We can check that the vtable is for the right trait very early, and then just pass the type around.
1007 lines
46 KiB
Rust
1007 lines
46 KiB
Rust
use std::borrow::Cow;
|
|
|
|
use either::Either;
|
|
use rustc_middle::ty::TyCtxt;
|
|
use tracing::trace;
|
|
|
|
use rustc_middle::span_bug;
|
|
use rustc_middle::{
|
|
mir,
|
|
ty::{
|
|
self,
|
|
layout::{FnAbiOf, IntegerExt, LayoutOf, TyAndLayout},
|
|
AdtDef, Instance, Ty,
|
|
},
|
|
};
|
|
use rustc_span::{source_map::Spanned, sym};
|
|
use rustc_target::abi::{self, FieldIdx};
|
|
use rustc_target::abi::{
|
|
call::{ArgAbi, FnAbi, PassMode},
|
|
Integer,
|
|
};
|
|
use rustc_target::spec::abi::Abi;
|
|
|
|
use super::{
|
|
throw_ub, throw_ub_custom, throw_unsup_format, CtfeProvenance, FnVal, ImmTy, InterpCx,
|
|
InterpResult, MPlaceTy, Machine, OpTy, PlaceTy, Projectable, Provenance, Scalar,
|
|
StackPopCleanup,
|
|
};
|
|
use crate::fluent_generated as fluent;
|
|
|
|
/// An argment passed to a function.
|
|
#[derive(Clone, Debug)]
|
|
pub enum FnArg<'tcx, Prov: Provenance = CtfeProvenance> {
|
|
/// Pass a copy of the given operand.
|
|
Copy(OpTy<'tcx, Prov>),
|
|
/// Allow for the argument to be passed in-place: destroy the value originally stored at that place and
|
|
/// make the place inaccessible for the duration of the function call.
|
|
InPlace(MPlaceTy<'tcx, Prov>),
|
|
}
|
|
|
|
impl<'tcx, Prov: Provenance> FnArg<'tcx, Prov> {
|
|
pub fn layout(&self) -> &TyAndLayout<'tcx> {
|
|
match self {
|
|
FnArg::Copy(op) => &op.layout,
|
|
FnArg::InPlace(mplace) => &mplace.layout,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx, M: Machine<'tcx>> InterpCx<'tcx, M> {
|
|
/// Make a copy of the given fn_arg. Any `InPlace` are degenerated to copies, no protection of the
|
|
/// original memory occurs.
|
|
pub fn copy_fn_arg(&self, arg: &FnArg<'tcx, M::Provenance>) -> OpTy<'tcx, M::Provenance> {
|
|
match arg {
|
|
FnArg::Copy(op) => op.clone(),
|
|
FnArg::InPlace(mplace) => mplace.clone().into(),
|
|
}
|
|
}
|
|
|
|
/// Make a copy of the given fn_args. Any `InPlace` are degenerated to copies, no protection of the
|
|
/// original memory occurs.
|
|
pub fn copy_fn_args(
|
|
&self,
|
|
args: &[FnArg<'tcx, M::Provenance>],
|
|
) -> Vec<OpTy<'tcx, M::Provenance>> {
|
|
args.iter().map(|fn_arg| self.copy_fn_arg(fn_arg)).collect()
|
|
}
|
|
|
|
pub fn fn_arg_field(
|
|
&self,
|
|
arg: &FnArg<'tcx, M::Provenance>,
|
|
field: usize,
|
|
) -> InterpResult<'tcx, FnArg<'tcx, M::Provenance>> {
|
|
Ok(match arg {
|
|
FnArg::Copy(op) => FnArg::Copy(self.project_field(op, field)?),
|
|
FnArg::InPlace(mplace) => FnArg::InPlace(self.project_field(mplace, field)?),
|
|
})
|
|
}
|
|
|
|
pub(super) fn eval_terminator(
|
|
&mut self,
|
|
terminator: &mir::Terminator<'tcx>,
|
|
) -> InterpResult<'tcx> {
|
|
use rustc_middle::mir::TerminatorKind::*;
|
|
match terminator.kind {
|
|
Return => {
|
|
self.pop_stack_frame(/* unwinding */ false)?
|
|
}
|
|
|
|
Goto { target } => self.go_to_block(target),
|
|
|
|
SwitchInt { ref discr, ref targets } => {
|
|
let discr = self.read_immediate(&self.eval_operand(discr, None)?)?;
|
|
trace!("SwitchInt({:?})", *discr);
|
|
|
|
// Branch to the `otherwise` case by default, if no match is found.
|
|
let mut target_block = targets.otherwise();
|
|
|
|
for (const_int, target) in targets.iter() {
|
|
// Compare using MIR BinOp::Eq, to also support pointer values.
|
|
// (Avoiding `self.binary_op` as that does some redundant layout computation.)
|
|
let res = self.binary_op(
|
|
mir::BinOp::Eq,
|
|
&discr,
|
|
&ImmTy::from_uint(const_int, discr.layout),
|
|
)?;
|
|
if res.to_scalar().to_bool()? {
|
|
target_block = target;
|
|
break;
|
|
}
|
|
}
|
|
|
|
self.go_to_block(target_block);
|
|
}
|
|
|
|
Call {
|
|
ref func,
|
|
ref args,
|
|
destination,
|
|
target,
|
|
unwind,
|
|
call_source: _,
|
|
fn_span: _,
|
|
} => {
|
|
let old_stack = self.frame_idx();
|
|
let old_loc = self.frame().loc;
|
|
let func = self.eval_operand(func, None)?;
|
|
let args = self.eval_fn_call_arguments(args)?;
|
|
|
|
let fn_sig_binder = func.layout.ty.fn_sig(*self.tcx);
|
|
let fn_sig =
|
|
self.tcx.normalize_erasing_late_bound_regions(self.param_env, fn_sig_binder);
|
|
let extra_args = &args[fn_sig.inputs().len()..];
|
|
let extra_args =
|
|
self.tcx.mk_type_list_from_iter(extra_args.iter().map(|arg| arg.layout().ty));
|
|
|
|
let (fn_val, fn_abi, with_caller_location) = match *func.layout.ty.kind() {
|
|
ty::FnPtr(_sig) => {
|
|
let fn_ptr = self.read_pointer(&func)?;
|
|
let fn_val = self.get_ptr_fn(fn_ptr)?;
|
|
(fn_val, self.fn_abi_of_fn_ptr(fn_sig_binder, extra_args)?, false)
|
|
}
|
|
ty::FnDef(def_id, args) => {
|
|
let instance = self.resolve(def_id, args)?;
|
|
(
|
|
FnVal::Instance(instance),
|
|
self.fn_abi_of_instance(instance, extra_args)?,
|
|
instance.def.requires_caller_location(*self.tcx),
|
|
)
|
|
}
|
|
_ => span_bug!(
|
|
terminator.source_info.span,
|
|
"invalid callee of type {}",
|
|
func.layout.ty
|
|
),
|
|
};
|
|
|
|
let destination = self.force_allocation(&self.eval_place(destination)?)?;
|
|
self.eval_fn_call(
|
|
fn_val,
|
|
(fn_sig.abi, fn_abi),
|
|
&args,
|
|
with_caller_location,
|
|
&destination,
|
|
target,
|
|
if fn_abi.can_unwind { unwind } else { mir::UnwindAction::Unreachable },
|
|
)?;
|
|
// Sanity-check that `eval_fn_call` either pushed a new frame or
|
|
// did a jump to another block.
|
|
if self.frame_idx() == old_stack && self.frame().loc == old_loc {
|
|
span_bug!(terminator.source_info.span, "evaluating this call made no progress");
|
|
}
|
|
}
|
|
|
|
Drop { place, target, unwind, replace: _ } => {
|
|
let place = self.eval_place(place)?;
|
|
let instance = Instance::resolve_drop_in_place(*self.tcx, place.layout.ty);
|
|
if let ty::InstanceDef::DropGlue(_, None) = instance.def {
|
|
// This is the branch we enter if and only if the dropped type has no drop glue
|
|
// whatsoever. This can happen as a result of monomorphizing a drop of a
|
|
// generic. In order to make sure that generic and non-generic code behaves
|
|
// roughly the same (and in keeping with Mir semantics) we do nothing here.
|
|
self.go_to_block(target);
|
|
return Ok(());
|
|
}
|
|
trace!("TerminatorKind::drop: {:?}, type {}", place, place.layout.ty);
|
|
self.drop_in_place(&place, instance, target, unwind)?;
|
|
}
|
|
|
|
Assert { ref cond, expected, ref msg, target, unwind } => {
|
|
let ignored =
|
|
M::ignore_optional_overflow_checks(self) && msg.is_optional_overflow_check();
|
|
let cond_val = self.read_scalar(&self.eval_operand(cond, None)?)?.to_bool()?;
|
|
if ignored || expected == cond_val {
|
|
self.go_to_block(target);
|
|
} else {
|
|
M::assert_panic(self, msg, unwind)?;
|
|
}
|
|
}
|
|
|
|
UnwindTerminate(reason) => {
|
|
M::unwind_terminate(self, reason)?;
|
|
}
|
|
|
|
// When we encounter Resume, we've finished unwinding
|
|
// cleanup for the current stack frame. We pop it in order
|
|
// to continue unwinding the next frame
|
|
UnwindResume => {
|
|
trace!("unwinding: resuming from cleanup");
|
|
// By definition, a Resume terminator means
|
|
// that we're unwinding
|
|
self.pop_stack_frame(/* unwinding */ true)?;
|
|
return Ok(());
|
|
}
|
|
|
|
// It is UB to ever encounter this.
|
|
Unreachable => throw_ub!(Unreachable),
|
|
|
|
// These should never occur for MIR we actually run.
|
|
FalseEdge { .. } | FalseUnwind { .. } | Yield { .. } | CoroutineDrop => span_bug!(
|
|
terminator.source_info.span,
|
|
"{:#?} should have been eliminated by MIR pass",
|
|
terminator.kind
|
|
),
|
|
|
|
InlineAsm { template, ref operands, options, ref targets, .. } => {
|
|
M::eval_inline_asm(self, template, operands, options, targets)?;
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Evaluate the arguments of a function call
|
|
pub(super) fn eval_fn_call_arguments(
|
|
&self,
|
|
ops: &[Spanned<mir::Operand<'tcx>>],
|
|
) -> InterpResult<'tcx, Vec<FnArg<'tcx, M::Provenance>>> {
|
|
ops.iter()
|
|
.map(|op| {
|
|
let arg = match &op.node {
|
|
mir::Operand::Copy(_) | mir::Operand::Constant(_) => {
|
|
// Make a regular copy.
|
|
let op = self.eval_operand(&op.node, None)?;
|
|
FnArg::Copy(op)
|
|
}
|
|
mir::Operand::Move(place) => {
|
|
// If this place lives in memory, preserve its location.
|
|
// We call `place_to_op` which will be an `MPlaceTy` whenever there exists
|
|
// an mplace for this place. (This is in contrast to `PlaceTy::as_mplace_or_local`
|
|
// which can return a local even if that has an mplace.)
|
|
let place = self.eval_place(*place)?;
|
|
let op = self.place_to_op(&place)?;
|
|
|
|
match op.as_mplace_or_imm() {
|
|
Either::Left(mplace) => FnArg::InPlace(mplace),
|
|
Either::Right(_imm) => {
|
|
// This argument doesn't live in memory, so there's no place
|
|
// to make inaccessible during the call.
|
|
// We rely on there not being any stray `PlaceTy` that would let the
|
|
// caller directly access this local!
|
|
// This is also crucial for tail calls, where we want the `FnArg` to
|
|
// stay valid when the old stack frame gets popped.
|
|
FnArg::Copy(op)
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
Ok(arg)
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
/// Find the wrapped inner type of a transparent wrapper.
|
|
/// Must not be called on 1-ZST (as they don't have a uniquely defined "wrapped field").
|
|
///
|
|
/// We work with `TyAndLayout` here since that makes it much easier to iterate over all fields.
|
|
fn unfold_transparent(
|
|
&self,
|
|
layout: TyAndLayout<'tcx>,
|
|
may_unfold: impl Fn(AdtDef<'tcx>) -> bool,
|
|
) -> TyAndLayout<'tcx> {
|
|
match layout.ty.kind() {
|
|
ty::Adt(adt_def, _) if adt_def.repr().transparent() && may_unfold(*adt_def) => {
|
|
assert!(!adt_def.is_enum());
|
|
// Find the non-1-ZST field, and recurse.
|
|
let (_, field) = layout.non_1zst_field(self).unwrap();
|
|
self.unfold_transparent(field, may_unfold)
|
|
}
|
|
// Not a transparent type, no further unfolding.
|
|
_ => layout,
|
|
}
|
|
}
|
|
|
|
/// Unwrap types that are guaranteed a null-pointer-optimization
|
|
fn unfold_npo(&self, layout: TyAndLayout<'tcx>) -> InterpResult<'tcx, TyAndLayout<'tcx>> {
|
|
// Check if this is `Option` wrapping some type or if this is `Result` wrapping a 1-ZST and
|
|
// another type.
|
|
let ty::Adt(def, args) = layout.ty.kind() else {
|
|
// Not an ADT, so definitely no NPO.
|
|
return Ok(layout);
|
|
};
|
|
let inner = if self.tcx.is_diagnostic_item(sym::Option, def.did()) {
|
|
// The wrapped type is the only arg.
|
|
self.layout_of(args[0].as_type().unwrap())?
|
|
} else if self.tcx.is_diagnostic_item(sym::Result, def.did()) {
|
|
// We want to extract which (if any) of the args is not a 1-ZST.
|
|
let lhs = self.layout_of(args[0].as_type().unwrap())?;
|
|
let rhs = self.layout_of(args[1].as_type().unwrap())?;
|
|
if lhs.is_1zst() {
|
|
rhs
|
|
} else if rhs.is_1zst() {
|
|
lhs
|
|
} else {
|
|
return Ok(layout); // no NPO
|
|
}
|
|
} else {
|
|
return Ok(layout); // no NPO
|
|
};
|
|
|
|
// Check if the inner type is one of the NPO-guaranteed ones.
|
|
// For that we first unpeel transparent *structs* (but not unions).
|
|
let is_npo = |def: AdtDef<'tcx>| {
|
|
self.tcx.has_attr(def.did(), sym::rustc_nonnull_optimization_guaranteed)
|
|
};
|
|
let inner = self.unfold_transparent(inner, /* may_unfold */ |def| {
|
|
// Stop at NPO tpyes so that we don't miss that attribute in the check below!
|
|
def.is_struct() && !is_npo(def)
|
|
});
|
|
Ok(match inner.ty.kind() {
|
|
ty::Ref(..) | ty::FnPtr(..) => {
|
|
// Option<&T> behaves like &T, and same for fn()
|
|
inner
|
|
}
|
|
ty::Adt(def, _) if is_npo(*def) => {
|
|
// Once we found a `nonnull_optimization_guaranteed` type, further strip off
|
|
// newtype structs from it to find the underlying ABI type.
|
|
self.unfold_transparent(inner, /* may_unfold */ |def| def.is_struct())
|
|
}
|
|
_ => {
|
|
// Everything else we do not unfold.
|
|
layout
|
|
}
|
|
})
|
|
}
|
|
|
|
/// Check if these two layouts look like they are fn-ABI-compatible.
|
|
/// (We also compare the `PassMode`, so this doesn't have to check everything. But it turns out
|
|
/// that only checking the `PassMode` is insufficient.)
|
|
fn layout_compat(
|
|
&self,
|
|
caller: TyAndLayout<'tcx>,
|
|
callee: TyAndLayout<'tcx>,
|
|
) -> InterpResult<'tcx, bool> {
|
|
// Fast path: equal types are definitely compatible.
|
|
if caller.ty == callee.ty {
|
|
return Ok(true);
|
|
}
|
|
// 1-ZST are compatible with all 1-ZST (and with nothing else).
|
|
if caller.is_1zst() || callee.is_1zst() {
|
|
return Ok(caller.is_1zst() && callee.is_1zst());
|
|
}
|
|
// Unfold newtypes and NPO optimizations.
|
|
let unfold = |layout: TyAndLayout<'tcx>| {
|
|
self.unfold_npo(self.unfold_transparent(layout, /* may_unfold */ |_def| true))
|
|
};
|
|
let caller = unfold(caller)?;
|
|
let callee = unfold(callee)?;
|
|
// Now see if these inner types are compatible.
|
|
|
|
// Compatible pointer types. For thin pointers, we have to accept even non-`repr(transparent)`
|
|
// things as compatible due to `DispatchFromDyn`. For instance, `Rc<i32>` and `*mut i32`
|
|
// must be compatible. So we just accept everything with Pointer ABI as compatible,
|
|
// even if this will accept some code that is not stably guaranteed to work.
|
|
// This also handles function pointers.
|
|
let thin_pointer = |layout: TyAndLayout<'tcx>| match layout.abi {
|
|
abi::Abi::Scalar(s) => match s.primitive() {
|
|
abi::Primitive::Pointer(addr_space) => Some(addr_space),
|
|
_ => None,
|
|
},
|
|
_ => None,
|
|
};
|
|
if let (Some(caller), Some(callee)) = (thin_pointer(caller), thin_pointer(callee)) {
|
|
return Ok(caller == callee);
|
|
}
|
|
// For wide pointers we have to get the pointee type.
|
|
let pointee_ty = |ty: Ty<'tcx>| -> InterpResult<'tcx, Option<Ty<'tcx>>> {
|
|
// We cannot use `builtin_deref` here since we need to reject `Box<T, MyAlloc>`.
|
|
Ok(Some(match ty.kind() {
|
|
ty::Ref(_, ty, _) => *ty,
|
|
ty::RawPtr(ty, _) => *ty,
|
|
// We only accept `Box` with the default allocator.
|
|
_ if ty.is_box_global(*self.tcx) => ty.boxed_ty(),
|
|
_ => return Ok(None),
|
|
}))
|
|
};
|
|
if let (Some(caller), Some(callee)) = (pointee_ty(caller.ty)?, pointee_ty(callee.ty)?) {
|
|
// This is okay if they have the same metadata type.
|
|
let meta_ty = |ty: Ty<'tcx>| {
|
|
// Even if `ty` is normalized, the search for the unsized tail will project
|
|
// to fields, which can yield non-normalized types. So we need to provide a
|
|
// normalization function.
|
|
let normalize = |ty| self.tcx.normalize_erasing_regions(self.param_env, ty);
|
|
ty.ptr_metadata_ty(*self.tcx, normalize)
|
|
};
|
|
return Ok(meta_ty(caller) == meta_ty(callee));
|
|
}
|
|
|
|
// Compatible integer types (in particular, usize vs ptr-sized-u32/u64).
|
|
// `char` counts as `u32.`
|
|
let int_ty = |ty: Ty<'tcx>| {
|
|
Some(match ty.kind() {
|
|
ty::Int(ity) => (Integer::from_int_ty(&self.tcx, *ity), /* signed */ true),
|
|
ty::Uint(uty) => (Integer::from_uint_ty(&self.tcx, *uty), /* signed */ false),
|
|
ty::Char => (Integer::I32, /* signed */ false),
|
|
_ => return None,
|
|
})
|
|
};
|
|
if let (Some(caller), Some(callee)) = (int_ty(caller.ty), int_ty(callee.ty)) {
|
|
// This is okay if they are the same integer type.
|
|
return Ok(caller == callee);
|
|
}
|
|
|
|
// Fall back to exact equality.
|
|
// FIXME: We are missing the rules for "repr(C) wrapping compatible types".
|
|
Ok(caller == callee)
|
|
}
|
|
|
|
fn check_argument_compat(
|
|
&self,
|
|
caller_abi: &ArgAbi<'tcx, Ty<'tcx>>,
|
|
callee_abi: &ArgAbi<'tcx, Ty<'tcx>>,
|
|
) -> InterpResult<'tcx, bool> {
|
|
// We do not want to accept things as ABI-compatible that just "happen to be" compatible on the current target,
|
|
// so we implement a type-based check that reflects the guaranteed rules for ABI compatibility.
|
|
if self.layout_compat(caller_abi.layout, callee_abi.layout)? {
|
|
// Ensure that our checks imply actual ABI compatibility for this concrete call.
|
|
assert!(caller_abi.eq_abi(callee_abi));
|
|
return Ok(true);
|
|
} else {
|
|
trace!(
|
|
"check_argument_compat: incompatible ABIs:\ncaller: {:?}\ncallee: {:?}",
|
|
caller_abi,
|
|
callee_abi
|
|
);
|
|
return Ok(false);
|
|
}
|
|
}
|
|
|
|
/// Initialize a single callee argument, checking the types for compatibility.
|
|
fn pass_argument<'x, 'y>(
|
|
&mut self,
|
|
caller_args: &mut impl Iterator<
|
|
Item = (&'x FnArg<'tcx, M::Provenance>, &'y ArgAbi<'tcx, Ty<'tcx>>),
|
|
>,
|
|
callee_abi: &ArgAbi<'tcx, Ty<'tcx>>,
|
|
callee_arg: &mir::Place<'tcx>,
|
|
callee_ty: Ty<'tcx>,
|
|
already_live: bool,
|
|
) -> InterpResult<'tcx>
|
|
where
|
|
'tcx: 'x,
|
|
'tcx: 'y,
|
|
{
|
|
assert_eq!(callee_ty, callee_abi.layout.ty);
|
|
if matches!(callee_abi.mode, PassMode::Ignore) {
|
|
// This one is skipped. Still must be made live though!
|
|
if !already_live {
|
|
self.storage_live(callee_arg.as_local().unwrap())?;
|
|
}
|
|
return Ok(());
|
|
}
|
|
// Find next caller arg.
|
|
let Some((caller_arg, caller_abi)) = caller_args.next() else {
|
|
throw_ub_custom!(fluent::const_eval_not_enough_caller_args);
|
|
};
|
|
assert_eq!(caller_arg.layout().layout, caller_abi.layout.layout);
|
|
// Sadly we cannot assert that `caller_arg.layout().ty` and `caller_abi.layout.ty` are
|
|
// equal; in closures the types sometimes differ. We just hope that `caller_abi` is the
|
|
// right type to print to the user.
|
|
|
|
// Check compatibility
|
|
if !self.check_argument_compat(caller_abi, callee_abi)? {
|
|
throw_ub!(AbiMismatchArgument {
|
|
caller_ty: caller_abi.layout.ty,
|
|
callee_ty: callee_abi.layout.ty
|
|
});
|
|
}
|
|
// We work with a copy of the argument for now; if this is in-place argument passing, we
|
|
// will later protect the source it comes from. This means the callee cannot observe if we
|
|
// did in-place of by-copy argument passing, except for pointer equality tests.
|
|
let caller_arg_copy = self.copy_fn_arg(caller_arg);
|
|
if !already_live {
|
|
let local = callee_arg.as_local().unwrap();
|
|
let meta = caller_arg_copy.meta();
|
|
// `check_argument_compat` ensures that if metadata is needed, both have the same type,
|
|
// so we know they will use the metadata the same way.
|
|
assert!(!meta.has_meta() || caller_arg_copy.layout.ty == callee_ty);
|
|
|
|
self.storage_live_dyn(local, meta)?;
|
|
}
|
|
// Now we can finally actually evaluate the callee place.
|
|
let callee_arg = self.eval_place(*callee_arg)?;
|
|
// We allow some transmutes here.
|
|
// FIXME: Depending on the PassMode, this should reset some padding to uninitialized. (This
|
|
// is true for all `copy_op`, but there are a lot of special cases for argument passing
|
|
// specifically.)
|
|
self.copy_op_allow_transmute(&caller_arg_copy, &callee_arg)?;
|
|
// If this was an in-place pass, protect the place it comes from for the duration of the call.
|
|
if let FnArg::InPlace(mplace) = caller_arg {
|
|
M::protect_in_place_function_argument(self, mplace)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Call this function -- pushing the stack frame and initializing the arguments.
|
|
///
|
|
/// `caller_fn_abi` is used to determine if all the arguments are passed the proper way.
|
|
/// However, we also need `caller_abi` to determine if we need to do untupling of arguments.
|
|
///
|
|
/// `with_caller_location` indicates whether the caller passed a caller location. Miri
|
|
/// implements caller locations without argument passing, but to match `FnAbi` we need to know
|
|
/// when those arguments are present.
|
|
pub(crate) fn eval_fn_call(
|
|
&mut self,
|
|
fn_val: FnVal<'tcx, M::ExtraFnVal>,
|
|
(caller_abi, caller_fn_abi): (Abi, &FnAbi<'tcx, Ty<'tcx>>),
|
|
args: &[FnArg<'tcx, M::Provenance>],
|
|
with_caller_location: bool,
|
|
destination: &MPlaceTy<'tcx, M::Provenance>,
|
|
target: Option<mir::BasicBlock>,
|
|
mut unwind: mir::UnwindAction,
|
|
) -> InterpResult<'tcx> {
|
|
trace!("eval_fn_call: {:#?}", fn_val);
|
|
|
|
let instance = match fn_val {
|
|
FnVal::Instance(instance) => instance,
|
|
FnVal::Other(extra) => {
|
|
return M::call_extra_fn(
|
|
self,
|
|
extra,
|
|
caller_abi,
|
|
args,
|
|
destination,
|
|
target,
|
|
unwind,
|
|
);
|
|
}
|
|
};
|
|
|
|
match instance.def {
|
|
ty::InstanceDef::Intrinsic(def_id) => {
|
|
assert!(self.tcx.intrinsic(def_id).is_some());
|
|
// FIXME: Should `InPlace` arguments be reset to uninit?
|
|
if let Some(fallback) = M::call_intrinsic(
|
|
self,
|
|
instance,
|
|
&self.copy_fn_args(args),
|
|
destination,
|
|
target,
|
|
unwind,
|
|
)? {
|
|
assert!(!self.tcx.intrinsic(fallback.def_id()).unwrap().must_be_overridden);
|
|
assert!(matches!(fallback.def, ty::InstanceDef::Item(_)));
|
|
return self.eval_fn_call(
|
|
FnVal::Instance(fallback),
|
|
(caller_abi, caller_fn_abi),
|
|
args,
|
|
with_caller_location,
|
|
destination,
|
|
target,
|
|
unwind,
|
|
);
|
|
} else {
|
|
Ok(())
|
|
}
|
|
}
|
|
ty::InstanceDef::VTableShim(..)
|
|
| ty::InstanceDef::ReifyShim(..)
|
|
| ty::InstanceDef::ClosureOnceShim { .. }
|
|
| ty::InstanceDef::ConstructCoroutineInClosureShim { .. }
|
|
| ty::InstanceDef::CoroutineKindShim { .. }
|
|
| ty::InstanceDef::FnPtrShim(..)
|
|
| ty::InstanceDef::DropGlue(..)
|
|
| ty::InstanceDef::CloneShim(..)
|
|
| ty::InstanceDef::FnPtrAddrShim(..)
|
|
| ty::InstanceDef::ThreadLocalShim(..)
|
|
| ty::InstanceDef::AsyncDropGlueCtorShim(..)
|
|
| ty::InstanceDef::Item(_) => {
|
|
// We need MIR for this fn
|
|
let Some((body, instance)) = M::find_mir_or_eval_fn(
|
|
self,
|
|
instance,
|
|
caller_abi,
|
|
args,
|
|
destination,
|
|
target,
|
|
unwind,
|
|
)?
|
|
else {
|
|
return Ok(());
|
|
};
|
|
|
|
// Compute callee information using the `instance` returned by
|
|
// `find_mir_or_eval_fn`.
|
|
// FIXME: for variadic support, do we have to somehow determine callee's extra_args?
|
|
let callee_fn_abi = self.fn_abi_of_instance(instance, ty::List::empty())?;
|
|
|
|
if callee_fn_abi.c_variadic || caller_fn_abi.c_variadic {
|
|
throw_unsup_format!("calling a c-variadic function is not supported");
|
|
}
|
|
|
|
if M::enforce_abi(self) {
|
|
if caller_fn_abi.conv != callee_fn_abi.conv {
|
|
throw_ub_custom!(
|
|
fluent::const_eval_incompatible_calling_conventions,
|
|
callee_conv = format!("{:?}", callee_fn_abi.conv),
|
|
caller_conv = format!("{:?}", caller_fn_abi.conv),
|
|
)
|
|
}
|
|
}
|
|
|
|
// Check that all target features required by the callee (i.e., from
|
|
// the attribute `#[target_feature(enable = ...)]`) are enabled at
|
|
// compile time.
|
|
self.check_fn_target_features(instance)?;
|
|
|
|
if !callee_fn_abi.can_unwind {
|
|
// The callee cannot unwind, so force the `Unreachable` unwind handling.
|
|
unwind = mir::UnwindAction::Unreachable;
|
|
}
|
|
|
|
self.push_stack_frame(
|
|
instance,
|
|
body,
|
|
destination,
|
|
StackPopCleanup::Goto { ret: target, unwind },
|
|
)?;
|
|
|
|
// If an error is raised here, pop the frame again to get an accurate backtrace.
|
|
// To this end, we wrap it all in a `try` block.
|
|
let res: InterpResult<'tcx> = try {
|
|
trace!(
|
|
"caller ABI: {:?}, args: {:#?}",
|
|
caller_abi,
|
|
args.iter()
|
|
.map(|arg| (
|
|
arg.layout().ty,
|
|
match arg {
|
|
FnArg::Copy(op) => format!("copy({op:?})"),
|
|
FnArg::InPlace(mplace) => format!("in-place({mplace:?})"),
|
|
}
|
|
))
|
|
.collect::<Vec<_>>()
|
|
);
|
|
trace!(
|
|
"spread_arg: {:?}, locals: {:#?}",
|
|
body.spread_arg,
|
|
body.args_iter()
|
|
.map(|local| (
|
|
local,
|
|
self.layout_of_local(self.frame(), local, None).unwrap().ty,
|
|
))
|
|
.collect::<Vec<_>>()
|
|
);
|
|
|
|
// In principle, we have two iterators: Where the arguments come from, and where
|
|
// they go to.
|
|
|
|
// For where they come from: If the ABI is RustCall, we untuple the
|
|
// last incoming argument. These two iterators do not have the same type,
|
|
// so to keep the code paths uniform we accept an allocation
|
|
// (for RustCall ABI only).
|
|
let caller_args: Cow<'_, [FnArg<'tcx, M::Provenance>]> =
|
|
if caller_abi == Abi::RustCall && !args.is_empty() {
|
|
// Untuple
|
|
let (untuple_arg, args) = args.split_last().unwrap();
|
|
trace!("eval_fn_call: Will pass last argument by untupling");
|
|
Cow::from(
|
|
args.iter()
|
|
.map(|a| Ok(a.clone()))
|
|
.chain(
|
|
(0..untuple_arg.layout().fields.count())
|
|
.map(|i| self.fn_arg_field(untuple_arg, i)),
|
|
)
|
|
.collect::<InterpResult<'_, Vec<_>>>()?,
|
|
)
|
|
} else {
|
|
// Plain arg passing
|
|
Cow::from(args)
|
|
};
|
|
// If `with_caller_location` is set we pretend there is an extra argument (that
|
|
// we will not pass).
|
|
assert_eq!(
|
|
caller_args.len() + if with_caller_location { 1 } else { 0 },
|
|
caller_fn_abi.args.len(),
|
|
"mismatch between caller ABI and caller arguments",
|
|
);
|
|
let mut caller_args = caller_args
|
|
.iter()
|
|
.zip(caller_fn_abi.args.iter())
|
|
.filter(|arg_and_abi| !matches!(arg_and_abi.1.mode, PassMode::Ignore));
|
|
|
|
// Now we have to spread them out across the callee's locals,
|
|
// taking into account the `spread_arg`. If we could write
|
|
// this is a single iterator (that handles `spread_arg`), then
|
|
// `pass_argument` would be the loop body. It takes care to
|
|
// not advance `caller_iter` for ignored arguments.
|
|
let mut callee_args_abis = callee_fn_abi.args.iter();
|
|
for local in body.args_iter() {
|
|
// Construct the destination place for this argument. At this point all
|
|
// locals are still dead, so we cannot construct a `PlaceTy`.
|
|
let dest = mir::Place::from(local);
|
|
// `layout_of_local` does more than just the instantiation we need to get the
|
|
// type, but the result gets cached so this avoids calling the instantiation
|
|
// query *again* the next time this local is accessed.
|
|
let ty = self.layout_of_local(self.frame(), local, None)?.ty;
|
|
if Some(local) == body.spread_arg {
|
|
// Make the local live once, then fill in the value field by field.
|
|
self.storage_live(local)?;
|
|
// Must be a tuple
|
|
let ty::Tuple(fields) = ty.kind() else {
|
|
span_bug!(self.cur_span(), "non-tuple type for `spread_arg`: {ty}")
|
|
};
|
|
for (i, field_ty) in fields.iter().enumerate() {
|
|
let dest = dest.project_deeper(
|
|
&[mir::ProjectionElem::Field(
|
|
FieldIdx::from_usize(i),
|
|
field_ty,
|
|
)],
|
|
*self.tcx,
|
|
);
|
|
let callee_abi = callee_args_abis.next().unwrap();
|
|
self.pass_argument(
|
|
&mut caller_args,
|
|
callee_abi,
|
|
&dest,
|
|
field_ty,
|
|
/* already_live */ true,
|
|
)?;
|
|
}
|
|
} else {
|
|
// Normal argument. Cannot mark it as live yet, it might be unsized!
|
|
let callee_abi = callee_args_abis.next().unwrap();
|
|
self.pass_argument(
|
|
&mut caller_args,
|
|
callee_abi,
|
|
&dest,
|
|
ty,
|
|
/* already_live */ false,
|
|
)?;
|
|
}
|
|
}
|
|
// If the callee needs a caller location, pretend we consume one more argument from the ABI.
|
|
if instance.def.requires_caller_location(*self.tcx) {
|
|
callee_args_abis.next().unwrap();
|
|
}
|
|
// Now we should have no more caller args or callee arg ABIs
|
|
assert!(
|
|
callee_args_abis.next().is_none(),
|
|
"mismatch between callee ABI and callee body arguments"
|
|
);
|
|
if caller_args.next().is_some() {
|
|
throw_ub_custom!(fluent::const_eval_too_many_caller_args);
|
|
}
|
|
// Don't forget to check the return type!
|
|
if !self.check_argument_compat(&caller_fn_abi.ret, &callee_fn_abi.ret)? {
|
|
throw_ub!(AbiMismatchReturn {
|
|
caller_ty: caller_fn_abi.ret.layout.ty,
|
|
callee_ty: callee_fn_abi.ret.layout.ty
|
|
});
|
|
}
|
|
|
|
// Protect return place for in-place return value passing.
|
|
M::protect_in_place_function_argument(self, &destination)?;
|
|
|
|
// Don't forget to mark "initially live" locals as live.
|
|
self.storage_live_for_always_live_locals()?;
|
|
};
|
|
match res {
|
|
Err(err) => {
|
|
self.stack_mut().pop();
|
|
Err(err)
|
|
}
|
|
Ok(()) => Ok(()),
|
|
}
|
|
}
|
|
// `InstanceDef::Virtual` does not have callable MIR. Calls to `Virtual` instances must be
|
|
// codegen'd / interpreted as virtual calls through the vtable.
|
|
ty::InstanceDef::Virtual(def_id, idx) => {
|
|
let mut args = args.to_vec();
|
|
// We have to implement all "object safe receivers". So we have to go search for a
|
|
// pointer or `dyn Trait` type, but it could be wrapped in newtypes. So recursively
|
|
// unwrap those newtypes until we are there.
|
|
// An `InPlace` does nothing here, we keep the original receiver intact. We can't
|
|
// really pass the argument in-place anyway, and we are constructing a new
|
|
// `Immediate` receiver.
|
|
let mut receiver = self.copy_fn_arg(&args[0]);
|
|
let receiver_place = loop {
|
|
match receiver.layout.ty.kind() {
|
|
ty::Ref(..) | ty::RawPtr(..) => {
|
|
// We do *not* use `deref_pointer` here: we don't want to conceptually
|
|
// create a place that must be dereferenceable, since the receiver might
|
|
// be a raw pointer and (for `*const dyn Trait`) we don't need to
|
|
// actually access memory to resolve this method.
|
|
// Also see <https://github.com/rust-lang/miri/issues/2786>.
|
|
let val = self.read_immediate(&receiver)?;
|
|
break self.ref_to_mplace(&val)?;
|
|
}
|
|
ty::Dynamic(.., ty::Dyn) => break receiver.assert_mem_place(), // no immediate unsized values
|
|
ty::Dynamic(.., ty::DynStar) => {
|
|
// Not clear how to handle this, so far we assume the receiver is always a pointer.
|
|
span_bug!(
|
|
self.cur_span(),
|
|
"by-value calls on a `dyn*`... are those a thing?"
|
|
);
|
|
}
|
|
_ => {
|
|
// Not there yet, search for the only non-ZST field.
|
|
// (The rules for `DispatchFromDyn` ensure there's exactly one such field.)
|
|
let (idx, _) = receiver.layout.non_1zst_field(self).expect(
|
|
"not exactly one non-1-ZST field in a `DispatchFromDyn` type",
|
|
);
|
|
receiver = self.project_field(&receiver, idx)?;
|
|
}
|
|
}
|
|
};
|
|
|
|
// Obtain the underlying trait we are working on, and the adjusted receiver argument.
|
|
let (dyn_trait, dyn_ty, adjusted_recv) = if let ty::Dynamic(data, _, ty::DynStar) =
|
|
receiver_place.layout.ty.kind()
|
|
{
|
|
let recv = self.unpack_dyn_star(&receiver_place, data)?;
|
|
|
|
(data.principal(), recv.layout.ty, recv.ptr())
|
|
} else {
|
|
// Doesn't have to be a `dyn Trait`, but the unsized tail must be `dyn Trait`.
|
|
// (For that reason we also cannot use `unpack_dyn_trait`.)
|
|
let receiver_tail = self
|
|
.tcx
|
|
.struct_tail_erasing_lifetimes(receiver_place.layout.ty, self.param_env);
|
|
let ty::Dynamic(receiver_trait, _, ty::Dyn) = receiver_tail.kind() else {
|
|
span_bug!(
|
|
self.cur_span(),
|
|
"dynamic call on non-`dyn` type {}",
|
|
receiver_tail
|
|
)
|
|
};
|
|
assert!(receiver_place.layout.is_unsized());
|
|
|
|
// Get the required information from the vtable.
|
|
let vptr = receiver_place.meta().unwrap_meta().to_pointer(self)?;
|
|
let dyn_ty = self.get_ptr_vtable_ty(vptr, Some(receiver_trait))?;
|
|
|
|
// It might be surprising that we use a pointer as the receiver even if this
|
|
// is a by-val case; this works because by-val passing of an unsized `dyn
|
|
// Trait` to a function is actually desugared to a pointer.
|
|
(receiver_trait.principal(), dyn_ty, receiver_place.ptr())
|
|
};
|
|
|
|
// Now determine the actual method to call. We can do that in two different ways and
|
|
// compare them to ensure everything fits.
|
|
let vtable_entries = if let Some(dyn_trait) = dyn_trait {
|
|
let trait_ref = dyn_trait.with_self_ty(*self.tcx, dyn_ty);
|
|
let trait_ref = self.tcx.erase_regions(trait_ref);
|
|
self.tcx.vtable_entries(trait_ref)
|
|
} else {
|
|
TyCtxt::COMMON_VTABLE_ENTRIES
|
|
};
|
|
let Some(ty::VtblEntry::Method(fn_inst)) = vtable_entries.get(idx).copied() else {
|
|
// FIXME(fee1-dead) these could be variants of the UB info enum instead of this
|
|
throw_ub_custom!(fluent::const_eval_dyn_call_not_a_method);
|
|
};
|
|
trace!("Virtual call dispatches to {fn_inst:#?}");
|
|
if cfg!(debug_assertions) {
|
|
let tcx = *self.tcx;
|
|
|
|
let trait_def_id = tcx.trait_of_item(def_id).unwrap();
|
|
let virtual_trait_ref =
|
|
ty::TraitRef::from_method(tcx, trait_def_id, instance.args);
|
|
let existential_trait_ref =
|
|
ty::ExistentialTraitRef::erase_self_ty(tcx, virtual_trait_ref);
|
|
let concrete_trait_ref = existential_trait_ref.with_self_ty(tcx, dyn_ty);
|
|
|
|
let concrete_method = Instance::resolve_for_vtable(
|
|
tcx,
|
|
self.param_env,
|
|
def_id,
|
|
instance.args.rebase_onto(tcx, trait_def_id, concrete_trait_ref.args),
|
|
)
|
|
.unwrap();
|
|
assert_eq!(fn_inst, concrete_method);
|
|
}
|
|
|
|
// Adjust receiver argument. Layout can be any (thin) ptr.
|
|
let receiver_ty = Ty::new_mut_ptr(self.tcx.tcx, dyn_ty);
|
|
args[0] = FnArg::Copy(
|
|
ImmTy::from_immediate(
|
|
Scalar::from_maybe_pointer(adjusted_recv, self).into(),
|
|
self.layout_of(receiver_ty)?,
|
|
)
|
|
.into(),
|
|
);
|
|
trace!("Patched receiver operand to {:#?}", args[0]);
|
|
// Need to also adjust the type in the ABI. Strangely, the layout there is actually
|
|
// already fine! Just the type is bogus. This is due to what `force_thin_self_ptr`
|
|
// does in `fn_abi_new_uncached`; supposedly, codegen relies on having the bogus
|
|
// type, so we just patch this up locally.
|
|
let mut caller_fn_abi = caller_fn_abi.clone();
|
|
caller_fn_abi.args[0].layout.ty = receiver_ty;
|
|
|
|
// recurse with concrete function
|
|
self.eval_fn_call(
|
|
FnVal::Instance(fn_inst),
|
|
(caller_abi, &caller_fn_abi),
|
|
&args,
|
|
with_caller_location,
|
|
destination,
|
|
target,
|
|
unwind,
|
|
)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn check_fn_target_features(&self, instance: ty::Instance<'tcx>) -> InterpResult<'tcx, ()> {
|
|
// Calling functions with `#[target_feature]` is not unsafe on WASM, see #84988
|
|
let attrs = self.tcx.codegen_fn_attrs(instance.def_id());
|
|
if !self.tcx.sess.target.is_like_wasm
|
|
&& attrs
|
|
.target_features
|
|
.iter()
|
|
.any(|feature| !self.tcx.sess.target_features.contains(feature))
|
|
{
|
|
throw_ub_custom!(
|
|
fluent::const_eval_unavailable_target_features_for_fn,
|
|
unavailable_feats = attrs
|
|
.target_features
|
|
.iter()
|
|
.filter(|&feature| !self.tcx.sess.target_features.contains(feature))
|
|
.fold(String::new(), |mut s, feature| {
|
|
if !s.is_empty() {
|
|
s.push_str(", ");
|
|
}
|
|
s.push_str(feature.as_str());
|
|
s
|
|
}),
|
|
);
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
fn drop_in_place(
|
|
&mut self,
|
|
place: &PlaceTy<'tcx, M::Provenance>,
|
|
instance: ty::Instance<'tcx>,
|
|
target: mir::BasicBlock,
|
|
unwind: mir::UnwindAction,
|
|
) -> InterpResult<'tcx> {
|
|
trace!("drop_in_place: {:?},\n instance={:?}", place, instance);
|
|
// We take the address of the object. This may well be unaligned, which is fine
|
|
// for us here. However, unaligned accesses will probably make the actual drop
|
|
// implementation fail -- a problem shared by rustc.
|
|
let place = self.force_allocation(place)?;
|
|
|
|
// We behave a bit different from codegen here.
|
|
// Codegen creates an `InstanceDef::Virtual` with index 0 (the slot of the drop method) and
|
|
// then dispatches that to the normal call machinery. However, our call machinery currently
|
|
// only supports calling `VtblEntry::Method`; it would choke on a `MetadataDropInPlace`. So
|
|
// instead we do the virtual call stuff ourselves. It's easier here than in `eval_fn_call`
|
|
// since we can just get a place of the underlying type and use `mplace_to_ref`.
|
|
let place = match place.layout.ty.kind() {
|
|
ty::Dynamic(data, _, ty::Dyn) => {
|
|
// Dropping a trait object. Need to find actual drop fn.
|
|
self.unpack_dyn_trait(&place, data)?
|
|
}
|
|
ty::Dynamic(data, _, ty::DynStar) => {
|
|
// Dropping a `dyn*`. Need to find actual drop fn.
|
|
self.unpack_dyn_star(&place, data)?
|
|
}
|
|
_ => {
|
|
debug_assert_eq!(
|
|
instance,
|
|
ty::Instance::resolve_drop_in_place(*self.tcx, place.layout.ty)
|
|
);
|
|
place
|
|
}
|
|
};
|
|
let instance = ty::Instance::resolve_drop_in_place(*self.tcx, place.layout.ty);
|
|
let fn_abi = self.fn_abi_of_instance(instance, ty::List::empty())?;
|
|
|
|
let arg = self.mplace_to_ref(&place)?;
|
|
let ret = MPlaceTy::fake_alloc_zst(self.layout_of(self.tcx.types.unit)?);
|
|
|
|
self.eval_fn_call(
|
|
FnVal::Instance(instance),
|
|
(Abi::Rust, fn_abi),
|
|
&[FnArg::Copy(arg.into())],
|
|
false,
|
|
&ret.into(),
|
|
Some(target),
|
|
unwind,
|
|
)
|
|
}
|
|
}
|