Files
rust/src/libstd/sys/windows/mod.rs
Alex Crichton 3d28b8b98e std: Migrate to the new libc
* Delete `sys::unix::{c, sync}` as these are now all folded into libc itself
* Update all references to use `libc` as a result.
* Update all references to the new flat namespace.
* Moves all windows bindings into sys::c
2015-11-09 22:55:50 -08:00

181 lines
6.0 KiB
Rust

// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(missing_docs)]
#![allow(non_camel_case_types)]
#![allow(non_snake_case)]
use prelude::v1::*;
use ffi::{OsStr, OsString};
use io::{self, ErrorKind};
use num::Zero;
use os::windows::ffi::{OsStrExt, OsStringExt};
use path::PathBuf;
use time::Duration;
#[macro_use] pub mod compat;
pub mod backtrace;
pub mod c;
pub mod condvar;
pub mod ext;
pub mod fs;
pub mod handle;
pub mod mutex;
pub mod net;
pub mod os;
pub mod os_str;
pub mod pipe;
pub mod process;
pub mod rwlock;
pub mod stack_overflow;
pub mod thread;
pub mod thread_local;
pub mod time;
pub mod stdio;
pub fn init() {}
pub fn decode_error_kind(errno: i32) -> ErrorKind {
match errno as c::DWORD {
c::ERROR_ACCESS_DENIED => return ErrorKind::PermissionDenied,
c::ERROR_ALREADY_EXISTS => return ErrorKind::AlreadyExists,
c::ERROR_BROKEN_PIPE => return ErrorKind::BrokenPipe,
c::ERROR_FILE_NOT_FOUND => return ErrorKind::NotFound,
c::ERROR_PATH_NOT_FOUND => return ErrorKind::NotFound,
c::ERROR_NO_DATA => return ErrorKind::BrokenPipe,
c::ERROR_OPERATION_ABORTED => return ErrorKind::TimedOut,
_ => {}
}
match errno {
c::WSAEACCES => ErrorKind::PermissionDenied,
c::WSAEADDRINUSE => ErrorKind::AddrInUse,
c::WSAEADDRNOTAVAIL => ErrorKind::AddrNotAvailable,
c::WSAECONNABORTED => ErrorKind::ConnectionAborted,
c::WSAECONNREFUSED => ErrorKind::ConnectionRefused,
c::WSAECONNRESET => ErrorKind::ConnectionReset,
c::WSAEINVAL => ErrorKind::InvalidInput,
c::WSAENOTCONN => ErrorKind::NotConnected,
c::WSAEWOULDBLOCK => ErrorKind::WouldBlock,
c::WSAETIMEDOUT => ErrorKind::TimedOut,
_ => ErrorKind::Other,
}
}
fn to_utf16_os(s: &OsStr) -> Vec<u16> {
let mut v: Vec<_> = s.encode_wide().collect();
v.push(0);
v
}
// Many Windows APIs follow a pattern of where we hand a buffer and then they
// will report back to us how large the buffer should be or how many bytes
// currently reside in the buffer. This function is an abstraction over these
// functions by making them easier to call.
//
// The first callback, `f1`, is yielded a (pointer, len) pair which can be
// passed to a syscall. The `ptr` is valid for `len` items (u16 in this case).
// The closure is expected to return what the syscall returns which will be
// interpreted by this function to determine if the syscall needs to be invoked
// again (with more buffer space).
//
// Once the syscall has completed (errors bail out early) the second closure is
// yielded the data which has been read from the syscall. The return value
// from this closure is then the return value of the function.
fn fill_utf16_buf<F1, F2, T>(mut f1: F1, f2: F2) -> io::Result<T>
where F1: FnMut(*mut u16, c::DWORD) -> c::DWORD,
F2: FnOnce(&[u16]) -> T
{
// Start off with a stack buf but then spill over to the heap if we end up
// needing more space.
let mut stack_buf = [0u16; 512];
let mut heap_buf = Vec::new();
unsafe {
let mut n = stack_buf.len();
loop {
let buf = if n <= stack_buf.len() {
&mut stack_buf[..]
} else {
let extra = n - heap_buf.len();
heap_buf.reserve(extra);
heap_buf.set_len(n);
&mut heap_buf[..]
};
// This function is typically called on windows API functions which
// will return the correct length of the string, but these functions
// also return the `0` on error. In some cases, however, the
// returned "correct length" may actually be 0!
//
// To handle this case we call `SetLastError` to reset it to 0 and
// then check it again if we get the "0 error value". If the "last
// error" is still 0 then we interpret it as a 0 length buffer and
// not an actual error.
c::SetLastError(0);
let k = match f1(buf.as_mut_ptr(), n as c::DWORD) {
0 if c::GetLastError() == 0 => 0,
0 => return Err(io::Error::last_os_error()),
n => n,
} as usize;
if k == n && c::GetLastError() == c::ERROR_INSUFFICIENT_BUFFER {
n *= 2;
} else if k >= n {
n = k;
} else {
return Ok(f2(&buf[..k]))
}
}
}
}
fn os2path(s: &[u16]) -> PathBuf {
PathBuf::from(OsString::from_wide(s))
}
pub fn truncate_utf16_at_nul<'a>(v: &'a [u16]) -> &'a [u16] {
match v.iter().position(|c| *c == 0) {
// don't include the 0
Some(i) => &v[..i],
None => v
}
}
fn cvt<I: PartialEq + Zero>(i: I) -> io::Result<I> {
if i == I::zero() {
Err(io::Error::last_os_error())
} else {
Ok(i)
}
}
fn dur2timeout(dur: Duration) -> c::DWORD {
// Note that a duration is a (u64, u32) (seconds, nanoseconds) pair, and the
// timeouts in windows APIs are typically u32 milliseconds. To translate, we
// have two pieces to take care of:
//
// * Nanosecond precision is rounded up
// * Greater than u32::MAX milliseconds (50 days) is rounded up to INFINITE
// (never time out).
dur.as_secs().checked_mul(1000).and_then(|ms| {
ms.checked_add((dur.subsec_nanos() as u64) / 1_000_000)
}).and_then(|ms| {
ms.checked_add(if dur.subsec_nanos() % 1_000_000 > 0 {1} else {0})
}).map(|ms| {
if ms > <c::DWORD>::max_value() as u64 {
c::INFINITE
} else {
ms as c::DWORD
}
}).unwrap_or(c::INFINITE)
}