577 lines
19 KiB
Rust
577 lines
19 KiB
Rust
//! Support for inlining external documentation into the current AST.
|
|
|
|
use std::iter::once;
|
|
|
|
use syntax::ast;
|
|
use syntax::ext::base::{MacroKind, SyntaxExtension};
|
|
use syntax_pos::Span;
|
|
|
|
use rustc::hir;
|
|
use rustc::hir::def::{Def, CtorKind};
|
|
use rustc::hir::def_id::DefId;
|
|
use rustc_metadata::cstore::LoadedMacro;
|
|
use rustc::ty;
|
|
use rustc::util::nodemap::FxHashSet;
|
|
|
|
use crate::core::{DocContext, DocAccessLevels};
|
|
use crate::doctree;
|
|
use crate::clean::{
|
|
self,
|
|
GetDefId,
|
|
ToSource,
|
|
};
|
|
|
|
use super::Clean;
|
|
|
|
/// Attempt to inline a definition into this AST.
|
|
///
|
|
/// This function will fetch the definition specified, and if it is
|
|
/// from another crate it will attempt to inline the documentation
|
|
/// from the other crate into this crate.
|
|
///
|
|
/// This is primarily used for `pub use` statements which are, in general,
|
|
/// implementation details. Inlining the documentation should help provide a
|
|
/// better experience when reading the documentation in this use case.
|
|
///
|
|
/// The returned value is `None` if the definition could not be inlined,
|
|
/// and `Some` of a vector of items if it was successfully expanded.
|
|
pub fn try_inline(
|
|
cx: &DocContext<'_>,
|
|
def: Def,
|
|
name: ast::Name,
|
|
visited: &mut FxHashSet<DefId>
|
|
)
|
|
-> Option<Vec<clean::Item>> {
|
|
let did = if let Some(did) = def.opt_def_id() {
|
|
did
|
|
} else {
|
|
return None;
|
|
};
|
|
if did.is_local() { return None }
|
|
let mut ret = Vec::new();
|
|
let inner = match def {
|
|
Def::Trait(did) => {
|
|
record_extern_fqn(cx, did, clean::TypeKind::Trait);
|
|
ret.extend(build_impls(cx, did));
|
|
clean::TraitItem(build_external_trait(cx, did))
|
|
}
|
|
Def::Fn(did) => {
|
|
record_extern_fqn(cx, did, clean::TypeKind::Function);
|
|
clean::FunctionItem(build_external_function(cx, did))
|
|
}
|
|
Def::Struct(did) => {
|
|
record_extern_fqn(cx, did, clean::TypeKind::Struct);
|
|
ret.extend(build_impls(cx, did));
|
|
clean::StructItem(build_struct(cx, did))
|
|
}
|
|
Def::Union(did) => {
|
|
record_extern_fqn(cx, did, clean::TypeKind::Union);
|
|
ret.extend(build_impls(cx, did));
|
|
clean::UnionItem(build_union(cx, did))
|
|
}
|
|
Def::TyAlias(did) => {
|
|
record_extern_fqn(cx, did, clean::TypeKind::Typedef);
|
|
ret.extend(build_impls(cx, did));
|
|
clean::TypedefItem(build_type_alias(cx, did), false)
|
|
}
|
|
Def::Enum(did) => {
|
|
record_extern_fqn(cx, did, clean::TypeKind::Enum);
|
|
ret.extend(build_impls(cx, did));
|
|
clean::EnumItem(build_enum(cx, did))
|
|
}
|
|
Def::ForeignTy(did) => {
|
|
record_extern_fqn(cx, did, clean::TypeKind::Foreign);
|
|
ret.extend(build_impls(cx, did));
|
|
clean::ForeignTypeItem
|
|
}
|
|
// Never inline enum variants but leave them shown as re-exports.
|
|
Def::Variant(..) => return None,
|
|
// Assume that enum variants and struct types are re-exported next to
|
|
// their constructors.
|
|
Def::Ctor(..) | Def::SelfCtor(..) => return Some(Vec::new()),
|
|
Def::Mod(did) => {
|
|
record_extern_fqn(cx, did, clean::TypeKind::Module);
|
|
clean::ModuleItem(build_module(cx, did, visited))
|
|
}
|
|
Def::Static(did) => {
|
|
record_extern_fqn(cx, did, clean::TypeKind::Static);
|
|
clean::StaticItem(build_static(cx, did, cx.tcx.is_mutable_static(did)))
|
|
}
|
|
Def::Const(did) => {
|
|
record_extern_fqn(cx, did, clean::TypeKind::Const);
|
|
clean::ConstantItem(build_const(cx, did))
|
|
}
|
|
// FIXME: proc-macros don't propagate attributes or spans across crates, so they look empty
|
|
Def::Macro(did, MacroKind::Bang) => {
|
|
let mac = build_macro(cx, did, name);
|
|
if let clean::MacroItem(..) = mac {
|
|
record_extern_fqn(cx, did, clean::TypeKind::Macro);
|
|
mac
|
|
} else {
|
|
return None;
|
|
}
|
|
}
|
|
_ => return None,
|
|
};
|
|
cx.renderinfo.borrow_mut().inlined.insert(did);
|
|
ret.push(clean::Item {
|
|
source: cx.tcx.def_span(did).clean(cx),
|
|
name: Some(name.clean(cx)),
|
|
attrs: load_attrs(cx, did),
|
|
inner,
|
|
visibility: Some(clean::Public),
|
|
stability: cx.tcx.lookup_stability(did).clean(cx),
|
|
deprecation: cx.tcx.lookup_deprecation(did).clean(cx),
|
|
def_id: did,
|
|
});
|
|
Some(ret)
|
|
}
|
|
|
|
pub fn try_inline_glob(cx: &DocContext<'_>, def: Def, visited: &mut FxHashSet<DefId>)
|
|
-> Option<Vec<clean::Item>>
|
|
{
|
|
if def == Def::Err { return None }
|
|
let did = def.def_id();
|
|
if did.is_local() { return None }
|
|
|
|
match def {
|
|
Def::Mod(did) => {
|
|
let m = build_module(cx, did, visited);
|
|
Some(m.items)
|
|
}
|
|
// glob imports on things like enums aren't inlined even for local exports, so just bail
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
pub fn load_attrs(cx: &DocContext<'_>, did: DefId) -> clean::Attributes {
|
|
cx.tcx.get_attrs(did).clean(cx)
|
|
}
|
|
|
|
/// Record an external fully qualified name in the external_paths cache.
|
|
///
|
|
/// These names are used later on by HTML rendering to generate things like
|
|
/// source links back to the original item.
|
|
pub fn record_extern_fqn(cx: &DocContext<'_>, did: DefId, kind: clean::TypeKind) {
|
|
let mut crate_name = cx.tcx.crate_name(did.krate).to_string();
|
|
if did.is_local() {
|
|
crate_name = cx.crate_name.clone().unwrap_or(crate_name);
|
|
}
|
|
|
|
let relative = cx.tcx.def_path(did).data.into_iter().filter_map(|elem| {
|
|
// extern blocks have an empty name
|
|
let s = elem.data.to_string();
|
|
if !s.is_empty() {
|
|
Some(s)
|
|
} else {
|
|
None
|
|
}
|
|
});
|
|
let fqn = if let clean::TypeKind::Macro = kind {
|
|
vec![crate_name, relative.last().expect("relative was empty")]
|
|
} else {
|
|
once(crate_name).chain(relative).collect()
|
|
};
|
|
|
|
if did.is_local() {
|
|
cx.renderinfo.borrow_mut().exact_paths.insert(did, fqn);
|
|
} else {
|
|
cx.renderinfo.borrow_mut().external_paths.insert(did, (fqn, kind));
|
|
}
|
|
}
|
|
|
|
pub fn build_external_trait(cx: &DocContext<'_>, did: DefId) -> clean::Trait {
|
|
let auto_trait = cx.tcx.trait_def(did).has_auto_impl;
|
|
let trait_items = cx.tcx.associated_items(did).map(|item| item.clean(cx)).collect();
|
|
let predicates = cx.tcx.predicates_of(did);
|
|
let generics = (cx.tcx.generics_of(did), &predicates).clean(cx);
|
|
let generics = filter_non_trait_generics(did, generics);
|
|
let (generics, supertrait_bounds) = separate_supertrait_bounds(generics);
|
|
let is_spotlight = load_attrs(cx, did).has_doc_flag("spotlight");
|
|
let is_auto = cx.tcx.trait_is_auto(did);
|
|
clean::Trait {
|
|
auto: auto_trait,
|
|
unsafety: cx.tcx.trait_def(did).unsafety,
|
|
generics,
|
|
items: trait_items,
|
|
bounds: supertrait_bounds,
|
|
is_spotlight,
|
|
is_auto,
|
|
}
|
|
}
|
|
|
|
fn build_external_function(cx: &DocContext<'_>, did: DefId) -> clean::Function {
|
|
let sig = cx.tcx.fn_sig(did);
|
|
|
|
let constness = if cx.tcx.is_min_const_fn(did) {
|
|
hir::Constness::Const
|
|
} else {
|
|
hir::Constness::NotConst
|
|
};
|
|
|
|
let predicates = cx.tcx.predicates_of(did);
|
|
let generics = (cx.tcx.generics_of(did), &predicates).clean(cx);
|
|
let decl = (did, sig).clean(cx);
|
|
let (all_types, ret_types) = clean::get_all_types(&generics, &decl, cx);
|
|
clean::Function {
|
|
decl,
|
|
generics,
|
|
header: hir::FnHeader {
|
|
unsafety: sig.unsafety(),
|
|
abi: sig.abi(),
|
|
constness,
|
|
asyncness: hir::IsAsync::NotAsync,
|
|
},
|
|
all_types,
|
|
ret_types,
|
|
}
|
|
}
|
|
|
|
fn build_enum(cx: &DocContext<'_>, did: DefId) -> clean::Enum {
|
|
let predicates = cx.tcx.explicit_predicates_of(did);
|
|
|
|
clean::Enum {
|
|
generics: (cx.tcx.generics_of(did), &predicates).clean(cx),
|
|
variants_stripped: false,
|
|
variants: cx.tcx.adt_def(did).variants.clean(cx),
|
|
}
|
|
}
|
|
|
|
fn build_struct(cx: &DocContext<'_>, did: DefId) -> clean::Struct {
|
|
let predicates = cx.tcx.explicit_predicates_of(did);
|
|
let variant = cx.tcx.adt_def(did).non_enum_variant();
|
|
|
|
clean::Struct {
|
|
struct_type: match variant.ctor_kind {
|
|
CtorKind::Fictive => doctree::Plain,
|
|
CtorKind::Fn => doctree::Tuple,
|
|
CtorKind::Const => doctree::Unit,
|
|
},
|
|
generics: (cx.tcx.generics_of(did), &predicates).clean(cx),
|
|
fields: variant.fields.clean(cx),
|
|
fields_stripped: false,
|
|
}
|
|
}
|
|
|
|
fn build_union(cx: &DocContext<'_>, did: DefId) -> clean::Union {
|
|
let predicates = cx.tcx.explicit_predicates_of(did);
|
|
let variant = cx.tcx.adt_def(did).non_enum_variant();
|
|
|
|
clean::Union {
|
|
struct_type: doctree::Plain,
|
|
generics: (cx.tcx.generics_of(did), &predicates).clean(cx),
|
|
fields: variant.fields.clean(cx),
|
|
fields_stripped: false,
|
|
}
|
|
}
|
|
|
|
fn build_type_alias(cx: &DocContext<'_>, did: DefId) -> clean::Typedef {
|
|
let predicates = cx.tcx.explicit_predicates_of(did);
|
|
|
|
clean::Typedef {
|
|
type_: cx.tcx.type_of(did).clean(cx),
|
|
generics: (cx.tcx.generics_of(did), &predicates).clean(cx),
|
|
}
|
|
}
|
|
|
|
pub fn build_impls(cx: &DocContext<'_>, did: DefId) -> Vec<clean::Item> {
|
|
let tcx = cx.tcx;
|
|
let mut impls = Vec::new();
|
|
|
|
for &did in tcx.inherent_impls(did).iter() {
|
|
build_impl(cx, did, &mut impls);
|
|
}
|
|
|
|
impls
|
|
}
|
|
|
|
pub fn build_impl(cx: &DocContext<'_>, did: DefId, ret: &mut Vec<clean::Item>) {
|
|
if !cx.renderinfo.borrow_mut().inlined.insert(did) {
|
|
return
|
|
}
|
|
|
|
let attrs = load_attrs(cx, did);
|
|
let tcx = cx.tcx;
|
|
let associated_trait = tcx.impl_trait_ref(did);
|
|
|
|
// Only inline impl if the implemented trait is
|
|
// reachable in rustdoc generated documentation
|
|
if !did.is_local() {
|
|
if let Some(traitref) = associated_trait {
|
|
if !cx.renderinfo.borrow().access_levels.is_doc_reachable(traitref.def_id) {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
let for_ = if let Some(hir_id) = tcx.hir().as_local_hir_id(did) {
|
|
match tcx.hir().expect_item_by_hir_id(hir_id).node {
|
|
hir::ItemKind::Impl(.., ref t, _) => {
|
|
t.clean(cx)
|
|
}
|
|
_ => panic!("did given to build_impl was not an impl"),
|
|
}
|
|
} else {
|
|
tcx.type_of(did).clean(cx)
|
|
};
|
|
|
|
// Only inline impl if the implementing type is
|
|
// reachable in rustdoc generated documentation
|
|
if !did.is_local() {
|
|
if let Some(did) = for_.def_id() {
|
|
if !cx.renderinfo.borrow().access_levels.is_doc_reachable(did) {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
let predicates = tcx.explicit_predicates_of(did);
|
|
let (trait_items, generics) = if let Some(hir_id) = tcx.hir().as_local_hir_id(did) {
|
|
match tcx.hir().expect_item_by_hir_id(hir_id).node {
|
|
hir::ItemKind::Impl(.., ref gen, _, _, ref item_ids) => {
|
|
(
|
|
item_ids.iter()
|
|
.map(|ii| tcx.hir().impl_item(ii.id).clean(cx))
|
|
.collect::<Vec<_>>(),
|
|
gen.clean(cx),
|
|
)
|
|
}
|
|
_ => panic!("did given to build_impl was not an impl"),
|
|
}
|
|
} else {
|
|
(
|
|
tcx.associated_items(did).filter_map(|item| {
|
|
if associated_trait.is_some() || item.vis == ty::Visibility::Public {
|
|
Some(item.clean(cx))
|
|
} else {
|
|
None
|
|
}
|
|
}).collect::<Vec<_>>(),
|
|
(tcx.generics_of(did), &predicates).clean(cx),
|
|
)
|
|
};
|
|
let polarity = tcx.impl_polarity(did);
|
|
let trait_ = associated_trait.clean(cx).map(|bound| {
|
|
match bound {
|
|
clean::GenericBound::TraitBound(polyt, _) => polyt.trait_,
|
|
clean::GenericBound::Outlives(..) => unreachable!(),
|
|
}
|
|
});
|
|
if trait_.def_id() == tcx.lang_items().deref_trait() {
|
|
super::build_deref_target_impls(cx, &trait_items, ret);
|
|
}
|
|
if let Some(trait_did) = trait_.def_id() {
|
|
record_extern_trait(cx, trait_did);
|
|
}
|
|
|
|
let provided = trait_.def_id().map(|did| {
|
|
tcx.provided_trait_methods(did)
|
|
.into_iter()
|
|
.map(|meth| meth.ident.to_string())
|
|
.collect()
|
|
}).unwrap_or_default();
|
|
|
|
debug!("build_impl: impl {:?} for {:?}", trait_.def_id(), for_.def_id());
|
|
|
|
ret.push(clean::Item {
|
|
inner: clean::ImplItem(clean::Impl {
|
|
unsafety: hir::Unsafety::Normal,
|
|
generics,
|
|
provided_trait_methods: provided,
|
|
trait_,
|
|
for_,
|
|
items: trait_items,
|
|
polarity: Some(polarity.clean(cx)),
|
|
synthetic: false,
|
|
blanket_impl: None,
|
|
}),
|
|
source: tcx.def_span(did).clean(cx),
|
|
name: None,
|
|
attrs,
|
|
visibility: Some(clean::Inherited),
|
|
stability: tcx.lookup_stability(did).clean(cx),
|
|
deprecation: tcx.lookup_deprecation(did).clean(cx),
|
|
def_id: did,
|
|
});
|
|
}
|
|
|
|
fn build_module(
|
|
cx: &DocContext<'_>,
|
|
did: DefId,
|
|
visited: &mut FxHashSet<DefId>
|
|
) -> clean::Module {
|
|
let mut items = Vec::new();
|
|
fill_in(cx, did, &mut items, visited);
|
|
return clean::Module {
|
|
items,
|
|
is_crate: false,
|
|
};
|
|
|
|
fn fill_in(cx: &DocContext<'_>, did: DefId, items: &mut Vec<clean::Item>,
|
|
visited: &mut FxHashSet<DefId>) {
|
|
// If we're re-exporting a re-export it may actually re-export something in
|
|
// two namespaces, so the target may be listed twice. Make sure we only
|
|
// visit each node at most once.
|
|
for &item in cx.tcx.item_children(did).iter() {
|
|
let def_id = item.def.def_id();
|
|
if item.vis == ty::Visibility::Public {
|
|
if did == def_id || !visited.insert(def_id) { continue }
|
|
if let Some(i) = try_inline(cx, item.def, item.ident.name, visited) {
|
|
items.extend(i)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn print_inlined_const(cx: &DocContext<'_>, did: DefId) -> String {
|
|
if let Some(node_id) = cx.tcx.hir().as_local_hir_id(did) {
|
|
cx.tcx.hir().hir_to_pretty_string(node_id)
|
|
} else {
|
|
cx.tcx.rendered_const(did)
|
|
}
|
|
}
|
|
|
|
fn build_const(cx: &DocContext<'_>, did: DefId) -> clean::Constant {
|
|
clean::Constant {
|
|
type_: cx.tcx.type_of(did).clean(cx),
|
|
expr: print_inlined_const(cx, did)
|
|
}
|
|
}
|
|
|
|
fn build_static(cx: &DocContext<'_>, did: DefId, mutable: bool) -> clean::Static {
|
|
clean::Static {
|
|
type_: cx.tcx.type_of(did).clean(cx),
|
|
mutability: if mutable {clean::Mutable} else {clean::Immutable},
|
|
expr: "\n\n\n".to_string(), // trigger the "[definition]" links
|
|
}
|
|
}
|
|
|
|
fn build_macro(cx: &DocContext<'_>, did: DefId, name: ast::Name) -> clean::ItemEnum {
|
|
let imported_from = cx.tcx.original_crate_name(did.krate);
|
|
match cx.cstore.load_macro_untracked(did, cx.sess()) {
|
|
LoadedMacro::MacroDef(def) => {
|
|
let matchers: hir::HirVec<Span> = if let ast::ItemKind::MacroDef(ref def) = def.node {
|
|
let tts: Vec<_> = def.stream().into_trees().collect();
|
|
tts.chunks(4).map(|arm| arm[0].span()).collect()
|
|
} else {
|
|
unreachable!()
|
|
};
|
|
|
|
let source = format!("macro_rules! {} {{\n{}}}",
|
|
name.clean(cx),
|
|
matchers.iter().map(|span| {
|
|
format!(" {} => {{ ... }};\n", span.to_src(cx))
|
|
}).collect::<String>());
|
|
|
|
clean::MacroItem(clean::Macro {
|
|
source,
|
|
imported_from: Some(imported_from).clean(cx),
|
|
})
|
|
}
|
|
LoadedMacro::ProcMacro(ext) => {
|
|
let helpers = match &*ext {
|
|
&SyntaxExtension::ProcMacroDerive(_, ref syms, ..) => { syms.clean(cx) }
|
|
_ => Vec::new(),
|
|
};
|
|
|
|
clean::ProcMacroItem(clean::ProcMacro {
|
|
kind: ext.kind(),
|
|
helpers,
|
|
})
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/// A trait's generics clause actually contains all of the predicates for all of
|
|
/// its associated types as well. We specifically move these clauses to the
|
|
/// associated types instead when displaying, so when we're generating the
|
|
/// generics for the trait itself we need to be sure to remove them.
|
|
/// We also need to remove the implied "recursive" Self: Trait bound.
|
|
///
|
|
/// The inverse of this filtering logic can be found in the `Clean`
|
|
/// implementation for `AssociatedType`
|
|
fn filter_non_trait_generics(trait_did: DefId, mut g: clean::Generics) -> clean::Generics {
|
|
for pred in &mut g.where_predicates {
|
|
match *pred {
|
|
clean::WherePredicate::BoundPredicate {
|
|
ty: clean::Generic(ref s),
|
|
ref mut bounds
|
|
} if *s == "Self" => {
|
|
bounds.retain(|bound| {
|
|
match *bound {
|
|
clean::GenericBound::TraitBound(clean::PolyTrait {
|
|
trait_: clean::ResolvedPath { did, .. },
|
|
..
|
|
}, _) => did != trait_did,
|
|
_ => true
|
|
}
|
|
});
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
g.where_predicates.retain(|pred| {
|
|
match *pred {
|
|
clean::WherePredicate::BoundPredicate {
|
|
ty: clean::QPath {
|
|
self_type: box clean::Generic(ref s),
|
|
trait_: box clean::ResolvedPath { did, .. },
|
|
name: ref _name,
|
|
}, ref bounds
|
|
} => !(*s == "Self" && did == trait_did) && !bounds.is_empty(),
|
|
_ => true,
|
|
}
|
|
});
|
|
g
|
|
}
|
|
|
|
/// Supertrait bounds for a trait are also listed in the generics coming from
|
|
/// the metadata for a crate, so we want to separate those out and create a new
|
|
/// list of explicit supertrait bounds to render nicely.
|
|
fn separate_supertrait_bounds(mut g: clean::Generics)
|
|
-> (clean::Generics, Vec<clean::GenericBound>) {
|
|
let mut ty_bounds = Vec::new();
|
|
g.where_predicates.retain(|pred| {
|
|
match *pred {
|
|
clean::WherePredicate::BoundPredicate {
|
|
ty: clean::Generic(ref s),
|
|
ref bounds
|
|
} if *s == "Self" => {
|
|
ty_bounds.extend(bounds.iter().cloned());
|
|
false
|
|
}
|
|
_ => true,
|
|
}
|
|
});
|
|
(g, ty_bounds)
|
|
}
|
|
|
|
pub fn record_extern_trait(cx: &DocContext<'_>, did: DefId) {
|
|
if did.is_local() {
|
|
return;
|
|
}
|
|
|
|
{
|
|
let external_traits = cx.external_traits.lock();
|
|
if external_traits.borrow().contains_key(&did) ||
|
|
cx.active_extern_traits.borrow().contains(&did)
|
|
{
|
|
return;
|
|
}
|
|
}
|
|
|
|
cx.active_extern_traits.borrow_mut().push(did);
|
|
|
|
debug!("record_extern_trait: {:?}", did);
|
|
let trait_ = build_external_trait(cx, did);
|
|
|
|
{
|
|
let external_traits = cx.external_traits.lock();
|
|
external_traits.borrow_mut().insert(did, trait_);
|
|
}
|
|
cx.active_extern_traits.borrow_mut().remove_item(&did);
|
|
}
|