defaultness(tcx).has_value() {
|
|
// This means that the impl is missing a definition for the
|
|
// associated type. This error will be reported by the type
|
|
// checker method `check_impl_items_against_trait`, so here we
|
|
// just return Error.
|
|
debug!(
|
|
"confirm_impl_candidate: no associated type {:?} for {:?}",
|
|
assoc_ty.item.name, obligation.predicate
|
|
);
|
|
return Progress { term: Ty::new_misc_error(tcx).into(), obligations: nested };
|
|
}
|
|
// If we're trying to normalize `<Vec<u32> as X>::A<S>` using
|
|
//`impl<T> X for Vec<T> { type A<Y> = Box<Y>; }`, then:
|
|
//
|
|
// * `obligation.predicate.args` is `[Vec<u32>, S]`
|
|
// * `args` is `[u32]`
|
|
// * `args` ends up as `[u32, S]`
|
|
let args = obligation.predicate.args.rebase_onto(tcx, trait_def_id, args);
|
|
let args = translate_args(selcx.infcx, param_env, impl_def_id, args, assoc_ty.defining_node);
|
|
let ty = tcx.type_of(assoc_ty.item.def_id);
|
|
let is_const = matches!(tcx.def_kind(assoc_ty.item.def_id), DefKind::AssocConst);
|
|
let term: ty::EarlyBinder<ty::Term<'tcx>> = if is_const {
|
|
let did = assoc_ty.item.def_id;
|
|
let identity_args = crate::traits::GenericArgs::identity_for_item(tcx, did);
|
|
let uv = ty::UnevaluatedConst::new(did, identity_args);
|
|
ty.map_bound(|ty| ty::Const::new_unevaluated(tcx, uv, ty).into())
|
|
} else {
|
|
ty.map_bound(|ty| ty.into())
|
|
};
|
|
if !tcx.check_args_compatible(assoc_ty.item.def_id, args) {
|
|
let err = Ty::new_error_with_message(
|
|
tcx,
|
|
obligation.cause.span,
|
|
"impl item and trait item have different parameters",
|
|
);
|
|
Progress { term: err.into(), obligations: nested }
|
|
} else {
|
|
assoc_ty_own_obligations(selcx, obligation, &mut nested);
|
|
Progress { term: term.instantiate(tcx, args), obligations: nested }
|
|
}
|
|
}
|
|
|
|
// Get obligations corresponding to the predicates from the where-clause of the
|
|
// associated type itself.
|
|
fn assoc_ty_own_obligations<'cx, 'tcx>(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
nested: &mut Vec<PredicateObligation<'tcx>>,
|
|
) {
|
|
let tcx = selcx.tcx();
|
|
let predicates = tcx
|
|
.predicates_of(obligation.predicate.def_id)
|
|
.instantiate_own(tcx, obligation.predicate.args);
|
|
for (predicate, span) in predicates {
|
|
let normalized = normalize_with_depth_to(
|
|
selcx,
|
|
obligation.param_env,
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth + 1,
|
|
predicate,
|
|
nested,
|
|
);
|
|
|
|
let nested_cause = if matches!(
|
|
obligation.cause.code(),
|
|
super::CompareImplItemObligation { .. }
|
|
| super::CheckAssociatedTypeBounds { .. }
|
|
| super::AscribeUserTypeProvePredicate(..)
|
|
) {
|
|
obligation.cause.clone()
|
|
} else if span.is_dummy() {
|
|
ObligationCause::new(
|
|
obligation.cause.span,
|
|
obligation.cause.body_id,
|
|
super::ItemObligation(obligation.predicate.def_id),
|
|
)
|
|
} else {
|
|
ObligationCause::new(
|
|
obligation.cause.span,
|
|
obligation.cause.body_id,
|
|
super::BindingObligation(obligation.predicate.def_id, span),
|
|
)
|
|
};
|
|
nested.push(Obligation::with_depth(
|
|
tcx,
|
|
nested_cause,
|
|
obligation.recursion_depth + 1,
|
|
obligation.param_env,
|
|
normalized,
|
|
));
|
|
}
|
|
}
|
|
|
|
pub(crate) trait ProjectionCacheKeyExt<'cx, 'tcx>: Sized {
|
|
fn from_poly_projection_obligation(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &PolyProjectionObligation<'tcx>,
|
|
) -> Option<Self>;
|
|
}
|
|
|
|
impl<'cx, 'tcx> ProjectionCacheKeyExt<'cx, 'tcx> for ProjectionCacheKey<'tcx> {
|
|
fn from_poly_projection_obligation(
|
|
selcx: &mut SelectionContext<'cx, 'tcx>,
|
|
obligation: &PolyProjectionObligation<'tcx>,
|
|
) -> Option<Self> {
|
|
let infcx = selcx.infcx;
|
|
// We don't do cross-snapshot caching of obligations with escaping regions,
|
|
// so there's no cache key to use
|
|
obligation.predicate.no_bound_vars().map(|predicate| {
|
|
ProjectionCacheKey::new(
|
|
// We don't attempt to match up with a specific type-variable state
|
|
// from a specific call to `opt_normalize_projection_type` - if
|
|
// there's no precise match, the original cache entry is "stranded"
|
|
// anyway.
|
|
infcx.resolve_vars_if_possible(predicate.projection_ty),
|
|
obligation.param_env,
|
|
)
|
|
})
|
|
}
|
|
}
|