Files
rust/compiler/rustc_pattern_analysis/src/usefulness.rs
Matthias Krüger a37fa37281 Rollup merge of #118803 - Nadrieril:min-exhaustive-patterns, r=compiler-errors
Add the `min_exhaustive_patterns` feature gate

## Motivation

Pattern-matching on empty types is tricky around unsafe code. For that reason, current stable rust conservatively requires arms for empty types in all but the simplest case. It has long been the intention to allow omitting empty arms when it's safe to do so. The [`exhaustive_patterns`](https://github.com/rust-lang/rust/issues/51085) feature allows the omission of all empty arms, but hasn't been stabilized because that was deemed dangerous around unsafe code.

## Proposal

This feature aims to stabilize an uncontroversial subset of exhaustive_patterns. Namely: when `min_exhaustive_patterns` is enabled and the data we're matching on is guaranteed to be valid by rust's operational semantics, then we allow empty arms to be omitted. E.g.:

```rust
let x: Result<T, !> = foo();
match x { // ok
    Ok(y) => ...,
}
let Ok(y) = x; // ok
```

If the place is not guaranteed to hold valid data (namely ptr dereferences, ref dereferences (conservatively) and union field accesses), then we keep stable behavior i.e. we (usually) require arms for the empty cases.

```rust
unsafe {
    let ptr: *const Result<u32, !> = ...;
    match *ptr {
        Ok(x) => { ... }
        Err(_) => { ... } // still required
    }
}
let foo: Result<u32, &!> = ...;
match foo {
    Ok(x) => { ... }
    Err(&_) => { ... } // still required because of the dereference
}
unsafe {
    let ptr: *const ! = ...;
    match *ptr {} // already allowed on stable
}
```

Note that we conservatively consider that a valid reference can point to invalid data, hence we don't allow arms of type `&!` and similar cases to be omitted. This could eventually change depending on [opsem decisions](https://github.com/rust-lang/unsafe-code-guidelines/issues/413). Whenever opsem is undecided on a case, we conservatively keep today's stable behavior.

I proposed this behavior in the [`never_patterns`](https://github.com/rust-lang/rust/issues/118155) feature gate but it makes sense on its own and could be stabilized more quickly. The two proposals nicely complement each other.

## Unresolved Questions

Part of the question is whether this requires an RFC. I'd argue this doesn't need one since there is no design question beyond the intent to omit unreachable patterns, but I'm aware the problem can be framed in ways that require design (I'm thinking of the [original never patterns proposal](https://smallcultfollowing.com/babysteps/blog/2018/08/13/never-patterns-exhaustive-matching-and-uninhabited-types-oh-my/), which would frame this behavior as "auto-nevering" happening).

EDIT: I initially proposed a future-compatibility lint as part of this feature, I don't anymore.
2024-01-26 06:36:36 +01:00

1590 lines
64 KiB
Rust

//! # Match exhaustiveness and redundancy algorithm
//!
//! This file contains the logic for exhaustiveness and usefulness checking for pattern-matching.
//! Specifically, given a list of patterns in a match, we can tell whether:
//! (a) a given pattern is redundant
//! (b) the patterns cover every possible value for the type (exhaustiveness)
//!
//! The algorithm implemented here is inspired from the one described in [this
//! paper](http://moscova.inria.fr/~maranget/papers/warn/index.html). We have however changed it in
//! various ways to accommodate the variety of patterns that Rust supports. We thus explain our
//! version here, without being as precise.
//!
//! Fun fact: computing exhaustiveness is NP-complete, because we can encode a SAT problem as an
//! exhaustiveness problem. See [here](https://niedzejkob.p4.team/rust-np) for the fun details.
//!
//!
//! # Summary
//!
//! The algorithm is given as input a list of patterns, one for each arm of a match, and computes
//! the following:
//! - a set of values that match none of the patterns (if any),
//! - for each subpattern (taking into account or-patterns), whether removing it would change
//! anything about how the match executes, i.e. whether it is useful/not redundant.
//!
//! To a first approximation, the algorithm works by exploring all possible values for the type
//! being matched on, and determining which arm(s) catch which value. To make this tractable we
//! cleverly group together values, as we'll see below.
//!
//! The entrypoint of this file is the [`compute_match_usefulness`] function, which computes
//! usefulness for each subpattern and exhaustiveness for the whole match.
//!
//! In this page we explain the necessary concepts to understand how the algorithm works.
//!
//!
//! # Usefulness
//!
//! The central concept of this file is the notion of "usefulness". Given some patterns `p_1 ..
//! p_n`, a pattern `q` is said to be *useful* if there is a value that is matched by `q` and by
//! none of the `p_i`. We write `usefulness(p_1 .. p_n, q)` for a function that returns a list of
//! such values. The aim of this file is to compute it efficiently.
//!
//! This is enough to compute usefulness: a pattern in a `match` expression is redundant iff it is
//! not useful w.r.t. the patterns above it:
//! ```compile_fail,E0004
//! # #![feature(exclusive_range_pattern)]
//! # fn foo() {
//! match Some(0u32) {
//! Some(0..100) => {},
//! Some(90..190) => {}, // useful: `Some(150)` is matched by this but not the branch above
//! Some(50..150) => {}, // redundant: all the values this matches are already matched by
//! // the branches above
//! None => {}, // useful: `None` is matched by this but not the branches above
//! }
//! # }
//! ```
//!
//! This is also enough to compute exhaustiveness: a match is exhaustive iff the wildcard `_`
//! pattern is _not_ useful w.r.t. the patterns in the match. The values returned by `usefulness`
//! are used to tell the user which values are missing.
//! ```compile_fail,E0004
//! # fn foo(x: Option<u32>) {
//! match x {
//! None => {},
//! Some(0) => {},
//! // not exhaustive: `_` is useful because it matches `Some(1)`
//! }
//! # }
//! ```
//!
//!
//! # Constructors and fields
//!
//! In the value `Pair(Some(0), true)`, `Pair` is called the constructor of the value, and `Some(0)`
//! and `true` are its fields. Every matcheable value can be decomposed in this way. Examples of
//! constructors are: `Some`, `None`, `(,)` (the 2-tuple constructor), `Foo {..}` (the constructor
//! for a struct `Foo`), and `2` (the constructor for the number `2`).
//!
//! Each constructor takes a fixed number of fields; this is called its arity. `Pair` and `(,)` have
//! arity 2, `Some` has arity 1, `None` and `42` have arity 0. Each type has a known set of
//! constructors. Some types have many constructors (like `u64`) or even an infinitely many (like
//! `&str` and `&[T]`).
//!
//! Patterns are similar: `Pair(Some(_), _)` has constructor `Pair` and two fields. The difference
//! is that we get some extra pattern-only constructors, namely: the wildcard `_`, variable
//! bindings, integer ranges like `0..=10`, and variable-length slices like `[_, .., _]`. We treat
//! or-patterns separately, see the dedicated section below.
//!
//! Now to check if a value `v` matches a pattern `p`, we check if `v`'s constructor matches `p`'s
//! constructor, then recursively compare their fields if necessary. A few representative examples:
//!
//! - `matches!(v, _) := true`
//! - `matches!((v0, v1), (p0, p1)) := matches!(v0, p0) && matches!(v1, p1)`
//! - `matches!(Foo { bar: v0, baz: v1 }, Foo { bar: p0, baz: p1 }) := matches!(v0, p0) && matches!(v1, p1)`
//! - `matches!(Ok(v0), Ok(p0)) := matches!(v0, p0)`
//! - `matches!(Ok(v0), Err(p0)) := false` (incompatible variants)
//! - `matches!(v, 1..=100) := matches!(v, 1) || ... || matches!(v, 100)`
//! - `matches!([v0], [p0, .., p1]) := false` (incompatible lengths)
//! - `matches!([v0, v1, v2], [p0, .., p1]) := matches!(v0, p0) && matches!(v2, p1)`
//!
//! Constructors and relevant operations are defined in the [`crate::constructor`] module. A
//! representation of patterns that uses constructors is available in [`crate::pat`]. The question
//! of whether a constructor is matched by another one is answered by
//! [`Constructor::is_covered_by`].
//!
//! Note 1: variable bindings (like the `x` in `Some(x)`) match anything, so we treat them as wildcards.
//! Note 2: this only applies to matcheable values. For example a value of type `Rc<u64>` can't be
//! deconstructed that way.
//!
//!
//!
//! # Specialization
//!
//! The examples in the previous section motivate the operation at the heart of the algorithm:
//! "specialization". It captures this idea of "removing one layer of constructor".
//!
//! `specialize(c, p)` takes a value-only constructor `c` and a pattern `p`, and returns a
//! pattern-tuple or nothing. It works as follows:
//!
//! - Specializing for the wrong constructor returns nothing
//!
//! - `specialize(None, Some(p0)) := <nothing>`
//! - `specialize([,,,], [p0]) := <nothing>`
//!
//! - Specializing for the correct constructor returns a tuple of the fields
//!
//! - `specialize(Variant1, Variant1(p0, p1, p2)) := (p0, p1, p2)`
//! - `specialize(Foo{ bar, baz, quz }, Foo { bar: p0, baz: p1, .. }) := (p0, p1, _)`
//! - `specialize([,,,], [p0, .., p1]) := (p0, _, _, p1)`
//!
//! We get the following property: for any values `v_1, .., v_n` of appropriate types, we have:
//! ```text
//! matches!(c(v_1, .., v_n), p)
//! <=> specialize(c, p) returns something
//! && matches!((v_1, .., v_n), specialize(c, p))
//! ```
//!
//! We also extend specialization to pattern-tuples by applying it to the first pattern:
//! `specialize(c, (p_0, .., p_n)) := specialize(c, p_0) ++ (p_1, .., p_m)`
//! where `++` is concatenation of tuples.
//!
//!
//! The previous property extends to pattern-tuples:
//! ```text
//! matches!((c(v_1, .., v_n), w_1, .., w_m), (p_0, p_1, .., p_m))
//! <=> specialize(c, p_0) does not error
//! && matches!((v_1, .., v_n, w_1, .., w_m), specialize(c, (p_0, p_1, .., p_m)))
//! ```
//!
//! Whether specialization returns something or not is given by [`Constructor::is_covered_by`].
//! Specialization of a pattern is computed in [`DeconstructedPat::specialize`]. Specialization for
//! a pattern-tuple is computed in [`PatStack::pop_head_constructor`]. Finally, specialization for a
//! set of pattern-tuples is computed in [`Matrix::specialize_constructor`].
//!
//!
//!
//! # Undoing specialization
//!
//! To construct witnesses we will need an inverse of specialization. If `c` is a constructor of
//! arity `n`, we define `unspecialize` as:
//! `unspecialize(c, (p_1, .., p_n, q_1, .., q_m)) := (c(p_1, .., p_n), q_1, .., q_m)`.
//!
//! This is done for a single witness-tuple in [`WitnessStack::apply_constructor`], and for a set of
//! witness-tuples in [`WitnessMatrix::apply_constructor`].
//!
//!
//!
//! # Computing usefulness
//!
//! We now present a naive version of the algorithm for computing usefulness. From now on we operate
//! on pattern-tuples.
//!
//! Let `pt_1, .., pt_n` and `qt` be length-m tuples of patterns for the same type `(T_1, .., T_m)`.
//! We compute `usefulness(tp_1, .., tp_n, tq)` as follows:
//!
//! - Base case: `m == 0`.
//! The pattern-tuples are all empty, i.e. they're all `()`. Thus `tq` is useful iff there are
//! no rows above it, i.e. if `n == 0`. In that case we return `()` as a witness-tuple of
//! usefulness of `tq`.
//!
//! - Inductive case: `m > 0`.
//! In this naive version, we list all the possible constructors for values of type `T1` (we
//! will be more clever in the next section).
//!
//! - For each such constructor `c` for which `specialize(c, tq)` is not nothing:
//! - We recursively compute `usefulness(specialize(c, tp_1) ... specialize(c, tp_n), specialize(c, tq))`,
//! where we discard any `specialize(c, p_i)` that returns nothing.
//! - For each witness-tuple `w` found, we apply `unspecialize(c, w)` to it.
//!
//! - We return the all the witnesses found, if any.
//!
//!
//! Let's take the following example:
//! ```compile_fail,E0004
//! # enum Enum { Variant1(()), Variant2(Option<bool>, u32)}
//! # use Enum::*;
//! # fn foo(x: Enum) {
//! match x {
//! Variant1(_) => {} // `p1`
//! Variant2(None, 0) => {} // `p2`
//! Variant2(Some(_), 0) => {} // `q`
//! }
//! # }
//! ```
//!
//! To compute the usefulness of `q`, we would proceed as follows:
//! ```text
//! Start:
//! `tp1 = [Variant1(_)]`
//! `tp2 = [Variant2(None, 0)]`
//! `tq = [Variant2(Some(true), 0)]`
//!
//! Constructors are `Variant1` and `Variant2`. Only `Variant2` can specialize `tq`.
//! Specialize with `Variant2`:
//! `tp2 = [None, 0]`
//! `tq = [Some(true), 0]`
//!
//! Constructors are `None` and `Some`. Only `Some` can specialize `tq`.
//! Specialize with `Some`:
//! `tq = [true, 0]`
//!
//! Constructors are `false` and `true`. Only `true` can specialize `tq`.
//! Specialize with `true`:
//! `tq = [0]`
//!
//! Constructors are `0`, `1`, .. up to infinity. Only `0` can specialize `tq`.
//! Specialize with `0`:
//! `tq = []`
//!
//! m == 0 and n == 0, so `tq` is useful with witness `[]`.
//! `witness = []`
//!
//! Unspecialize with `0`:
//! `witness = [0]`
//! Unspecialize with `true`:
//! `witness = [true, 0]`
//! Unspecialize with `Some`:
//! `witness = [Some(true), 0]`
//! Unspecialize with `Variant2`:
//! `witness = [Variant2(Some(true), 0)]`
//! ```
//!
//! Therefore `usefulness(tp_1, tp_2, tq)` returns the single witness-tuple `[Variant2(Some(true), 0)]`.
//!
//!
//! Computing the set of constructors for a type is done in [`TypeCx::ctors_for_ty`]. See
//! the following sections for more accurate versions of the algorithm and corresponding links.
//!
//!
//!
//! # Computing usefulness and exhaustiveness in one go
//!
//! The algorithm we have described so far computes usefulness of each pattern in turn, and ends by
//! checking if `_` is useful to determine exhaustiveness of the whole match. In practice, instead
//! of doing "for each pattern { for each constructor { ... } }", we do "for each constructor { for
//! each pattern { ... } }". This allows us to compute everything in one go.
//!
//! [`Matrix`] stores the set of pattern-tuples under consideration. We track usefulness of each
//! row mutably in the matrix as we go along. We ignore witnesses of usefulness of the match rows.
//! We gather witnesses of the usefulness of `_` in [`WitnessMatrix`]. The algorithm that computes
//! all this is in [`compute_exhaustiveness_and_usefulness`].
//!
//! See the full example at the bottom of this documentation.
//!
//!
//!
//! # Making usefulness tractable: constructor splitting
//!
//! We're missing one last detail: which constructors do we list? Naively listing all value
//! constructors cannot work for types like `u64` or `&str`, so we need to be more clever. The final
//! clever idea for this algorithm is that we can group together constructors that behave the same.
//!
//! Examples:
//! ```compile_fail,E0004
//! match (0, false) {
//! (0 ..=100, true) => {}
//! (50..=150, false) => {}
//! (0 ..=200, _) => {}
//! }
//! ```
//!
//! In this example, trying any of `0`, `1`, .., `49` will give the same specialized matrix, and
//! thus the same usefulness/exhaustiveness results. We can thus accelerate the algorithm by
//! trying them all at once. Here in fact, the only cases we need to consider are: `0..50`,
//! `50..=100`, `101..=150`,`151..=200` and `201..`.
//!
//! ```
//! enum Direction { North, South, East, West }
//! # let wind = (Direction::North, 0u8);
//! match wind {
//! (Direction::North, 50..) => {}
//! (_, _) => {}
//! }
//! ```
//!
//! In this example, trying any of `South`, `East`, `West` will give the same specialized matrix. By
//! the same reasoning, we only need to try two cases: `North`, and "everything else".
//!
//! We call _constructor splitting_ the operation that computes such a minimal set of cases to try.
//! This is done in [`ConstructorSet::split`] and explained in [`crate::constructor`].
//!
//!
//!
//! # `Missing` and relevancy
//!
//! ## Relevant values
//!
//! Take the following example:
//!
//! ```compile_fail,E0004
//! # let foo = (true, true);
//! match foo {
//! (true, _) => 1,
//! (_, true) => 2,
//! };
//! ```
//!
//! Consider the value `(true, true)`:
//! - Row 2 does not distinguish `(true, true)` and `(false, true)`;
//! - `false` does not show up in the first column of the match, so without knowing anything else we
//! can deduce that `(false, true)` matches the same or fewer rows than `(true, true)`.
//!
//! Using those two facts together, we deduce that `(true, true)` will not give us more usefulness
//! information about row 2 than `(false, true)` would. We say that "`(true, true)` is made
//! irrelevant for row 2 by `(false, true)`". We will use this idea to prune the search tree.
//!
//!
//! ## Computing relevancy
//!
//! We now generalize from the above example to approximate relevancy in a simple way. Note that we
//! will only compute an approximation: we can sometimes determine when a case is irrelevant, but
//! computing this precisely is at least as hard as computing usefulness.
//!
//! Our computation of relevancy relies on the `Missing` constructor. As explained in
//! [`crate::constructor`], `Missing` represents the constructors not present in a given column. For
//! example in the following:
//!
//! ```compile_fail,E0004
//! enum Direction { North, South, East, West }
//! # let wind = (Direction::North, 0u8);
//! match wind {
//! (Direction::North, _) => 1,
//! (_, 50..) => 2,
//! };
//! ```
//!
//! Here `South`, `East` and `West` are missing in the first column, and `0..50` is missing in the
//! second. Both of these sets are represented by `Constructor::Missing` in their corresponding
//! column.
//!
//! We then compute relevancy as follows: during the course of the algorithm, for a row `r`:
//! - if `r` has a wildcard in the first column;
//! - and some constructors are missing in that column;
//! - then any `c != Missing` is considered irrelevant for row `r`.
//!
//! By this we mean that continuing the algorithm by specializing with `c` is guaranteed not to
//! contribute more information about the usefulness of row `r` than what we would get by
//! specializing with `Missing`. The argument is the same as in the previous subsection.
//!
//! Once we've specialized by a constructor `c` that is irrelevant for row `r`, we're guaranteed to
//! only explore values irrelevant for `r`. If we then ever reach a point where we're only exploring
//! values that are irrelevant to all of the rows (including the virtual wildcard row used for
//! exhaustiveness), we skip that case entirely.
//!
//!
//! ## Example
//!
//! Let's go through a variation on the first example:
//!
//! ```compile_fail,E0004
//! # let foo = (true, true, true);
//! match foo {
//! (true, _, true) => 1,
//! (_, true, _) => 2,
//! };
//! ```
//!
//! ```text
//! ┐ Patterns:
//! │ 1. `[(true, _, true)]`
//! │ 2. `[(_, true, _)]`
//! │ 3. `[_]` // virtual extra wildcard row
//! │
//! │ Specialize with `(,,)`:
//! ├─┐ Patterns:
//! │ │ 1. `[true, _, true]`
//! │ │ 2. `[_, true, _]`
//! │ │ 3. `[_, _, _]`
//! │ │
//! │ │ There are missing constructors in the first column (namely `false`), hence
//! │ │ `true` is irrelevant for rows 2 and 3.
//! │ │
//! │ │ Specialize with `true`:
//! │ ├─┐ Patterns:
//! │ │ │ 1. `[_, true]`
//! │ │ │ 2. `[true, _]` // now exploring irrelevant cases
//! │ │ │ 3. `[_, _]` // now exploring irrelevant cases
//! │ │ │
//! │ │ │ There are missing constructors in the first column (namely `false`), hence
//! │ │ │ `true` is irrelevant for rows 1 and 3.
//! │ │ │
//! │ │ │ Specialize with `true`:
//! │ │ ├─┐ Patterns:
//! │ │ │ │ 1. `[true]` // now exploring irrelevant cases
//! │ │ │ │ 2. `[_]` // now exploring irrelevant cases
//! │ │ │ │ 3. `[_]` // now exploring irrelevant cases
//! │ │ │ │
//! │ │ │ │ The current case is irrelevant for all rows: we backtrack immediately.
//! │ │ ├─┘
//! │ │ │
//! │ │ │ Specialize with `false`:
//! │ │ ├─┐ Patterns:
//! │ │ │ │ 1. `[true]`
//! │ │ │ │ 3. `[_]` // now exploring irrelevant cases
//! │ │ │ │
//! │ │ │ │ Specialize with `true`:
//! │ │ │ ├─┐ Patterns:
//! │ │ │ │ │ 1. `[]`
//! │ │ │ │ │ 3. `[]` // now exploring irrelevant cases
//! │ │ │ │ │
//! │ │ │ │ │ Row 1 is therefore useful.
//! │ │ │ ├─┘
//! <etc...>
//! ```
//!
//! Relevancy allowed us to skip the case `(true, true, _)` entirely. In some cases this pruning can
//! give drastic speedups. The case this was built for is the following (#118437):
//!
//! ```ignore(illustrative)
//! match foo {
//! (true, _, _, _, ..) => 1,
//! (_, true, _, _, ..) => 2,
//! (_, _, true, _, ..) => 3,
//! (_, _, _, true, ..) => 4,
//! ...
//! }
//! ```
//!
//! Without considering relevancy, we would explore all 2^n combinations of the `true` and `Missing`
//! constructors. Relevancy tells us that e.g. `(true, true, false, false, false, ...)` is
//! irrelevant for all the rows. This allows us to skip all cases with more than one `true`
//! constructor, changing the runtime from exponential to linear.
//!
//!
//! ## Relevancy and exhaustiveness
//!
//! For exhaustiveness, we do something slightly different w.r.t relevancy: we do not report
//! witnesses of non-exhaustiveness that are irrelevant for the virtual wildcard row. For example,
//! in:
//!
//! ```ignore(illustrative)
//! match foo {
//! (true, true) => {}
//! }
//! ```
//!
//! we only report `(false, _)` as missing. This was a deliberate choice made early in the
//! development of rust, for diagnostic and performance purposes. As showed in the previous section,
//! ignoring irrelevant cases preserves usefulness, so this choice still correctly computes whether
//! a match is exhaustive.
//!
//!
//!
//! # Or-patterns
//!
//! What we have described so far works well if there are no or-patterns. To handle them, if the
//! first pattern of a row in the matrix is an or-pattern, we expand it by duplicating the rest of
//! the row as necessary. This is handled automatically in [`Matrix`].
//!
//! This makes usefulness tracking subtle, because we also want to compute whether an alternative
//! of an or-pattern is redundant, e.g. in `Some(_) | Some(0)`. We track usefulness of each
//! subpattern by interior mutability in [`DeconstructedPat`] with `set_useful`/`is_useful`.
//!
//! It's unfortunate that we have to use interior mutability, but believe me (Nadrieril), I have
//! tried [other](https://github.com/rust-lang/rust/pull/80104)
//! [solutions](https://github.com/rust-lang/rust/pull/80632) and nothing is remotely as simple.
//!
//!
//!
//! # Constants and opaques
//!
//! There are two kinds of constants in patterns:
//!
//! * literals (`1`, `true`, `"foo"`)
//! * named or inline consts (`FOO`, `const { 5 + 6 }`)
//!
//! The latter are converted into the corresponding patterns by a previous phase. For example
//! `const_to_pat(const { [1, 2, 3] })` becomes an `Array(vec![Const(1), Const(2), Const(3)])`
//! pattern. This gets problematic when comparing the constant via `==` would behave differently
//! from matching on the constant converted to a pattern. The situation around this is currently
//! unclear and the lang team is working on clarifying what we want to do there. In any case, there
//! are constants we will not turn into patterns. We capture these with `Constructor::Opaque`. These
//! `Opaque` patterns do not participate in exhaustiveness, specialization or overlap checking.
//!
//!
//!
//! # Usefulness vs reachability, validity, and empty patterns
//!
//! This is likely the subtlest aspect of the algorithm. To be fully precise, a match doesn't
//! operate on a value, it operates on a place. In certain unsafe circumstances, it is possible for
//! a place to not contain valid data for its type. This has subtle consequences for empty types.
//! Take the following:
//!
//! ```rust
//! enum Void {}
//! let x: u8 = 0;
//! let ptr: *const Void = &x as *const u8 as *const Void;
//! unsafe {
//! match *ptr {
//! _ => println!("Reachable!"),
//! }
//! }
//! ```
//!
//! In this example, `ptr` is a valid pointer pointing to a place with invalid data. The `_` pattern
//! does not look at the contents of `*ptr`, so this is ok and the arm is taken. In other words,
//! despite the place we are inspecting being of type `Void`, there is a reachable arm. If the
//! arm had a binding however:
//!
//! ```rust
//! # #[derive(Copy, Clone)]
//! # enum Void {}
//! # let x: u8 = 0;
//! # let ptr: *const Void = &x as *const u8 as *const Void;
//! # unsafe {
//! match *ptr {
//! _a => println!("Unreachable!"),
//! }
//! # }
//! ```
//!
//! Here the binding loads the value of type `Void` from the `*ptr` place. In this example, this
//! causes UB since the data is not valid. In the general case, this asserts validity of the data at
//! `*ptr`. Either way, this arm will never be taken.
//!
//! Finally, let's consider the empty match `match *ptr {}`. If we consider this exhaustive, then
//! having invalid data at `*ptr` is invalid. In other words, the empty match is semantically
//! equivalent to the `_a => ...` match. In the interest of explicitness, we prefer the case with an
//! arm, hence we won't tell the user to remove the `_a` arm. In other words, the `_a` arm is
//! unreachable yet not redundant. This is why we lint on redundant arms rather than unreachable
//! arms, despite the fact that the lint says "unreachable".
//!
//! These considerations only affects certain places, namely those that can contain non-valid data
//! without UB. These are: pointer dereferences, reference dereferences, and union field accesses.
//! We track in the algorithm whether a given place is known to contain valid data. This is done
//! first by inspecting the scrutinee syntactically (which gives us `cx.known_valid_scrutinee`), and
//! then by tracking validity of each column of the matrix (which correspond to places) as we
//! recurse into subpatterns. That second part is done through [`ValidityConstraint`], most notably
//! [`ValidityConstraint::specialize`].
//!
//! Having said all that, in practice we don't fully follow what's been presented in this section.
//! Let's call "toplevel exception" the case where the match scrutinee itself has type `!` or
//! `EmptyEnum`. First, on stable rust, we require `_` patterns for empty types in all cases apart
//! from the toplevel exception. The `exhaustive_patterns` and `min_exaustive_patterns` allow
//! omitting patterns in the cases described above. There's a final detail: in the toplevel
//! exception or with the `exhaustive_patterns` feature, we ignore place validity when checking
//! whether a pattern is required for exhaustiveness. I (Nadrieril) hope to deprecate this behavior.
//!
//!
//!
//! # Full example
//!
//! We illustrate a full run of the algorithm on the following match.
//!
//! ```compile_fail,E0004
//! # struct Pair(Option<u32>, bool);
//! # fn foo(x: Pair) -> u32 {
//! match x {
//! Pair(Some(0), _) => 1,
//! Pair(_, false) => 2,
//! Pair(Some(0), false) => 3,
//! }
//! # }
//! ```
//!
//! We keep track of the original row for illustration purposes, this is not what the algorithm
//! actually does (it tracks usefulness as a boolean on each row).
//!
//! ```text
//! ┐ Patterns:
//! │ 1. `[Pair(Some(0), _)]`
//! │ 2. `[Pair(_, false)]`
//! │ 3. `[Pair(Some(0), false)]`
//! │
//! │ Specialize with `Pair`:
//! ├─┐ Patterns:
//! │ │ 1. `[Some(0), _]`
//! │ │ 2. `[_, false]`
//! │ │ 3. `[Some(0), false]`
//! │ │
//! │ │ Specialize with `Some`:
//! │ ├─┐ Patterns:
//! │ │ │ 1. `[0, _]`
//! │ │ │ 2. `[_, false]`
//! │ │ │ 3. `[0, false]`
//! │ │ │
//! │ │ │ Specialize with `0`:
//! │ │ ├─┐ Patterns:
//! │ │ │ │ 1. `[_]`
//! │ │ │ │ 3. `[false]`
//! │ │ │ │
//! │ │ │ │ Specialize with `true`:
//! │ │ │ ├─┐ Patterns:
//! │ │ │ │ │ 1. `[]`
//! │ │ │ │ │
//! │ │ │ │ │ We note arm 1 is useful (by `Pair(Some(0), true)`).
//! │ │ │ ├─┘
//! │ │ │ │
//! │ │ │ │ Specialize with `false`:
//! │ │ │ ├─┐ Patterns:
//! │ │ │ │ │ 1. `[]`
//! │ │ │ │ │ 3. `[]`
//! │ │ │ │ │
//! │ │ │ │ │ We note arm 1 is useful (by `Pair(Some(0), false)`).
//! │ │ │ ├─┘
//! │ │ ├─┘
//! │ │ │
//! │ │ │ Specialize with `1..`:
//! │ │ ├─┐ Patterns:
//! │ │ │ │ 2. `[false]`
//! │ │ │ │
//! │ │ │ │ Specialize with `true`:
//! │ │ │ ├─┐ Patterns:
//! │ │ │ │ │ // no rows left
//! │ │ │ │ │
//! │ │ │ │ │ We have found an unmatched value (`Pair(Some(1..), true)`)! This gives us a witness.
//! │ │ │ │ │ New witnesses:
//! │ │ │ │ │ `[]`
//! │ │ │ ├─┘
//! │ │ │ │ Unspecialize new witnesses with `true`:
//! │ │ │ │ `[true]`
//! │ │ │ │
//! │ │ │ │ Specialize with `false`:
//! │ │ │ ├─┐ Patterns:
//! │ │ │ │ │ 2. `[]`
//! │ │ │ │ │
//! │ │ │ │ │ We note arm 2 is useful (by `Pair(Some(1..), false)`).
//! │ │ │ ├─┘
//! │ │ │ │
//! │ │ │ │ Total witnesses for `1..`:
//! │ │ │ │ `[true]`
//! │ │ ├─┘
//! │ │ │ Unspecialize new witnesses with `1..`:
//! │ │ │ `[1.., true]`
//! │ │ │
//! │ │ │ Total witnesses for `Some`:
//! │ │ │ `[1.., true]`
//! │ ├─┘
//! │ │ Unspecialize new witnesses with `Some`:
//! │ │ `[Some(1..), true]`
//! │ │
//! │ │ Specialize with `None`:
//! │ ├─┐ Patterns:
//! │ │ │ 2. `[false]`
//! │ │ │
//! │ │ │ Specialize with `true`:
//! │ │ ├─┐ Patterns:
//! │ │ │ │ // no rows left
//! │ │ │ │
//! │ │ │ │ We have found an unmatched value (`Pair(None, true)`)! This gives us a witness.
//! │ │ │ │ New witnesses:
//! │ │ │ │ `[]`
//! │ │ ├─┘
//! │ │ │ Unspecialize new witnesses with `true`:
//! │ │ │ `[true]`
//! │ │ │
//! │ │ │ Specialize with `false`:
//! │ │ ├─┐ Patterns:
//! │ │ │ │ 2. `[]`
//! │ │ │ │
//! │ │ │ │ We note arm 2 is useful (by `Pair(None, false)`).
//! │ │ ├─┘
//! │ │ │
//! │ │ │ Total witnesses for `None`:
//! │ │ │ `[true]`
//! │ ├─┘
//! │ │ Unspecialize new witnesses with `None`:
//! │ │ `[None, true]`
//! │ │
//! │ │ Total witnesses for `Pair`:
//! │ │ `[Some(1..), true]`
//! │ │ `[None, true]`
//! ├─┘
//! │ Unspecialize new witnesses with `Pair`:
//! │ `[Pair(Some(1..), true)]`
//! │ `[Pair(None, true)]`
//! │
//! │ Final witnesses:
//! │ `[Pair(Some(1..), true)]`
//! │ `[Pair(None, true)]`
//! ┘
//! ```
//!
//! We conclude:
//! - Arm 3 is redundant (it was never marked as useful);
//! - The match is not exhaustive;
//! - Adding arms with `Pair(Some(1..), true)` and `Pair(None, true)` would make the match exhaustive.
//!
//! Note that when we're deep in the algorithm, we don't know what specialization steps got us here.
//! We can only figure out what our witnesses correspond to by unspecializing back up the stack.
//!
//!
//! # Tests
//!
//! Note: tests specific to this file can be found in:
//!
//! - `ui/pattern/usefulness`
//! - `ui/or-patterns`
//! - `ui/consts/const_in_pattern`
//! - `ui/rfc-2008-non-exhaustive`
//! - `ui/half-open-range-patterns`
//! - probably many others
//!
//! I (Nadrieril) prefer to put new tests in `ui/pattern/usefulness` unless there's a specific
//! reason not to, for example if they crucially depend on a particular feature like `or_patterns`.
use rustc_index::bit_set::BitSet;
use smallvec::{smallvec, SmallVec};
use std::fmt;
use crate::constructor::{Constructor, ConstructorSet, IntRange};
use crate::pat::{DeconstructedPat, PatOrWild, WitnessPat};
use crate::{Captures, MatchArm, MatchCtxt, TypeCx};
use self::ValidityConstraint::*;
#[cfg(feature = "rustc")]
use rustc_data_structures::stack::ensure_sufficient_stack;
#[cfg(not(feature = "rustc"))]
pub fn ensure_sufficient_stack<R>(f: impl FnOnce() -> R) -> R {
f()
}
/// Context that provides information local to a place under investigation.
#[derive(derivative::Derivative)]
#[derivative(Debug(bound = ""), Clone(bound = ""), Copy(bound = ""))]
pub(crate) struct PlaceCtxt<'a, Cx: TypeCx> {
#[derivative(Debug = "ignore")]
pub(crate) mcx: MatchCtxt<'a, Cx>,
/// Type of the place under investigation.
#[derivative(Clone(clone_with = "Clone::clone"))] // See rust-derivative#90
pub(crate) ty: &'a Cx::Ty,
}
impl<'a, Cx: TypeCx> PlaceCtxt<'a, Cx> {
/// A `PlaceCtxt` when code other than `is_useful` needs one.
#[cfg_attr(not(feature = "rustc"), allow(dead_code))]
pub(crate) fn new_dummy(mcx: MatchCtxt<'a, Cx>, ty: &'a Cx::Ty) -> Self {
PlaceCtxt { mcx, ty }
}
pub(crate) fn ctor_arity(&self, ctor: &Constructor<Cx>) -> usize {
self.mcx.tycx.ctor_arity(ctor, self.ty)
}
pub(crate) fn ctor_sub_tys(
&'a self,
ctor: &'a Constructor<Cx>,
) -> impl Iterator<Item = Cx::Ty> + ExactSizeIterator + Captures<'a> {
self.mcx.tycx.ctor_sub_tys(ctor, self.ty)
}
pub(crate) fn ctors_for_ty(&self) -> Result<ConstructorSet<Cx>, Cx::Error> {
self.mcx.tycx.ctors_for_ty(self.ty)
}
}
/// Serves two purposes:
/// - in a wildcard, tracks whether the wildcard matches only valid values (i.e. is a binding `_a`)
/// or also invalid values (i.e. is a true `_` pattern).
/// - in the matrix, track whether a given place (aka column) is known to contain a valid value or
/// not.
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
pub enum ValidityConstraint {
ValidOnly,
MaybeInvalid,
}
impl ValidityConstraint {
pub fn from_bool(is_valid_only: bool) -> Self {
if is_valid_only { ValidOnly } else { MaybeInvalid }
}
fn is_known_valid(self) -> bool {
matches!(self, ValidOnly)
}
/// If the place has validity given by `self` and we read that the value at the place has
/// constructor `ctor`, this computes what we can assume about the validity of the constructor
/// fields.
///
/// Pending further opsem decisions, the current behavior is: validity is preserved, except
/// inside `&` and union fields where validity is reset to `MaybeInvalid`.
fn specialize<Cx: TypeCx>(self, ctor: &Constructor<Cx>) -> Self {
// We preserve validity except when we go inside a reference or a union field.
if matches!(ctor, Constructor::Ref | Constructor::UnionField) {
// Validity of `x: &T` does not imply validity of `*x: T`.
MaybeInvalid
} else {
self
}
}
}
impl fmt::Display for ValidityConstraint {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
let s = match self {
ValidOnly => "",
MaybeInvalid => "?",
};
write!(f, "{s}")
}
}
/// Represents a pattern-tuple under investigation.
// The three lifetimes are:
// - 'p coming from the input
// - Cx global compilation context
#[derive(derivative::Derivative)]
#[derivative(Clone(bound = ""))]
struct PatStack<'p, Cx: TypeCx> {
// Rows of len 1 are very common, which is why `SmallVec[_; 2]` works well.
pats: SmallVec<[PatOrWild<'p, Cx>; 2]>,
/// Sometimes we know that as far as this row is concerned, the current case is already handled
/// by a different, more general, case. When the case is irrelevant for all rows this allows us
/// to skip a case entirely. This is purely an optimization. See at the top for details.
relevant: bool,
}
impl<'p, Cx: TypeCx> PatStack<'p, Cx> {
fn from_pattern(pat: &'p DeconstructedPat<'p, Cx>) -> Self {
PatStack { pats: smallvec![PatOrWild::Pat(pat)], relevant: true }
}
fn is_empty(&self) -> bool {
self.pats.is_empty()
}
fn len(&self) -> usize {
self.pats.len()
}
fn head(&self) -> PatOrWild<'p, Cx> {
self.pats[0]
}
fn iter(&self) -> impl Iterator<Item = PatOrWild<'p, Cx>> + Captures<'_> {
self.pats.iter().copied()
}
// Recursively expand the first or-pattern into its subpatterns. Only useful if the pattern is
// an or-pattern. Panics if `self` is empty.
fn expand_or_pat(&self) -> impl Iterator<Item = PatStack<'p, Cx>> + Captures<'_> {
self.head().flatten_or_pat().into_iter().map(move |pat| {
let mut new = self.clone();
new.pats[0] = pat;
new
})
}
/// This computes `specialize(ctor, self)`. See top of the file for explanations.
/// Only call if `ctor.is_covered_by(self.head().ctor())` is true.
fn pop_head_constructor(
&self,
ctor: &Constructor<Cx>,
ctor_arity: usize,
ctor_is_relevant: bool,
) -> PatStack<'p, Cx> {
// We pop the head pattern and push the new fields extracted from the arguments of
// `self.head()`.
let mut new_pats = self.head().specialize(ctor, ctor_arity);
new_pats.extend_from_slice(&self.pats[1..]);
// `ctor` is relevant for this row if it is the actual constructor of this row, or if the
// row has a wildcard and `ctor` is relevant for wildcards.
let ctor_is_relevant =
!matches!(self.head().ctor(), Constructor::Wildcard) || ctor_is_relevant;
PatStack { pats: new_pats, relevant: self.relevant && ctor_is_relevant }
}
}
impl<'p, Cx: TypeCx> fmt::Debug for PatStack<'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// We pretty-print similarly to the `Debug` impl of `Matrix`.
write!(f, "+")?;
for pat in self.iter() {
write!(f, " {pat:?} +")?;
}
Ok(())
}
}
/// A row of the matrix.
#[derive(Clone)]
struct MatrixRow<'p, Cx: TypeCx> {
// The patterns in the row.
pats: PatStack<'p, Cx>,
/// Whether the original arm had a guard. This is inherited when specializing.
is_under_guard: bool,
/// When we specialize, we remember which row of the original matrix produced a given row of the
/// specialized matrix. When we unspecialize, we use this to propagate usefulness back up the
/// callstack.
parent_row: usize,
/// False when the matrix is just built. This is set to `true` by
/// [`compute_exhaustiveness_and_usefulness`] if the arm is found to be useful.
/// This is reset to `false` when specializing.
useful: bool,
/// Tracks which rows above this one have an intersection with this one, i.e. such that there is
/// a value that matches both rows.
/// Note: Because of relevancy we may miss some intersections. The intersections we do find are
/// correct.
intersects: BitSet<usize>,
}
impl<'p, Cx: TypeCx> MatrixRow<'p, Cx> {
fn is_empty(&self) -> bool {
self.pats.is_empty()
}
fn len(&self) -> usize {
self.pats.len()
}
fn head(&self) -> PatOrWild<'p, Cx> {
self.pats.head()
}
fn iter(&self) -> impl Iterator<Item = PatOrWild<'p, Cx>> + Captures<'_> {
self.pats.iter()
}
// Recursively expand the first or-pattern into its subpatterns. Only useful if the pattern is
// an or-pattern. Panics if `self` is empty.
fn expand_or_pat(&self) -> impl Iterator<Item = MatrixRow<'p, Cx>> + Captures<'_> {
self.pats.expand_or_pat().map(|patstack| MatrixRow {
pats: patstack,
parent_row: self.parent_row,
is_under_guard: self.is_under_guard,
useful: false,
intersects: BitSet::new_empty(0), // Initialized in `Matrix::expand_and_push`.
})
}
/// This computes `specialize(ctor, self)`. See top of the file for explanations.
/// Only call if `ctor.is_covered_by(self.head().ctor())` is true.
fn pop_head_constructor(
&self,
ctor: &Constructor<Cx>,
ctor_arity: usize,
ctor_is_relevant: bool,
parent_row: usize,
) -> MatrixRow<'p, Cx> {
MatrixRow {
pats: self.pats.pop_head_constructor(ctor, ctor_arity, ctor_is_relevant),
parent_row,
is_under_guard: self.is_under_guard,
useful: false,
intersects: BitSet::new_empty(0), // Initialized in `Matrix::expand_and_push`.
}
}
}
impl<'p, Cx: TypeCx> fmt::Debug for MatrixRow<'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
self.pats.fmt(f)
}
}
/// A 2D matrix. Represents a list of pattern-tuples under investigation.
///
/// Invariant: each row must have the same length, and each column must have the same type.
///
/// Invariant: the first column must not contain or-patterns. This is handled by
/// [`Matrix::expand_and_push`].
///
/// In fact each column corresponds to a place inside the scrutinee of the match. E.g. after
/// specializing `(,)` and `Some` on a pattern of type `(Option<u32>, bool)`, the first column of
/// the matrix will correspond to `scrutinee.0.Some.0` and the second column to `scrutinee.1`.
#[derive(Clone)]
struct Matrix<'p, Cx: TypeCx> {
/// Vector of rows. The rows must form a rectangular 2D array. Moreover, all the patterns of
/// each column must have the same type. Each column corresponds to a place within the
/// scrutinee.
rows: Vec<MatrixRow<'p, Cx>>,
/// Track the type of each column/place.
place_ty: SmallVec<[Cx::Ty; 2]>,
/// Track for each column/place whether it contains a known valid value.
place_validity: SmallVec<[ValidityConstraint; 2]>,
/// Track whether the virtual wildcard row used to compute exhaustiveness is relevant. See top
/// of the file for details on relevancy.
wildcard_row_is_relevant: bool,
}
impl<'p, Cx: TypeCx> Matrix<'p, Cx> {
/// Pushes a new row to the matrix. If the row starts with an or-pattern, this recursively
/// expands it. Internal method, prefer [`Matrix::new`].
fn expand_and_push(&mut self, mut row: MatrixRow<'p, Cx>) {
if !row.is_empty() && row.head().is_or_pat() {
// Expand nested or-patterns.
for mut new_row in row.expand_or_pat() {
new_row.intersects = BitSet::new_empty(self.rows.len());
self.rows.push(new_row);
}
} else {
row.intersects = BitSet::new_empty(self.rows.len());
self.rows.push(row);
}
}
/// Build a new matrix from an iterator of `MatchArm`s.
fn new(
arms: &[MatchArm<'p, Cx>],
scrut_ty: Cx::Ty,
scrut_validity: ValidityConstraint,
) -> Self {
let mut matrix = Matrix {
rows: Vec::with_capacity(arms.len()),
place_ty: smallvec![scrut_ty],
place_validity: smallvec![scrut_validity],
wildcard_row_is_relevant: true,
};
for (row_id, arm) in arms.iter().enumerate() {
let v = MatrixRow {
pats: PatStack::from_pattern(arm.pat),
parent_row: row_id, // dummy, we don't read it
is_under_guard: arm.has_guard,
useful: false,
intersects: BitSet::new_empty(0), // Initialized in `Matrix::expand_and_push`.
};
matrix.expand_and_push(v);
}
matrix
}
fn head_ty(&self) -> Option<&Cx::Ty> {
self.place_ty.first()
}
fn column_count(&self) -> usize {
self.place_ty.len()
}
fn rows(
&self,
) -> impl Iterator<Item = &MatrixRow<'p, Cx>> + Clone + DoubleEndedIterator + ExactSizeIterator
{
self.rows.iter()
}
fn rows_mut(
&mut self,
) -> impl Iterator<Item = &mut MatrixRow<'p, Cx>> + DoubleEndedIterator + ExactSizeIterator
{
self.rows.iter_mut()
}
/// Iterate over the first pattern of each row.
fn heads(&self) -> impl Iterator<Item = PatOrWild<'p, Cx>> + Clone + Captures<'_> {
self.rows().map(|r| r.head())
}
/// This computes `specialize(ctor, self)`. See top of the file for explanations.
fn specialize_constructor(
&self,
pcx: &PlaceCtxt<'_, Cx>,
ctor: &Constructor<Cx>,
ctor_is_relevant: bool,
) -> Matrix<'p, Cx> {
let ctor_sub_tys = pcx.ctor_sub_tys(ctor);
let arity = ctor_sub_tys.len();
let specialized_place_ty = ctor_sub_tys.chain(self.place_ty[1..].iter().cloned()).collect();
let ctor_sub_validity = self.place_validity[0].specialize(ctor);
let specialized_place_validity = std::iter::repeat(ctor_sub_validity)
.take(arity)
.chain(self.place_validity[1..].iter().copied())
.collect();
let mut matrix = Matrix {
rows: Vec::new(),
place_ty: specialized_place_ty,
place_validity: specialized_place_validity,
wildcard_row_is_relevant: self.wildcard_row_is_relevant && ctor_is_relevant,
};
for (i, row) in self.rows().enumerate() {
if ctor.is_covered_by(pcx, row.head().ctor()) {
let new_row = row.pop_head_constructor(ctor, arity, ctor_is_relevant, i);
matrix.expand_and_push(new_row);
}
}
matrix
}
}
/// Pretty-printer for matrices of patterns, example:
///
/// ```text
/// + _ + [] +
/// + true + [First] +
/// + true + [Second(true)] +
/// + false + [_] +
/// + _ + [_, _, tail @ ..] +
/// | ✓ | ? | // column validity
/// ```
impl<'p, Cx: TypeCx> fmt::Debug for Matrix<'p, Cx> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "\n")?;
let mut pretty_printed_matrix: Vec<Vec<String>> = self
.rows
.iter()
.map(|row| row.iter().map(|pat| format!("{pat:?}")).collect())
.collect();
pretty_printed_matrix
.push(self.place_validity.iter().map(|validity| format!("{validity}")).collect());
let column_count = self.column_count();
assert!(self.rows.iter().all(|row| row.len() == column_count));
assert!(self.place_validity.len() == column_count);
let column_widths: Vec<usize> = (0..column_count)
.map(|col| pretty_printed_matrix.iter().map(|row| row[col].len()).max().unwrap_or(0))
.collect();
for (row_i, row) in pretty_printed_matrix.into_iter().enumerate() {
let is_validity_row = row_i == self.rows.len();
let sep = if is_validity_row { "|" } else { "+" };
write!(f, "{sep}")?;
for (column, pat_str) in row.into_iter().enumerate() {
write!(f, " ")?;
write!(f, "{:1$}", pat_str, column_widths[column])?;
write!(f, " {sep}")?;
}
if is_validity_row {
write!(f, " // column validity")?;
}
write!(f, "\n")?;
}
Ok(())
}
}
/// A witness-tuple of non-exhaustiveness for error reporting, represented as a list of patterns (in
/// reverse order of construction).
///
/// This mirrors `PatStack`: they function similarly, except `PatStack` contains user patterns we
/// are inspecting, and `WitnessStack` contains witnesses we are constructing.
/// FIXME(Nadrieril): use the same order of patterns for both.
///
/// A `WitnessStack` should have the same types and length as the `PatStack`s we are inspecting
/// (except we store the patterns in reverse order). The same way `PatStack` starts with length 1,
/// at the end of the algorithm this will have length 1. In the middle of the algorithm, it can
/// contain multiple patterns.
///
/// For example, if we are constructing a witness for the match against
///
/// ```compile_fail,E0004
/// struct Pair(Option<(u32, u32)>, bool);
/// # fn foo(p: Pair) {
/// match p {
/// Pair(None, _) => {}
/// Pair(_, false) => {}
/// }
/// # }
/// ```
///
/// We'll perform the following steps (among others):
/// ```text
/// - Start with a matrix representing the match
/// `PatStack(vec![Pair(None, _)])`
/// `PatStack(vec![Pair(_, false)])`
/// - Specialize with `Pair`
/// `PatStack(vec![None, _])`
/// `PatStack(vec![_, false])`
/// - Specialize with `Some`
/// `PatStack(vec![_, false])`
/// - Specialize with `_`
/// `PatStack(vec![false])`
/// - Specialize with `true`
/// // no patstacks left
/// - This is a non-exhaustive match: we have the empty witness stack as a witness.
/// `WitnessStack(vec![])`
/// - Apply `true`
/// `WitnessStack(vec![true])`
/// - Apply `_`
/// `WitnessStack(vec![true, _])`
/// - Apply `Some`
/// `WitnessStack(vec![true, Some(_)])`
/// - Apply `Pair`
/// `WitnessStack(vec![Pair(Some(_), true)])`
/// ```
///
/// The final `Pair(Some(_), true)` is then the resulting witness.
///
/// See the top of the file for more detailed explanations and examples.
#[derive(derivative::Derivative)]
#[derivative(Debug(bound = ""), Clone(bound = ""))]
struct WitnessStack<Cx: TypeCx>(Vec<WitnessPat<Cx>>);
impl<Cx: TypeCx> WitnessStack<Cx> {
/// Asserts that the witness contains a single pattern, and returns it.
fn single_pattern(self) -> WitnessPat<Cx> {
assert_eq!(self.0.len(), 1);
self.0.into_iter().next().unwrap()
}
/// Reverses specialization by the `Missing` constructor by pushing a whole new pattern.
fn push_pattern(&mut self, pat: WitnessPat<Cx>) {
self.0.push(pat);
}
/// Reverses specialization. Given a witness obtained after specialization, this constructs a
/// new witness valid for before specialization. See the section on `unspecialize` at the top of
/// the file.
///
/// Examples:
/// ```text
/// ctor: tuple of 2 elements
/// pats: [false, "foo", _, true]
/// result: [(false, "foo"), _, true]
///
/// ctor: Enum::Variant { a: (bool, &'static str), b: usize}
/// pats: [(false, "foo"), _, true]
/// result: [Enum::Variant { a: (false, "foo"), b: _ }, true]
/// ```
fn apply_constructor(&mut self, pcx: &PlaceCtxt<'_, Cx>, ctor: &Constructor<Cx>) {
let len = self.0.len();
let arity = ctor.arity(pcx);
let fields = self.0.drain((len - arity)..).rev().collect();
let pat = WitnessPat::new(ctor.clone(), fields, pcx.ty.clone());
self.0.push(pat);
}
}
/// Represents a set of pattern-tuples that are witnesses of non-exhaustiveness for error
/// reporting. This has similar invariants as `Matrix` does.
///
/// The `WitnessMatrix` returned by [`compute_exhaustiveness_and_usefulness`] obeys the invariant
/// that the union of the input `Matrix` and the output `WitnessMatrix` together matches the type
/// exhaustively.
///
/// Just as the `Matrix` starts with a single column, by the end of the algorithm, this has a single
/// column, which contains the patterns that are missing for the match to be exhaustive.
#[derive(derivative::Derivative)]
#[derivative(Debug(bound = ""), Clone(bound = ""))]
struct WitnessMatrix<Cx: TypeCx>(Vec<WitnessStack<Cx>>);
impl<Cx: TypeCx> WitnessMatrix<Cx> {
/// New matrix with no witnesses.
fn empty() -> Self {
WitnessMatrix(vec![])
}
/// New matrix with one `()` witness, i.e. with no columns.
fn unit_witness() -> Self {
WitnessMatrix(vec![WitnessStack(vec![])])
}
/// Whether this has any witnesses.
fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Asserts that there is a single column and returns the patterns in it.
fn single_column(self) -> Vec<WitnessPat<Cx>> {
self.0.into_iter().map(|w| w.single_pattern()).collect()
}
/// Reverses specialization by the `Missing` constructor by pushing a whole new pattern.
fn push_pattern(&mut self, pat: WitnessPat<Cx>) {
for witness in self.0.iter_mut() {
witness.push_pattern(pat.clone())
}
}
/// Reverses specialization by `ctor`. See the section on `unspecialize` at the top of the file.
fn apply_constructor(
&mut self,
pcx: &PlaceCtxt<'_, Cx>,
missing_ctors: &[Constructor<Cx>],
ctor: &Constructor<Cx>,
report_individual_missing_ctors: bool,
) {
if self.is_empty() {
return;
}
if matches!(ctor, Constructor::Missing) {
// We got the special `Missing` constructor that stands for the constructors not present
// in the match.
if missing_ctors.is_empty() {
// Nothing to report.
*self = Self::empty();
} else if !report_individual_missing_ctors {
// Report `_` as missing.
let pat = WitnessPat::wild_from_ctor(pcx, Constructor::Wildcard);
self.push_pattern(pat);
} else if missing_ctors.iter().any(|c| c.is_non_exhaustive()) {
// We need to report a `_` anyway, so listing other constructors would be redundant.
// `NonExhaustive` is displayed as `_` just like `Wildcard`, but it will be picked
// up by diagnostics to add a note about why `_` is required here.
let pat = WitnessPat::wild_from_ctor(pcx, Constructor::NonExhaustive);
self.push_pattern(pat);
} else {
// For each missing constructor `c`, we add a `c(_, _, _)` witness appropriately
// filled with wildcards.
let mut ret = Self::empty();
for ctor in missing_ctors {
let pat = WitnessPat::wild_from_ctor(pcx, ctor.clone());
// Clone `self` and add `c(_, _, _)` to each of its witnesses.
let mut wit_matrix = self.clone();
wit_matrix.push_pattern(pat);
ret.extend(wit_matrix);
}
*self = ret;
}
} else {
// Any other constructor we unspecialize as expected.
for witness in self.0.iter_mut() {
witness.apply_constructor(pcx, ctor)
}
}
}
/// Merges the witnesses of two matrices. Their column types must match.
fn extend(&mut self, other: Self) {
self.0.extend(other.0)
}
}
/// Collect ranges that overlap like `lo..=overlap`/`overlap..=hi`. Must be called during
/// exhaustiveness checking, if we find a singleton range after constructor splitting. This reuses
/// row intersection information to only detect ranges that truly overlap.
///
/// If two ranges overlapped, the split set will contain their intersection as a singleton.
/// Specialization will then select rows that match the overlap, and exhaustiveness will compute
/// which rows have an intersection that includes the overlap. That gives us all the info we need to
/// compute overlapping ranges without false positives.
///
/// We can however get false negatives because exhaustiveness does not explore all cases. See the
/// section on relevancy at the top of the file.
fn collect_overlapping_range_endpoints<'p, Cx: TypeCx>(
mcx: MatchCtxt<'_, Cx>,
overlap_range: IntRange,
matrix: &Matrix<'p, Cx>,
specialized_matrix: &Matrix<'p, Cx>,
) {
let overlap = overlap_range.lo;
// Ranges that look like `lo..=overlap`.
let mut prefixes: SmallVec<[_; 1]> = Default::default();
// Ranges that look like `overlap..=hi`.
let mut suffixes: SmallVec<[_; 1]> = Default::default();
// Iterate on patterns that contained `overlap`. We iterate on `specialized_matrix` which
// contains only rows that matched the current `ctor` as well as accurate intersection
// information. It doesn't contain the column that contains the range; that can be found in
// `matrix`.
for (child_row_id, child_row) in specialized_matrix.rows().enumerate() {
let PatOrWild::Pat(pat) = matrix.rows[child_row.parent_row].head() else { continue };
let Constructor::IntRange(this_range) = pat.ctor() else { continue };
// Don't lint when one of the ranges is a singleton.
if this_range.is_singleton() {
continue;
}
if this_range.lo == overlap {
// `this_range` looks like `overlap..=this_range.hi`; it overlaps with any
// ranges that look like `lo..=overlap`.
if !prefixes.is_empty() {
let overlaps_with: Vec<_> = prefixes
.iter()
.filter(|&&(other_child_row_id, _)| {
child_row.intersects.contains(other_child_row_id)
})
.map(|&(_, pat)| pat)
.collect();
if !overlaps_with.is_empty() {
mcx.tycx.lint_overlapping_range_endpoints(pat, overlap_range, &overlaps_with);
}
}
suffixes.push((child_row_id, pat))
} else if this_range.hi == overlap.plus_one() {
// `this_range` looks like `this_range.lo..=overlap`; it overlaps with any
// ranges that look like `overlap..=hi`.
if !suffixes.is_empty() {
let overlaps_with: Vec<_> = suffixes
.iter()
.filter(|&&(other_child_row_id, _)| {
child_row.intersects.contains(other_child_row_id)
})
.map(|&(_, pat)| pat)
.collect();
if !overlaps_with.is_empty() {
mcx.tycx.lint_overlapping_range_endpoints(pat, overlap_range, &overlaps_with);
}
}
prefixes.push((child_row_id, pat))
}
}
}
/// The core of the algorithm.
///
/// This recursively computes witnesses of the non-exhaustiveness of `matrix` (if any). Also tracks
/// usefulness of each row in the matrix (in `row.useful`). We track usefulness of each
/// subpattern using interior mutability in `DeconstructedPat`.
///
/// The input `Matrix` and the output `WitnessMatrix` together match the type exhaustively.
///
/// The key steps are:
/// - specialization, where we dig into the rows that have a specific constructor and call ourselves
/// recursively;
/// - unspecialization, where we lift the results from the previous step into results for this step
/// (using `apply_constructor` and by updating `row.useful` for each parent row).
/// This is all explained at the top of the file.
#[instrument(level = "debug", skip(mcx, is_top_level), ret)]
fn compute_exhaustiveness_and_usefulness<'a, 'p, Cx: TypeCx>(
mcx: MatchCtxt<'a, Cx>,
matrix: &mut Matrix<'p, Cx>,
is_top_level: bool,
) -> Result<WitnessMatrix<Cx>, Cx::Error> {
debug_assert!(matrix.rows().all(|r| r.len() == matrix.column_count()));
if !matrix.wildcard_row_is_relevant && matrix.rows().all(|r| !r.pats.relevant) {
// Here we know that nothing will contribute further to exhaustiveness or usefulness. This
// is purely an optimization: skipping this check doesn't affect correctness. See the top of
// the file for details.
return Ok(WitnessMatrix::empty());
}
let Some(ty) = matrix.head_ty().cloned() else {
// The base case: there are no columns in the matrix. We are morally pattern-matching on ().
// A row is useful iff it has no (unguarded) rows above it.
let mut useful = true; // Whether the next row is useful.
for (i, row) in matrix.rows_mut().enumerate() {
row.useful = useful;
row.intersects.insert_range(0..i);
// The next rows stays useful if this one is under a guard.
useful &= row.is_under_guard;
}
return if useful && matrix.wildcard_row_is_relevant {
// The wildcard row is useful; the match is non-exhaustive.
Ok(WitnessMatrix::unit_witness())
} else {
// Either the match is exhaustive, or we choose not to report anything because of
// relevancy. See at the top for details.
Ok(WitnessMatrix::empty())
};
};
debug!("ty: {ty:?}");
let pcx = &PlaceCtxt { mcx, ty: &ty };
let ctors_for_ty = pcx.ctors_for_ty()?;
// Whether the place/column we are inspecting is known to contain valid data.
let place_validity = matrix.place_validity[0];
// We treat match scrutinees of type `!` or `EmptyEnum` differently.
let is_toplevel_exception =
is_top_level && matches!(ctors_for_ty, ConstructorSet::NoConstructors);
// Whether empty patterns are counted as useful or not. We only warn an empty arm unreachable if
// it is guaranteed unreachable by the opsem (i.e. if the place is `known_valid`).
let empty_arms_are_unreachable = place_validity.is_known_valid()
&& (is_toplevel_exception
|| mcx.tycx.is_exhaustive_patterns_feature_on()
|| mcx.tycx.is_min_exhaustive_patterns_feature_on());
// Whether empty patterns can be omitted for exhaustiveness. We ignore place validity in the
// toplevel exception and `exhaustive_patterns` cases for backwards compatibility.
let can_omit_empty_arms = empty_arms_are_unreachable
|| is_toplevel_exception
|| mcx.tycx.is_exhaustive_patterns_feature_on();
// Analyze the constructors present in this column.
let ctors = matrix.heads().map(|p| p.ctor());
let mut split_set = ctors_for_ty.split(ctors);
let all_missing = split_set.present.is_empty();
// Build the set of constructors we will specialize with. It must cover the whole type.
// We need to iterate over a full set of constructors, so we add `Missing` to represent the
// missing ones. This is explained under "Constructor Splitting" at the top of this file.
let mut split_ctors = split_set.present;
if !(split_set.missing.is_empty()
&& (split_set.missing_empty.is_empty() || empty_arms_are_unreachable))
{
split_ctors.push(Constructor::Missing);
}
// Decide what constructors to report.
let is_integers = matches!(ctors_for_ty, ConstructorSet::Integers { .. });
let always_report_all = is_top_level && !is_integers;
// Whether we should report "Enum::A and Enum::C are missing" or "_ is missing".
let report_individual_missing_ctors = always_report_all || !all_missing;
// Which constructors are considered missing. We ensure that `!missing_ctors.is_empty() =>
// split_ctors.contains(Missing)`. The converse usually holds except when
// `!place_validity.is_known_valid()`.
let mut missing_ctors = split_set.missing;
if !can_omit_empty_arms {
missing_ctors.append(&mut split_set.missing_empty);
}
let mut ret = WitnessMatrix::empty();
for ctor in split_ctors {
// Dig into rows that match `ctor`.
debug!("specialize({:?})", ctor);
// `ctor` is *irrelevant* if there's another constructor in `split_ctors` that matches
// strictly fewer rows. In that case we can sometimes skip it. See the top of the file for
// details.
let ctor_is_relevant = matches!(ctor, Constructor::Missing) || missing_ctors.is_empty();
let mut spec_matrix = matrix.specialize_constructor(pcx, &ctor, ctor_is_relevant);
let mut witnesses = ensure_sufficient_stack(|| {
compute_exhaustiveness_and_usefulness(mcx, &mut spec_matrix, false)
})?;
// Transform witnesses for `spec_matrix` into witnesses for `matrix`.
witnesses.apply_constructor(pcx, &missing_ctors, &ctor, report_individual_missing_ctors);
// Accumulate the found witnesses.
ret.extend(witnesses);
for child_row in spec_matrix.rows() {
let parent_row_id = child_row.parent_row;
let parent_row = &mut matrix.rows[parent_row_id];
// A parent row is useful if any of its children is.
parent_row.useful |= child_row.useful;
for child_intersection in child_row.intersects.iter() {
// Convert the intersecting ids into ids for the parent matrix.
let parent_intersection = spec_matrix.rows[child_intersection].parent_row;
// Note: self-intersection can happen with or-patterns.
if parent_intersection != parent_row_id {
parent_row.intersects.insert(parent_intersection);
}
}
}
// Detect ranges that overlap on their endpoints.
if let Constructor::IntRange(overlap_range) = ctor {
if overlap_range.is_singleton()
&& spec_matrix.rows.len() >= 2
&& spec_matrix.rows.iter().any(|row| !row.intersects.is_empty())
{
collect_overlapping_range_endpoints(mcx, overlap_range, matrix, &spec_matrix);
}
}
}
// Record usefulness in the patterns.
for row in matrix.rows() {
if row.useful {
row.head().set_useful();
}
}
Ok(ret)
}
/// Indicates whether or not a given arm is useful.
#[derive(Clone, Debug)]
pub enum Usefulness<'p, Cx: TypeCx> {
/// The arm is useful. This additionally carries a set of or-pattern branches that have been
/// found to be redundant despite the overall arm being useful. Used only in the presence of
/// or-patterns, otherwise it stays empty.
Useful(Vec<&'p DeconstructedPat<'p, Cx>>),
/// The arm is redundant and can be removed without changing the behavior of the match
/// expression.
Redundant,
}
/// The output of checking a match for exhaustiveness and arm usefulness.
pub struct UsefulnessReport<'p, Cx: TypeCx> {
/// For each arm of the input, whether that arm is useful after the arms above it.
pub arm_usefulness: Vec<(MatchArm<'p, Cx>, Usefulness<'p, Cx>)>,
/// If the match is exhaustive, this is empty. If not, this contains witnesses for the lack of
/// exhaustiveness.
pub non_exhaustiveness_witnesses: Vec<WitnessPat<Cx>>,
}
/// Computes whether a match is exhaustive and which of its arms are useful.
#[instrument(skip(cx, arms), level = "debug")]
pub fn compute_match_usefulness<'p, Cx: TypeCx>(
cx: MatchCtxt<'_, Cx>,
arms: &[MatchArm<'p, Cx>],
scrut_ty: Cx::Ty,
scrut_validity: ValidityConstraint,
) -> Result<UsefulnessReport<'p, Cx>, Cx::Error> {
let mut matrix = Matrix::new(arms, scrut_ty, scrut_validity);
let non_exhaustiveness_witnesses =
compute_exhaustiveness_and_usefulness(cx, &mut matrix, true)?;
let non_exhaustiveness_witnesses: Vec<_> = non_exhaustiveness_witnesses.single_column();
let arm_usefulness: Vec<_> = arms
.iter()
.copied()
.map(|arm| {
debug!(?arm);
// We warn when a pattern is not useful.
let usefulness = if arm.pat.is_useful() {
Usefulness::Useful(arm.pat.redundant_subpatterns())
} else {
Usefulness::Redundant
};
(arm, usefulness)
})
.collect();
Ok(UsefulnessReport { arm_usefulness, non_exhaustiveness_witnesses })
}