Files
rust/library/core/src/array/mod.rs
Lukas Kalbertodt 4038042eb0 Add [T; N]::each_ref and [T; N]::each_mut
These methods work very similarly to `Option`'s methods `as_ref` and
`as_mut`. They are useful in several situation, particularly when
calling other array methods (like `map`) on the result. Unfortunately,
we can't easily call them `as_ref` and `as_mut` as that would shadow
those methods on slices, thus being a breaking change (that is likely
to affect a lot of code).
2021-01-11 01:09:22 -08:00

579 lines
17 KiB
Rust

//! Implementations of things like `Eq` for fixed-length arrays
//! up to a certain length. Eventually, we should be able to generalize
//! to all lengths.
//!
//! *[See also the array primitive type](../../std/primitive.array.html).*
#![stable(feature = "core_array", since = "1.36.0")]
use crate::borrow::{Borrow, BorrowMut};
use crate::cmp::Ordering;
use crate::convert::{Infallible, TryFrom};
use crate::fmt;
use crate::hash::{self, Hash};
use crate::marker::Unsize;
use crate::mem::MaybeUninit;
use crate::ops::{Index, IndexMut};
use crate::slice::{Iter, IterMut};
mod iter;
#[unstable(feature = "array_value_iter", issue = "65798")]
pub use iter::IntoIter;
/// Converts a reference to `T` into a reference to an array of length 1 (without copying).
#[unstable(feature = "array_from_ref", issue = "77101")]
pub fn from_ref<T>(s: &T) -> &[T; 1] {
// SAFETY: Converting `&T` to `&[T; 1]` is sound.
unsafe { &*(s as *const T).cast::<[T; 1]>() }
}
/// Converts a mutable reference to `T` into a mutable reference to an array of length 1 (without copying).
#[unstable(feature = "array_from_ref", issue = "77101")]
pub fn from_mut<T>(s: &mut T) -> &mut [T; 1] {
// SAFETY: Converting `&mut T` to `&mut [T; 1]` is sound.
unsafe { &mut *(s as *mut T).cast::<[T; 1]>() }
}
/// Utility trait implemented only on arrays of fixed size
///
/// This trait can be used to implement other traits on fixed-size arrays
/// without causing much metadata bloat.
///
/// The trait is marked unsafe in order to restrict implementors to fixed-size
/// arrays. User of this trait can assume that implementors have the exact
/// layout in memory of a fixed size array (for example, for unsafe
/// initialization).
///
/// Note that the traits [`AsRef`] and [`AsMut`] provide similar methods for types that
/// may not be fixed-size arrays. Implementors should prefer those traits
/// instead.
#[unstable(feature = "fixed_size_array", issue = "27778")]
pub unsafe trait FixedSizeArray<T> {
/// Converts the array to immutable slice
#[unstable(feature = "fixed_size_array", issue = "27778")]
fn as_slice(&self) -> &[T];
/// Converts the array to mutable slice
#[unstable(feature = "fixed_size_array", issue = "27778")]
fn as_mut_slice(&mut self) -> &mut [T];
}
#[unstable(feature = "fixed_size_array", issue = "27778")]
unsafe impl<T, A: Unsize<[T]>> FixedSizeArray<T> for A {
#[inline]
fn as_slice(&self) -> &[T] {
self
}
#[inline]
fn as_mut_slice(&mut self) -> &mut [T] {
self
}
}
/// The error type returned when a conversion from a slice to an array fails.
#[stable(feature = "try_from", since = "1.34.0")]
#[derive(Debug, Copy, Clone)]
pub struct TryFromSliceError(());
#[stable(feature = "core_array", since = "1.36.0")]
impl fmt::Display for TryFromSliceError {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Display::fmt(self.__description(), f)
}
}
impl TryFromSliceError {
#[unstable(
feature = "array_error_internals",
reason = "available through Error trait and this method should not \
be exposed publicly",
issue = "none"
)]
#[inline]
#[doc(hidden)]
pub fn __description(&self) -> &str {
"could not convert slice to array"
}
}
#[stable(feature = "try_from_slice_error", since = "1.36.0")]
impl From<Infallible> for TryFromSliceError {
fn from(x: Infallible) -> TryFromSliceError {
match x {}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, const N: usize> AsRef<[T]> for [T; N] {
#[inline]
fn as_ref(&self) -> &[T] {
&self[..]
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, const N: usize> AsMut<[T]> for [T; N] {
#[inline]
fn as_mut(&mut self) -> &mut [T] {
&mut self[..]
}
}
#[stable(feature = "array_borrow", since = "1.4.0")]
impl<T, const N: usize> Borrow<[T]> for [T; N] {
fn borrow(&self) -> &[T] {
self
}
}
#[stable(feature = "array_borrow", since = "1.4.0")]
impl<T, const N: usize> BorrowMut<[T]> for [T; N] {
fn borrow_mut(&mut self) -> &mut [T] {
self
}
}
#[stable(feature = "try_from", since = "1.34.0")]
impl<T, const N: usize> TryFrom<&[T]> for [T; N]
where
T: Copy,
{
type Error = TryFromSliceError;
fn try_from(slice: &[T]) -> Result<[T; N], TryFromSliceError> {
<&Self>::try_from(slice).map(|r| *r)
}
}
#[stable(feature = "try_from", since = "1.34.0")]
impl<'a, T, const N: usize> TryFrom<&'a [T]> for &'a [T; N] {
type Error = TryFromSliceError;
fn try_from(slice: &[T]) -> Result<&[T; N], TryFromSliceError> {
if slice.len() == N {
let ptr = slice.as_ptr() as *const [T; N];
// SAFETY: ok because we just checked that the length fits
unsafe { Ok(&*ptr) }
} else {
Err(TryFromSliceError(()))
}
}
}
#[stable(feature = "try_from", since = "1.34.0")]
impl<'a, T, const N: usize> TryFrom<&'a mut [T]> for &'a mut [T; N] {
type Error = TryFromSliceError;
fn try_from(slice: &mut [T]) -> Result<&mut [T; N], TryFromSliceError> {
if slice.len() == N {
let ptr = slice.as_mut_ptr() as *mut [T; N];
// SAFETY: ok because we just checked that the length fits
unsafe { Ok(&mut *ptr) }
} else {
Err(TryFromSliceError(()))
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Hash, const N: usize> Hash for [T; N] {
fn hash<H: hash::Hasher>(&self, state: &mut H) {
Hash::hash(&self[..], state)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug, const N: usize> fmt::Debug for [T; N] {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(&&self[..], f)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T, const N: usize> IntoIterator for &'a [T; N] {
type Item = &'a T;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Iter<'a, T> {
self.iter()
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T, const N: usize> IntoIterator for &'a mut [T; N] {
type Item = &'a mut T;
type IntoIter = IterMut<'a, T>;
fn into_iter(self) -> IterMut<'a, T> {
self.iter_mut()
}
}
#[stable(feature = "index_trait_on_arrays", since = "1.50.0")]
impl<T, I, const N: usize> Index<I> for [T; N]
where
[T]: Index<I>,
{
type Output = <[T] as Index<I>>::Output;
#[inline]
fn index(&self, index: I) -> &Self::Output {
Index::index(self as &[T], index)
}
}
#[stable(feature = "index_trait_on_arrays", since = "1.50.0")]
impl<T, I, const N: usize> IndexMut<I> for [T; N]
where
[T]: IndexMut<I>,
{
#[inline]
fn index_mut(&mut self, index: I) -> &mut Self::Output {
IndexMut::index_mut(self as &mut [T], index)
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A, B, const N: usize> PartialEq<[B; N]> for [A; N]
where
A: PartialEq<B>,
{
#[inline]
fn eq(&self, other: &[B; N]) -> bool {
self[..] == other[..]
}
#[inline]
fn ne(&self, other: &[B; N]) -> bool {
self[..] != other[..]
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A, B, const N: usize> PartialEq<[B]> for [A; N]
where
A: PartialEq<B>,
{
#[inline]
fn eq(&self, other: &[B]) -> bool {
self[..] == other[..]
}
#[inline]
fn ne(&self, other: &[B]) -> bool {
self[..] != other[..]
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A, B, const N: usize> PartialEq<[A; N]> for [B]
where
B: PartialEq<A>,
{
#[inline]
fn eq(&self, other: &[A; N]) -> bool {
self[..] == other[..]
}
#[inline]
fn ne(&self, other: &[A; N]) -> bool {
self[..] != other[..]
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A, B, const N: usize> PartialEq<&[B]> for [A; N]
where
A: PartialEq<B>,
{
#[inline]
fn eq(&self, other: &&[B]) -> bool {
self[..] == other[..]
}
#[inline]
fn ne(&self, other: &&[B]) -> bool {
self[..] != other[..]
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A, B, const N: usize> PartialEq<[A; N]> for &[B]
where
B: PartialEq<A>,
{
#[inline]
fn eq(&self, other: &[A; N]) -> bool {
self[..] == other[..]
}
#[inline]
fn ne(&self, other: &[A; N]) -> bool {
self[..] != other[..]
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A, B, const N: usize> PartialEq<&mut [B]> for [A; N]
where
A: PartialEq<B>,
{
#[inline]
fn eq(&self, other: &&mut [B]) -> bool {
self[..] == other[..]
}
#[inline]
fn ne(&self, other: &&mut [B]) -> bool {
self[..] != other[..]
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<A, B, const N: usize> PartialEq<[A; N]> for &mut [B]
where
B: PartialEq<A>,
{
#[inline]
fn eq(&self, other: &[A; N]) -> bool {
self[..] == other[..]
}
#[inline]
fn ne(&self, other: &[A; N]) -> bool {
self[..] != other[..]
}
}
// NOTE: some less important impls are omitted to reduce code bloat
// __impl_slice_eq2! { [A; $N], &'b [B; $N] }
// __impl_slice_eq2! { [A; $N], &'b mut [B; $N] }
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Eq, const N: usize> Eq for [T; N] {}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: PartialOrd, const N: usize> PartialOrd for [T; N] {
#[inline]
fn partial_cmp(&self, other: &[T; N]) -> Option<Ordering> {
PartialOrd::partial_cmp(&&self[..], &&other[..])
}
#[inline]
fn lt(&self, other: &[T; N]) -> bool {
PartialOrd::lt(&&self[..], &&other[..])
}
#[inline]
fn le(&self, other: &[T; N]) -> bool {
PartialOrd::le(&&self[..], &&other[..])
}
#[inline]
fn ge(&self, other: &[T; N]) -> bool {
PartialOrd::ge(&&self[..], &&other[..])
}
#[inline]
fn gt(&self, other: &[T; N]) -> bool {
PartialOrd::gt(&&self[..], &&other[..])
}
}
/// Implements comparison of arrays [lexicographically](Ord#lexicographical-comparison).
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Ord, const N: usize> Ord for [T; N] {
#[inline]
fn cmp(&self, other: &[T; N]) -> Ordering {
Ord::cmp(&&self[..], &&other[..])
}
}
// The Default impls cannot be done with const generics because `[T; 0]` doesn't
// require Default to be implemented, and having different impl blocks for
// different numbers isn't supported yet.
macro_rules! array_impl_default {
{$n:expr, $t:ident $($ts:ident)*} => {
#[stable(since = "1.4.0", feature = "array_default")]
impl<T> Default for [T; $n] where T: Default {
fn default() -> [T; $n] {
[$t::default(), $($ts::default()),*]
}
}
array_impl_default!{($n - 1), $($ts)*}
};
{$n:expr,} => {
#[stable(since = "1.4.0", feature = "array_default")]
impl<T> Default for [T; $n] {
fn default() -> [T; $n] { [] }
}
};
}
array_impl_default! {32, T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T}
#[lang = "array"]
impl<T, const N: usize> [T; N] {
/// Returns an array of the same size as `self`, with function `f` applied to each element
/// in order.
///
/// # Examples
///
/// ```
/// #![feature(array_map)]
/// let x = [1, 2, 3];
/// let y = x.map(|v| v + 1);
/// assert_eq!(y, [2, 3, 4]);
///
/// let x = [1, 2, 3];
/// let mut temp = 0;
/// let y = x.map(|v| { temp += 1; v * temp });
/// assert_eq!(y, [1, 4, 9]);
///
/// let x = ["Ferris", "Bueller's", "Day", "Off"];
/// let y = x.map(|v| v.len());
/// assert_eq!(y, [6, 9, 3, 3]);
/// ```
#[unstable(feature = "array_map", issue = "75243")]
pub fn map<F, U>(self, mut f: F) -> [U; N]
where
F: FnMut(T) -> U,
{
struct Guard<T, const N: usize> {
dst: *mut T,
initialized: usize,
}
impl<T, const N: usize> Drop for Guard<T, N> {
fn drop(&mut self) {
debug_assert!(self.initialized <= N);
let initialized_part =
crate::ptr::slice_from_raw_parts_mut(self.dst, self.initialized);
// SAFETY: this raw slice will contain only initialized objects
// that's why, it is allowed to drop it.
unsafe {
crate::ptr::drop_in_place(initialized_part);
}
}
}
let mut dst = MaybeUninit::uninit_array::<N>();
let mut guard: Guard<U, N> =
Guard { dst: MaybeUninit::slice_as_mut_ptr(&mut dst), initialized: 0 };
for (src, dst) in IntoIter::new(self).zip(&mut dst) {
dst.write(f(src));
guard.initialized += 1;
}
// FIXME: Convert to crate::mem::transmute once it works with generics.
// unsafe { crate::mem::transmute::<[MaybeUninit<U>; N], [U; N]>(dst) }
crate::mem::forget(guard);
// SAFETY: At this point we've properly initialized the whole array
// and we just need to cast it to the correct type.
unsafe { crate::mem::transmute_copy::<_, [U; N]>(&dst) }
}
/// 'Zips up' two arrays into a single array of pairs.
///
/// `zip()` returns a new array where every element is a tuple where the
/// first element comes from the first array, and the second element comes
/// from the second array. In other words, it zips two arrays together,
/// into a single one.
///
/// # Examples
///
/// ```
/// #![feature(array_zip)]
/// let x = [1, 2, 3];
/// let y = [4, 5, 6];
/// let z = x.zip(y);
/// assert_eq!(z, [(1, 4), (2, 5), (3, 6)]);
/// ```
#[unstable(feature = "array_zip", issue = "80094")]
pub fn zip<U>(self, rhs: [U; N]) -> [(T, U); N] {
let mut dst = MaybeUninit::uninit_array::<N>();
for (i, (lhs, rhs)) in IntoIter::new(self).zip(IntoIter::new(rhs)).enumerate() {
dst[i].write((lhs, rhs));
}
// FIXME: Convert to crate::mem::transmute once it works with generics.
// unsafe { crate::mem::transmute::<[MaybeUninit<U>; N], [U; N]>(dst) }
// SAFETY: At this point we've properly initialized the whole array
// and we just need to cast it to the correct type.
unsafe { crate::mem::transmute_copy::<_, [(T, U); N]>(&dst) }
}
/// Returns a slice containing the entire array. Equivalent to `&s[..]`.
#[unstable(feature = "array_methods", issue = "76118")]
pub fn as_slice(&self) -> &[T] {
self
}
/// Returns a mutable slice containing the entire array. Equivalent to
/// `&mut s[..]`.
#[unstable(feature = "array_methods", issue = "76118")]
pub fn as_mut_slice(&mut self) -> &mut [T] {
self
}
/// Borrows each element and returns an array of references with the same
/// size as `self`.
///
///
/// # Example
///
/// ```
/// #![feature(array_methods)]
///
/// let floats = [3.1, 2.7, -1.0];
/// let float_refs: [&f64; 3] = floats.each_ref();
/// assert_eq!(float_refs, [&3.1, &2.7, &-1.0]);
/// ```
///
/// This method is particularly useful if combined with other methods, like
/// [`map`](#method.map). This way, you can can avoid moving the original
/// array if its elements are not `Copy`.
///
/// ```
/// #![feature(array_methods, array_map)]
///
/// let strings = ["Ferris".to_string(), "♥".to_string(), "Rust".to_string()];
/// let is_ascii = strings.each_ref().map(|s| s.is_ascii());
/// assert_eq!(is_ascii, [true, false, true]);
///
/// // We can still access the original array: it has not been moved.
/// assert_eq!(strings.len(), 3);
/// ```
#[unstable(feature = "array_methods", issue = "76118")]
pub fn each_ref(&self) -> [&T; N] {
// Unlike in `map`, we don't need a guard here, as dropping a reference
// is a noop.
let mut out = MaybeUninit::uninit_array::<N>();
for (src, dst) in self.iter().zip(&mut out) {
dst.write(src);
}
// SAFETY: All elements of `dst` are properly initialized and
// `MaybeUninit<T>` has the same layout as `T`, so this cast is valid.
unsafe { (&mut out as *mut _ as *mut [&T; N]).read() }
}
/// Borrows each element mutably and returns an array of mutable references
/// with the same size as `self`.
///
///
/// # Example
///
/// ```
/// #![feature(array_methods)]
///
/// let mut floats = [3.1, 2.7, -1.0];
/// let float_refs: [&mut f64; 3] = floats.each_mut();
/// *float_refs[0] = 0.0;
/// assert_eq!(float_refs, [&mut 0.0, &mut 2.7, &mut -1.0]);
/// assert_eq!(floats, [0.0, 2.7, -1.0]);
/// ```
#[unstable(feature = "array_methods", issue = "76118")]
pub fn each_mut(&mut self) -> [&mut T; N] {
// Unlike in `map`, we don't need a guard here, as dropping a reference
// is a noop.
let mut out = MaybeUninit::uninit_array::<N>();
for (src, dst) in self.iter_mut().zip(&mut out) {
dst.write(src);
}
// SAFETY: All elements of `dst` are properly initialized and
// `MaybeUninit<T>` has the same layout as `T`, so this cast is valid.
unsafe { (&mut out as *mut _ as *mut [&mut T; N]).read() }
}
}