Files
rust/src/libcore/unsafe.rs
2012-08-15 13:22:50 -04:00

317 lines
9.1 KiB
Rust

//! Unsafe operations
export reinterpret_cast, forget, bump_box_refcount, transmute;
export transmute_mut, transmute_immut, transmute_region, transmute_mut_region;
export SharedMutableState, shared_mutable_state, clone_shared_mutable_state;
export get_shared_mutable_state, get_shared_immutable_state;
export Exclusive, exclusive;
import task::atomically;
#[abi = "rust-intrinsic"]
extern mod rusti {
fn forget<T>(-x: T);
fn reinterpret_cast<T, U>(e: T) -> U;
}
/// Casts the value at `src` to U. The two types must have the same length.
#[inline(always)]
unsafe fn reinterpret_cast<T, U>(src: T) -> U {
rusti::reinterpret_cast(src)
}
/**
* Move a thing into the void
*
* The forget function will take ownership of the provided value but neglect
* to run any required cleanup or memory-management operations on it. This
* can be used for various acts of magick, particularly when using
* reinterpret_cast on managed pointer types.
*/
#[inline(always)]
unsafe fn forget<T>(-thing: T) { rusti::forget(thing); }
/**
* Force-increment the reference count on a shared box. If used
* uncarefully, this can leak the box. Use this in conjunction with transmute
* and/or reinterpret_cast when such calls would otherwise scramble a box's
* reference count
*/
unsafe fn bump_box_refcount<T>(+t: @T) { forget(t); }
/**
* Transform a value of one type into a value of another type.
* Both types must have the same size and alignment.
*
* # Example
*
* assert transmute("L") == ~[76u8, 0u8];
*/
unsafe fn transmute<L, G>(-thing: L) -> G {
let newthing = reinterpret_cast(thing);
forget(thing);
return newthing;
}
/// Coerce an immutable reference to be mutable.
unsafe fn transmute_mut<T>(+ptr: &T) -> &mut T { transmute(ptr) }
/// Coerce a mutable reference to be immutable.
unsafe fn transmute_immut<T>(+ptr: &mut T) -> &T { transmute(ptr) }
/// Coerce a borrowed pointer to have an arbitrary associated region.
unsafe fn transmute_region<T>(+ptr: &a/T) -> &b/T { transmute(ptr) }
/// Coerce a borrowed mutable pointer to have an arbitrary associated region.
unsafe fn transmute_mut_region<T>(+ptr: &a/mut T) -> &b/mut T {
transmute(ptr)
}
/****************************************************************************
* Shared state & exclusive ARC
****************************************************************************/
type ArcData<T> = {
mut count: libc::intptr_t,
data: T
};
class ArcDestruct<T> {
let data: *libc::c_void;
new(data: *libc::c_void) { self.data = data; }
drop unsafe {
let data: ~ArcData<T> = unsafe::reinterpret_cast(self.data);
let new_count = rustrt::rust_atomic_decrement(&mut data.count);
assert new_count >= 0;
if new_count == 0 {
// drop glue takes over.
} else {
unsafe::forget(data);
}
}
}
/**
* COMPLETELY UNSAFE. Used as a primitive for the safe versions in std::arc.
*
* Data races between tasks can result in crashes and, with sufficient
* cleverness, arbitrary type coercion.
*/
type SharedMutableState<T: send> = ArcDestruct<T>;
unsafe fn shared_mutable_state<T: send>(+data: T) -> SharedMutableState<T> {
let data = ~{mut count: 1, data: data};
unsafe {
let ptr = unsafe::transmute(data);
ArcDestruct(ptr)
}
}
#[inline(always)]
unsafe fn get_shared_mutable_state<T: send>(rc: &SharedMutableState<T>)
-> &mut T {
unsafe {
let ptr: ~ArcData<T> = unsafe::reinterpret_cast((*rc).data);
assert ptr.count > 0;
// Cast us back into the correct region
let r = unsafe::reinterpret_cast(&ptr.data);
unsafe::forget(ptr);
return r;
}
}
#[inline(always)]
unsafe fn get_shared_immutable_state<T: send>(rc: &SharedMutableState<T>)
-> &T {
unsafe {
let ptr: ~ArcData<T> = unsafe::reinterpret_cast((*rc).data);
assert ptr.count > 0;
// Cast us back into the correct region
let r = unsafe::reinterpret_cast(&ptr.data);
unsafe::forget(ptr);
return r;
}
}
unsafe fn clone_shared_mutable_state<T: send>(rc: &SharedMutableState<T>)
-> SharedMutableState<T> {
unsafe {
let ptr: ~ArcData<T> = unsafe::reinterpret_cast((*rc).data);
let new_count = rustrt::rust_atomic_increment(&mut ptr.count);
assert new_count >= 2;
unsafe::forget(ptr);
}
ArcDestruct((*rc).data)
}
/****************************************************************************/
#[allow(non_camel_case_types)] // runtime type
type rust_little_lock = *libc::c_void;
#[abi = "cdecl"]
extern mod rustrt {
#[rust_stack]
fn rust_atomic_increment(p: &mut libc::intptr_t)
-> libc::intptr_t;
#[rust_stack]
fn rust_atomic_decrement(p: &mut libc::intptr_t)
-> libc::intptr_t;
fn rust_create_little_lock() -> rust_little_lock;
fn rust_destroy_little_lock(lock: rust_little_lock);
fn rust_lock_little_lock(lock: rust_little_lock);
fn rust_unlock_little_lock(lock: rust_little_lock);
}
class LittleLock {
let l: rust_little_lock;
new() {
self.l = rustrt::rust_create_little_lock();
}
drop { rustrt::rust_destroy_little_lock(self.l); }
}
impl LittleLock {
#[inline(always)]
unsafe fn lock<T>(f: fn() -> T) -> T {
class Unlock {
let l: rust_little_lock;
new(l: rust_little_lock) { self.l = l; }
drop { rustrt::rust_unlock_little_lock(self.l); }
}
do atomically {
rustrt::rust_lock_little_lock(self.l);
let _r = Unlock(self.l);
f()
}
}
}
struct ExData<T: send> { lock: LittleLock; mut failed: bool; mut data: T; }
/**
* An arc over mutable data that is protected by a lock. For library use only.
*/
struct Exclusive<T: send> { x: SharedMutableState<ExData<T>>; }
fn exclusive<T:send >(+user_data: T) -> Exclusive<T> {
let data = ExData {
lock: LittleLock(), mut failed: false, mut data: user_data
};
Exclusive { x: unsafe { shared_mutable_state(data) } }
}
impl<T: send> Exclusive<T> {
// Duplicate an exclusive ARC, as std::arc::clone.
fn clone() -> Exclusive<T> {
Exclusive { x: unsafe { clone_shared_mutable_state(&self.x) } }
}
// Exactly like std::arc::mutex_arc,access(), but with the little_lock
// instead of a proper mutex. Same reason for being unsafe.
//
// Currently, scheduling operations (i.e., yielding, receiving on a pipe,
// accessing the provided condition variable) are prohibited while inside
// the exclusive. Supporting that is a work in progress.
#[inline(always)]
unsafe fn with<U>(f: fn(x: &mut T) -> U) -> U {
let rec = unsafe { get_shared_mutable_state(&self.x) };
do rec.lock.lock {
if rec.failed {
fail ~"Poisoned exclusive - another task failed inside!";
}
rec.failed = true;
let result = f(&mut rec.data);
rec.failed = false;
result
}
}
}
/****************************************************************************
* Tests
****************************************************************************/
#[cfg(test)]
mod tests {
#[test]
fn test_reinterpret_cast() {
assert unsafe { reinterpret_cast(1) } == 1u;
}
#[test]
fn test_bump_box_refcount() {
unsafe {
let box = @~"box box box"; // refcount 1
bump_box_refcount(box); // refcount 2
let ptr: *int = transmute(box); // refcount 2
let _box1: @~str = reinterpret_cast(ptr);
let _box2: @~str = reinterpret_cast(ptr);
assert *_box1 == ~"box box box";
assert *_box2 == ~"box box box";
// Will destroy _box1 and _box2. Without the bump, this would
// use-after-free. With too many bumps, it would leak.
}
}
#[test]
fn test_transmute() {
unsafe {
let x = @1;
let x: *int = transmute(x);
assert *x == 1;
let _x: @int = transmute(x);
}
}
#[test]
fn test_transmute2() {
unsafe {
assert transmute(~"L") == ~[76u8, 0u8];
}
}
#[test]
fn exclusive_arc() {
let mut futures = ~[];
let num_tasks = 10u;
let count = 10u;
let total = exclusive(~mut 0u);
for uint::range(0u, num_tasks) |_i| {
let total = total.clone();
futures += ~[future::spawn(|| {
for uint::range(0u, count) |_i| {
do total.with |count| {
**count += 1u;
}
}
})];
};
for futures.each |f| { f.get() }
do total.with |total| {
assert **total == num_tasks * count
};
}
#[test] #[should_fail] #[ignore(cfg(windows))]
fn exclusive_poison() {
// Tests that if one task fails inside of an exclusive, subsequent
// accesses will also fail.
let x = exclusive(1);
let x2 = x.clone();
do task::try {
do x2.with |one| {
assert *one == 2;
}
};
do x.with |one| {
assert *one == 1;
}
}
}