Files
rust/src/libproc_macro/lib.rs
2018-04-30 05:27:05 +02:00

1330 lines
45 KiB
Rust

// Copyright 2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! A support library for macro authors when defining new macros.
//!
//! This library, provided by the standard distribution, provides the types
//! consumed in the interfaces of procedurally defined macro definitions.
//! Currently the primary use of this crate is to provide the ability to define
//! new custom derive modes through `#[proc_macro_derive]`.
//!
//! Note that this crate is intentionally very bare-bones currently. The main
//! type, `TokenStream`, only supports `fmt::Display` and `FromStr`
//! implementations, indicating that it can only go to and come from a string.
//! This functionality is intended to be expanded over time as more surface
//! area for macro authors is stabilized.
//!
//! See [the book](../book/first-edition/procedural-macros.html) for more.
#![stable(feature = "proc_macro_lib", since = "1.15.0")]
#![deny(missing_docs)]
#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
html_root_url = "https://doc.rust-lang.org/nightly/",
html_playground_url = "https://play.rust-lang.org/",
issue_tracker_base_url = "https://github.com/rust-lang/rust/issues/",
test(no_crate_inject, attr(deny(warnings))),
test(attr(allow(dead_code, deprecated, unused_variables, unused_mut))))]
#![feature(rustc_private)]
#![feature(staged_api)]
#![feature(lang_items)]
#![feature(optin_builtin_traits)]
extern crate syntax;
extern crate syntax_pos;
extern crate rustc_errors;
extern crate rustc_data_structures;
mod diagnostic;
#[unstable(feature = "proc_macro", issue = "38356")]
pub use diagnostic::{Diagnostic, Level};
use std::{ascii, fmt, iter};
use rustc_data_structures::sync::Lrc;
use std::str::FromStr;
use syntax::ast;
use syntax::errors::DiagnosticBuilder;
use syntax::parse::{self, token};
use syntax::symbol::Symbol;
use syntax::tokenstream;
use syntax::parse::lexer::comments;
use syntax_pos::{FileMap, Pos, SyntaxContext, FileName};
use syntax_pos::hygiene::Mark;
/// The main type provided by this crate, representing an abstract stream of
/// tokens.
///
/// This is both the input and output of `#[proc_macro_derive]` definitions.
/// Currently it's required to be a list of valid Rust items, but this
/// restriction may be lifted in the future.
///
/// The API of this type is intentionally bare-bones, but it'll be expanded over
/// time!
#[stable(feature = "proc_macro_lib", since = "1.15.0")]
#[derive(Clone)]
pub struct TokenStream(tokenstream::TokenStream);
/// Error returned from `TokenStream::from_str`.
#[stable(feature = "proc_macro_lib", since = "1.15.0")]
#[derive(Debug)]
pub struct LexError {
_inner: (),
}
impl TokenStream {
/// Returns an empty `TokenStream`.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn empty() -> TokenStream {
TokenStream(tokenstream::TokenStream::empty())
}
/// Checks if this `TokenStream` is empty.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
}
#[stable(feature = "proc_macro_lib", since = "1.15.0")]
impl FromStr for TokenStream {
type Err = LexError;
fn from_str(src: &str) -> Result<TokenStream, LexError> {
__internal::with_sess(|(sess, mark)| {
let src = src.to_string();
let name = FileName::ProcMacroSourceCode;
let expn_info = mark.expn_info().unwrap();
let call_site = expn_info.call_site;
// notify the expansion info that it is unhygienic
let mark = Mark::fresh(mark);
mark.set_expn_info(expn_info);
let span = call_site.with_ctxt(SyntaxContext::empty().apply_mark(mark));
let stream = parse::parse_stream_from_source_str(name, src, sess, Some(span));
Ok(__internal::token_stream_wrap(stream))
})
}
}
#[stable(feature = "proc_macro_lib", since = "1.15.0")]
impl fmt::Display for TokenStream {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0.fmt(f)
}
}
#[stable(feature = "proc_macro_lib", since = "1.15.0")]
impl fmt::Debug for TokenStream {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str("TokenStream ")?;
f.debug_list().entries(self.clone()).finish()
}
}
#[unstable(feature = "proc_macro", issue = "38356")]
impl From<TokenTree> for TokenStream {
fn from(tree: TokenTree) -> TokenStream {
TokenStream(tree.to_internal())
}
}
#[unstable(feature = "proc_macro", issue = "38356")]
impl iter::FromIterator<TokenTree> for TokenStream {
fn from_iter<I: IntoIterator<Item = TokenTree>>(trees: I) -> Self {
trees.into_iter().map(TokenStream::from).collect()
}
}
#[unstable(feature = "proc_macro", issue = "38356")]
impl iter::FromIterator<TokenStream> for TokenStream {
fn from_iter<I: IntoIterator<Item = TokenStream>>(streams: I) -> Self {
let mut builder = tokenstream::TokenStreamBuilder::new();
for stream in streams {
builder.push(stream.0);
}
TokenStream(builder.build())
}
}
/// Implementation details for the `TokenTree` type, such as iterators.
#[unstable(feature = "proc_macro", issue = "38356")]
pub mod token_stream {
use syntax::tokenstream;
use syntax_pos::DUMMY_SP;
use {TokenTree, TokenStream, Delimiter};
/// An iterator over `TokenTree`s.
#[derive(Clone)]
#[unstable(feature = "proc_macro", issue = "38356")]
pub struct IntoIter {
cursor: tokenstream::Cursor,
stack: Vec<TokenTree>,
}
#[unstable(feature = "proc_macro", issue = "38356")]
impl Iterator for IntoIter {
type Item = TokenTree;
fn next(&mut self) -> Option<TokenTree> {
loop {
let tree = self.stack.pop().or_else(|| {
let next = self.cursor.next_as_stream()?;
Some(TokenTree::from_internal(next, &mut self.stack))
})?;
if tree.span().0 == DUMMY_SP {
if let TokenTree::Group(ref group) = tree {
if group.delimiter() == Delimiter::None {
self.cursor.insert(group.stream.clone().0);
continue
}
}
}
return Some(tree);
}
}
}
#[unstable(feature = "proc_macro", issue = "38356")]
impl IntoIterator for TokenStream {
type Item = TokenTree;
type IntoIter = IntoIter;
fn into_iter(self) -> IntoIter {
IntoIter { cursor: self.0.trees(), stack: Vec::new() }
}
}
}
/// `quote!(..)` accepts arbitrary tokens and expands into a `TokenStream` describing the input.
/// For example, `quote!(a + b)` will produce a expression, that, when evaluated, constructs
/// the `TokenStream` `[Word("a"), Op('+', Alone), Word("b")]`.
///
/// Unquoting is done with `$`, and works by taking the single next ident as the unquoted term.
/// To quote `$` itself, use `$$`.
#[unstable(feature = "proc_macro", issue = "38356")]
#[macro_export]
macro_rules! quote { () => {} }
#[unstable(feature = "proc_macro_internals", issue = "27812")]
#[doc(hidden)]
mod quote;
/// Quote a `Span` into a `TokenStream`.
/// This is needed to implement a custom quoter.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn quote_span(span: Span) -> TokenStream {
quote::Quote::quote(span)
}
/// A region of source code, along with macro expansion information.
#[unstable(feature = "proc_macro", issue = "38356")]
#[derive(Copy, Clone)]
pub struct Span(syntax_pos::Span);
macro_rules! diagnostic_method {
($name:ident, $level:expr) => (
/// Create a new `Diagnostic` with the given `message` at the span
/// `self`.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn $name<T: Into<String>>(self, message: T) -> Diagnostic {
Diagnostic::spanned(self, $level, message)
}
)
}
impl Span {
/// A span that resolves at the macro definition site.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn def_site() -> Span {
::__internal::with_sess(|(_, mark)| {
let call_site = mark.expn_info().unwrap().call_site;
Span(call_site.with_ctxt(SyntaxContext::empty().apply_mark(mark)))
})
}
/// The span of the invocation of the current procedural macro.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn call_site() -> Span {
::__internal::with_sess(|(_, mark)| Span(mark.expn_info().unwrap().call_site))
}
/// The original source file into which this span points.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn source_file(&self) -> SourceFile {
SourceFile {
filemap: __internal::lookup_char_pos(self.0.lo()).file,
}
}
/// The `Span` for the tokens in the previous macro expansion from which
/// `self` was generated from, if any.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn parent(&self) -> Option<Span> {
self.0.parent().map(Span)
}
/// The span for the origin source code that `self` was generated from. If
/// this `Span` wasn't generated from other macro expansions then the return
/// value is the same as `*self`.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn source(&self) -> Span {
Span(self.0.source_callsite())
}
/// Get the starting line/column in the source file for this span.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn start(&self) -> LineColumn {
let loc = __internal::lookup_char_pos(self.0.lo());
LineColumn {
line: loc.line,
column: loc.col.to_usize()
}
}
/// Get the ending line/column in the source file for this span.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn end(&self) -> LineColumn {
let loc = __internal::lookup_char_pos(self.0.hi());
LineColumn {
line: loc.line,
column: loc.col.to_usize()
}
}
/// Create a new span encompassing `self` and `other`.
///
/// Returns `None` if `self` and `other` are from different files.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn join(&self, other: Span) -> Option<Span> {
let self_loc = __internal::lookup_char_pos(self.0.lo());
let other_loc = __internal::lookup_char_pos(other.0.lo());
if self_loc.file.name != other_loc.file.name { return None }
Some(Span(self.0.to(other.0)))
}
/// Creates a new span with the same line/column information as `self` but
/// that resolves symbols as though it were at `other`.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn resolved_at(&self, other: Span) -> Span {
Span(self.0.with_ctxt(other.0.ctxt()))
}
/// Creates a new span with the same name resolution behavior as `self` but
/// with the line/column information of `other`.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn located_at(&self, other: Span) -> Span {
other.resolved_at(*self)
}
/// Compares to spans to see if they're equal.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn eq(&self, other: &Span) -> bool {
self.0 == other.0
}
diagnostic_method!(error, Level::Error);
diagnostic_method!(warning, Level::Warning);
diagnostic_method!(note, Level::Note);
diagnostic_method!(help, Level::Help);
}
#[unstable(feature = "proc_macro", issue = "38356")]
impl fmt::Debug for Span {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{:?} bytes({}..{})",
self.0.ctxt(),
self.0.lo().0,
self.0.hi().0)
}
}
/// A line-column pair representing the start or end of a `Span`.
#[unstable(feature = "proc_macro", issue = "38356")]
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub struct LineColumn {
/// The 1-indexed line in the source file on which the span starts or ends (inclusive).
#[unstable(feature = "proc_macro", issue = "38356")]
pub line: usize,
/// The 0-indexed column (in UTF-8 characters) in the source file on which
/// the span starts or ends (inclusive).
#[unstable(feature = "proc_macro", issue = "38356")]
pub column: usize
}
/// The source file of a given `Span`.
#[unstable(feature = "proc_macro", issue = "38356")]
#[derive(Clone)]
pub struct SourceFile {
filemap: Lrc<FileMap>,
}
#[unstable(feature = "proc_macro", issue = "38356")]
impl !Send for SourceFile {}
#[unstable(feature = "proc_macro", issue = "38356")]
impl !Sync for SourceFile {}
impl SourceFile {
/// Get the path to this source file.
///
/// ### Note
/// If the code span associated with this `SourceFile` was generated by an external macro, this
/// may not be an actual path on the filesystem. Use [`is_real`] to check.
///
/// Also note that even if `is_real` returns `true`, if `--remap-path-prefix` was passed on
/// the command line, the path as given may not actually be valid.
///
/// [`is_real`]: #method.is_real
# [unstable(feature = "proc_macro", issue = "38356")]
pub fn path(&self) -> &FileName {
&self.filemap.name
}
/// Returns `true` if this source file is a real source file, and not generated by an external
/// macro's expansion.
# [unstable(feature = "proc_macro", issue = "38356")]
pub fn is_real(&self) -> bool {
// This is a hack until intercrate spans are implemented and we can have real source files
// for spans generated in external macros.
// https://github.com/rust-lang/rust/pull/43604#issuecomment-333334368
self.filemap.is_real_file()
}
}
#[unstable(feature = "proc_macro", issue = "38356")]
impl AsRef<FileName> for SourceFile {
fn as_ref(&self) -> &FileName {
self.path()
}
}
#[unstable(feature = "proc_macro", issue = "38356")]
impl fmt::Debug for SourceFile {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_struct("SourceFile")
.field("path", self.path())
.field("is_real", &self.is_real())
.finish()
}
}
#[unstable(feature = "proc_macro", issue = "38356")]
impl PartialEq for SourceFile {
fn eq(&self, other: &Self) -> bool {
Lrc::ptr_eq(&self.filemap, &other.filemap)
}
}
#[unstable(feature = "proc_macro", issue = "38356")]
impl Eq for SourceFile {}
#[unstable(feature = "proc_macro", issue = "38356")]
impl PartialEq<FileName> for SourceFile {
fn eq(&self, other: &FileName) -> bool {
self.as_ref() == other
}
}
/// A single token or a delimited sequence of token trees (e.g. `[1, (), ..]`).
#[unstable(feature = "proc_macro", issue = "38356")]
#[derive(Clone)]
pub enum TokenTree {
/// A delimited tokenstream
Group(Group),
/// A unicode identifier
Term(Term),
/// A punctuation character (`+`, `,`, `$`, etc.).
Op(Op),
/// A literal character (`'a'`), string (`"hello"`), number (`2.3`), etc.
Literal(Literal),
}
impl TokenTree {
/// Returns the span of this token, accessing the `span` method of each of
/// the internal tokens.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn span(&self) -> Span {
match *self {
TokenTree::Group(ref t) => t.span(),
TokenTree::Term(ref t) => t.span(),
TokenTree::Op(ref t) => t.span(),
TokenTree::Literal(ref t) => t.span(),
}
}
/// Configures the span for *only this token*.
///
/// Note that if this token is a `Group` then this method will not configure
/// the span of each of the internal tokens, this will simply delegate to
/// the `set_span` method of each variant.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn set_span(&mut self, span: Span) {
match *self {
TokenTree::Group(ref mut t) => t.set_span(span),
TokenTree::Term(ref mut t) => t.set_span(span),
TokenTree::Op(ref mut t) => t.set_span(span),
TokenTree::Literal(ref mut t) => t.set_span(span),
}
}
}
#[unstable(feature = "proc_macro", issue = "38356")]
impl fmt::Debug for TokenTree {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
// Each of these has the name in the struct type in the derived debug,
// so don't bother with an extra layer of indirection
match *self {
TokenTree::Group(ref tt) => tt.fmt(f),
TokenTree::Term(ref tt) => tt.fmt(f),
TokenTree::Op(ref tt) => tt.fmt(f),
TokenTree::Literal(ref tt) => tt.fmt(f),
}
}
}
#[unstable(feature = "proc_macro", issue = "38356")]
impl From<Group> for TokenTree {
fn from(g: Group) -> TokenTree {
TokenTree::Group(g)
}
}
#[unstable(feature = "proc_macro", issue = "38356")]
impl From<Term> for TokenTree {
fn from(g: Term) -> TokenTree {
TokenTree::Term(g)
}
}
#[unstable(feature = "proc_macro", issue = "38356")]
impl From<Op> for TokenTree {
fn from(g: Op) -> TokenTree {
TokenTree::Op(g)
}
}
#[unstable(feature = "proc_macro", issue = "38356")]
impl From<Literal> for TokenTree {
fn from(g: Literal) -> TokenTree {
TokenTree::Literal(g)
}
}
#[unstable(feature = "proc_macro", issue = "38356")]
impl fmt::Display for TokenTree {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match *self {
TokenTree::Group(ref t) => t.fmt(f),
TokenTree::Term(ref t) => t.fmt(f),
TokenTree::Op(ref t) => t.fmt(f),
TokenTree::Literal(ref t) => t.fmt(f),
}
}
}
/// A delimited token stream
///
/// A `Group` internally contains a `TokenStream` which is delimited by a
/// `Delimiter`. Groups represent multiple tokens internally and have a `Span`
/// for the entire stream.
#[derive(Clone, Debug)]
#[unstable(feature = "proc_macro", issue = "38356")]
pub struct Group {
delimiter: Delimiter,
stream: TokenStream,
span: Span,
}
/// Describes how a sequence of token trees is delimited.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[unstable(feature = "proc_macro", issue = "38356")]
pub enum Delimiter {
/// `( ... )`
Parenthesis,
/// `{ ... }`
Brace,
/// `[ ... ]`
Bracket,
/// An implicit delimiter, e.g. `$var`, where $var is `...`.
None,
}
impl Group {
/// Creates a new `group` with the given delimiter and token stream.
///
/// This constructor will set the span for this group to
/// `Span::call_site()`. To change the span you can use the `set_span`
/// method below.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn new(delimiter: Delimiter, stream: TokenStream) -> Group {
Group {
delimiter: delimiter,
stream: stream,
span: Span::call_site(),
}
}
/// Returns the delimiter of this `Group`
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn delimiter(&self) -> Delimiter {
self.delimiter
}
/// Returns the `TokenStream` of tokens that are delimited in this `Group`.
///
/// Note that the returned token stream does not include the delimiter
/// returned above.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn stream(&self) -> TokenStream {
self.stream.clone()
}
/// Returns the span for the delimiters of this token stream, spanning the
/// entire `Group`.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn span(&self) -> Span {
self.span
}
/// Configures the span for this `Group`'s delimiters, but not its internal
/// tokens.
///
/// This method will **not** set the span of all the internal tokens spanned
/// by this group, but rather it will only set the span of the delimiter
/// tokens at the level of the `Group`.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn set_span(&mut self, span: Span) {
self.span = span;
}
}
#[unstable(feature = "proc_macro", issue = "38356")]
impl fmt::Display for Group {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
TokenStream::from(TokenTree::from(self.clone())).fmt(f)
}
}
/// An `Op` is an operator like `+` or `-`, and only represents one character.
///
/// Operators like `+=` are represented as two instance of `Op` with different
/// forms of `Spacing` returned.
#[unstable(feature = "proc_macro", issue = "38356")]
#[derive(Copy, Clone, Debug)]
pub struct Op {
op: char,
spacing: Spacing,
span: Span,
}
/// Whether an `Op` is either followed immediately by another `Op` or followed by whitespace.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[unstable(feature = "proc_macro", issue = "38356")]
pub enum Spacing {
/// e.g. `+` is `Alone` in `+ =`.
Alone,
/// e.g. `+` is `Joint` in `+=`.
Joint,
}
impl Op {
/// Creates a new `Op` from the given character and spacing.
///
/// The returned `Op` will have the default span of `Span::call_site()`
/// which can be further configured with the `set_span` method below.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn new(op: char, spacing: Spacing) -> Op {
Op {
op: op,
spacing: spacing,
span: Span::call_site(),
}
}
/// Returns the character this operation represents, for example `'+'`
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn op(&self) -> char {
self.op
}
/// Returns the spacing of this operator, indicating whether it's a joint
/// operator with more operators coming next in the token stream or an
/// `Alone` meaning that the operator has ended.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn spacing(&self) -> Spacing {
self.spacing
}
/// Returns the span for this operator character
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn span(&self) -> Span {
self.span
}
/// Configure the span for this operator's character
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn set_span(&mut self, span: Span) {
self.span = span;
}
}
#[unstable(feature = "proc_macro", issue = "38356")]
impl fmt::Display for Op {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
TokenStream::from(TokenTree::from(self.clone())).fmt(f)
}
}
/// An interned string.
#[derive(Copy, Clone, Debug)]
#[unstable(feature = "proc_macro", issue = "38356")]
pub struct Term {
sym: Symbol,
span: Span,
}
impl Term {
/// Creates a new `Term` with the given `string` as well as the specified
/// `span`.
///
/// Note that `span`, currently in rustc, configures the hygiene information
/// for this identifier. As of this time `Span::call_site()` explicitly
/// opts-in to **non-hygienic** information (aka copy/pasted code) while
/// spans like `Span::def_site()` will opt-in to hygienic information,
/// meaning that code at the call site of the macro can't access this
/// identifier.
///
/// Due to the current importance of hygiene this constructor, unlike other
/// tokens, requires a `Span` to be specified at construction.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn new(string: &str, span: Span) -> Term {
Term {
sym: Symbol::intern(string),
span,
}
}
// FIXME: Remove this, do not stabilize
/// Get a reference to the interned string.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn as_str(&self) -> &str {
unsafe { &*(&*self.sym.as_str() as *const str) }
}
/// Returns the span of this `Term`, encompassing the entire string returned
/// by `as_str`.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn span(&self) -> Span {
self.span
}
/// Configures the span of this `Term`, possibly changing hygiene
/// information.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn set_span(&mut self, span: Span) {
self.span = span;
}
}
#[unstable(feature = "proc_macro", issue = "38356")]
impl fmt::Display for Term {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.sym.as_str().fmt(f)
}
}
/// A literal character (`'a'`), string (`"hello"`), a number (`2.3`), etc.
#[derive(Clone, Debug)]
#[unstable(feature = "proc_macro", issue = "38356")]
pub struct Literal {
lit: token::Lit,
suffix: Option<ast::Name>,
span: Span,
}
macro_rules! suffixed_int_literals {
($($name:ident => $kind:ident,)*) => ($(
/// Creates a new suffixed integer literal with the specified value.
///
/// This function will create an integer like `1u32` where the integer
/// value specified is the first part of the token and the integral is
/// also suffixed at the end.
///
/// Literals created through this method have the `Span::call_site()`
/// span by default, which can be configured with the `set_span` method
/// below.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn $name(n: $kind) -> Literal {
Literal {
lit: token::Lit::Integer(Symbol::intern(&n.to_string())),
suffix: Some(Symbol::intern(stringify!($kind))),
span: Span::call_site(),
}
}
)*)
}
macro_rules! unsuffixed_int_literals {
($($name:ident => $kind:ident,)*) => ($(
/// Creates a new unsuffixed integer literal with the specified value.
///
/// This function will create an integer like `1` where the integer
/// value specified is the first part of the token. No suffix is
/// specified on this token, meaning that invocations like
/// `Literal::i8_unsuffixed(1)` are equivalent to
/// `Literal::u32_unsuffixed(1)`.
///
/// Literals created through this method have the `Span::call_site()`
/// span by default, which can be configured with the `set_span` method
/// below.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn $name(n: $kind) -> Literal {
Literal {
lit: token::Lit::Integer(Symbol::intern(&n.to_string())),
suffix: None,
span: Span::call_site(),
}
}
)*)
}
impl Literal {
suffixed_int_literals! {
u8_suffixed => u8,
u16_suffixed => u16,
u32_suffixed => u32,
u64_suffixed => u64,
u128_suffixed => u128,
usize_suffixed => usize,
i8_suffixed => i8,
i16_suffixed => i16,
i32_suffixed => i32,
i64_suffixed => i64,
i128_suffixed => i128,
isize_suffixed => isize,
}
unsuffixed_int_literals! {
u8_unsuffixed => u8,
u16_unsuffixed => u16,
u32_unsuffixed => u32,
u64_unsuffixed => u64,
u128_unsuffixed => u128,
usize_unsuffixed => usize,
i8_unsuffixed => i8,
i16_unsuffixed => i16,
i32_unsuffixed => i32,
i64_unsuffixed => i64,
i128_unsuffixed => i128,
isize_unsuffixed => isize,
}
/// Creates a new unsuffixed floating-point literal.
///
/// This constructor is similar to those like `Literal::i8_unsuffixed` where
/// the float's value is emitted directly into the token but no suffix is
/// used, so it may be inferred to be a `f64` later in the compiler.
///
/// # Panics
///
/// This function requires that the specified float is finite, for
/// example if it is infinity or NaN this function will panic.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn f32_unsuffixed(n: f32) -> Literal {
if !n.is_finite() {
panic!("Invalid float literal {}", n);
}
Literal {
lit: token::Lit::Float(Symbol::intern(&n.to_string())),
suffix: None,
span: Span::call_site(),
}
}
/// Creates a new suffixed floating-point literal.
///
/// This consturctor will create a literal like `1.0f32` where the value
/// specified is the preceding part of the token and `f32` is the suffix of
/// the token. This token will always be inferred to be an `f32` in the
/// compiler.
///
/// # Panics
///
/// This function requires that the specified float is finite, for
/// example if it is infinity or NaN this function will panic.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn f32_suffixed(n: f32) -> Literal {
if !n.is_finite() {
panic!("Invalid float literal {}", n);
}
Literal {
lit: token::Lit::Float(Symbol::intern(&n.to_string())),
suffix: Some(Symbol::intern("f32")),
span: Span::call_site(),
}
}
/// Creates a new unsuffixed floating-point literal.
///
/// This constructor is similar to those like `Literal::i8_unsuffixed` where
/// the float's value is emitted directly into the token but no suffix is
/// used, so it may be inferred to be a `f64` later in the compiler.
///
/// # Panics
///
/// This function requires that the specified float is finite, for
/// example if it is infinity or NaN this function will panic.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn f64_unsuffixed(n: f64) -> Literal {
if !n.is_finite() {
panic!("Invalid float literal {}", n);
}
Literal {
lit: token::Lit::Float(Symbol::intern(&n.to_string())),
suffix: None,
span: Span::call_site(),
}
}
/// Creates a new suffixed floating-point literal.
///
/// This consturctor will create a literal like `1.0f64` where the value
/// specified is the preceding part of the token and `f64` is the suffix of
/// the token. This token will always be inferred to be an `f64` in the
/// compiler.
///
/// # Panics
///
/// This function requires that the specified float is finite, for
/// example if it is infinity or NaN this function will panic.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn f64_suffixed(n: f64) -> Literal {
if !n.is_finite() {
panic!("Invalid float literal {}", n);
}
Literal {
lit: token::Lit::Float(Symbol::intern(&n.to_string())),
suffix: Some(Symbol::intern("f64")),
span: Span::call_site(),
}
}
/// String literal.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn string(string: &str) -> Literal {
let mut escaped = String::new();
for ch in string.chars() {
escaped.extend(ch.escape_debug());
}
Literal {
lit: token::Lit::Str_(Symbol::intern(&escaped)),
suffix: None,
span: Span::call_site(),
}
}
/// Character literal.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn character(ch: char) -> Literal {
let mut escaped = String::new();
escaped.extend(ch.escape_unicode());
Literal {
lit: token::Lit::Char(Symbol::intern(&escaped)),
suffix: None,
span: Span::call_site(),
}
}
/// Byte string literal.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn byte_string(bytes: &[u8]) -> Literal {
let string = bytes.iter().cloned().flat_map(ascii::escape_default)
.map(Into::<char>::into).collect::<String>();
Literal {
lit: token::Lit::ByteStr(Symbol::intern(&string)),
suffix: None,
span: Span::call_site(),
}
}
/// Returns the span encompassing this literal.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn span(&self) -> Span {
self.span
}
/// Configures the span associated for this literal.
#[unstable(feature = "proc_macro", issue = "38356")]
pub fn set_span(&mut self, span: Span) {
self.span = span;
}
}
#[unstable(feature = "proc_macro", issue = "38356")]
impl fmt::Display for Literal {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
TokenStream::from(TokenTree::from(self.clone())).fmt(f)
}
}
impl Delimiter {
fn from_internal(delim: token::DelimToken) -> Delimiter {
match delim {
token::Paren => Delimiter::Parenthesis,
token::Brace => Delimiter::Brace,
token::Bracket => Delimiter::Bracket,
token::NoDelim => Delimiter::None,
}
}
fn to_internal(self) -> token::DelimToken {
match self {
Delimiter::Parenthesis => token::Paren,
Delimiter::Brace => token::Brace,
Delimiter::Bracket => token::Bracket,
Delimiter::None => token::NoDelim,
}
}
}
impl TokenTree {
fn from_internal(stream: tokenstream::TokenStream, stack: &mut Vec<TokenTree>)
-> TokenTree {
use syntax::parse::token::*;
let (tree, is_joint) = stream.as_tree();
let (span, token) = match tree {
tokenstream::TokenTree::Token(span, token) => (span, token),
tokenstream::TokenTree::Delimited(span, delimed) => {
let delimiter = Delimiter::from_internal(delimed.delim);
let mut g = Group::new(delimiter, TokenStream(delimed.tts.into()));
g.set_span(Span(span));
return g.into()
}
};
let op_kind = if is_joint { Spacing::Joint } else { Spacing::Alone };
macro_rules! tt {
($e:expr) => ({
let mut x = TokenTree::from($e);
x.set_span(Span(span));
x
})
}
macro_rules! op {
($a:expr) => (tt!(Op::new($a, op_kind)));
($a:expr, $b:expr) => ({
stack.push(tt!(Op::new($b, op_kind)));
tt!(Op::new($a, Spacing::Joint))
});
($a:expr, $b:expr, $c:expr) => ({
stack.push(tt!(Op::new($c, op_kind)));
stack.push(tt!(Op::new($b, Spacing::Joint)));
tt!(Op::new($a, Spacing::Joint))
})
}
match token {
Eq => op!('='),
Lt => op!('<'),
Le => op!('<', '='),
EqEq => op!('=', '='),
Ne => op!('!', '='),
Ge => op!('>', '='),
Gt => op!('>'),
AndAnd => op!('&', '&'),
OrOr => op!('|', '|'),
Not => op!('!'),
Tilde => op!('~'),
BinOp(Plus) => op!('+'),
BinOp(Minus) => op!('-'),
BinOp(Star) => op!('*'),
BinOp(Slash) => op!('/'),
BinOp(Percent) => op!('%'),
BinOp(Caret) => op!('^'),
BinOp(And) => op!('&'),
BinOp(Or) => op!('|'),
BinOp(Shl) => op!('<', '<'),
BinOp(Shr) => op!('>', '>'),
BinOpEq(Plus) => op!('+', '='),
BinOpEq(Minus) => op!('-', '='),
BinOpEq(Star) => op!('*', '='),
BinOpEq(Slash) => op!('/', '='),
BinOpEq(Percent) => op!('%', '='),
BinOpEq(Caret) => op!('^', '='),
BinOpEq(And) => op!('&', '='),
BinOpEq(Or) => op!('|', '='),
BinOpEq(Shl) => op!('<', '<', '='),
BinOpEq(Shr) => op!('>', '>', '='),
At => op!('@'),
Dot => op!('.'),
DotDot => op!('.', '.'),
DotDotDot => op!('.', '.', '.'),
DotDotEq => op!('.', '.', '='),
Comma => op!(','),
Semi => op!(';'),
Colon => op!(':'),
ModSep => op!(':', ':'),
RArrow => op!('-', '>'),
LArrow => op!('<', '-'),
FatArrow => op!('=', '>'),
Pound => op!('#'),
Dollar => op!('$'),
Question => op!('?'),
Ident(ident, false) | Lifetime(ident) => {
tt!(Term::new(&ident.name.as_str(), Span(span)))
}
Ident(ident, true) => {
tt!(Term::new(&format!("r#{}", ident), Span(span)))
}
Literal(lit, suffix) => tt!(self::Literal { lit, suffix, span: Span(span) }),
DocComment(c) => {
let style = comments::doc_comment_style(&c.as_str());
let stripped = comments::strip_doc_comment_decoration(&c.as_str());
let stream = vec![
tt!(Term::new("doc", Span(span))),
tt!(Op::new('=', Spacing::Alone)),
tt!(self::Literal::string(&stripped)),
].into_iter().collect();
stack.push(tt!(Group::new(Delimiter::Bracket, stream)));
if style == ast::AttrStyle::Inner {
stack.push(tt!(Op::new('!', Spacing::Alone)));
}
tt!(Op::new('#', Spacing::Alone))
}
Interpolated(_) => {
__internal::with_sess(|(sess, _)| {
let tts = token.interpolated_to_tokenstream(sess, span);
tt!(Group::new(Delimiter::None, TokenStream(tts)))
})
}
DotEq => op!('.', '='),
OpenDelim(..) | CloseDelim(..) => unreachable!(),
Whitespace | Comment | Shebang(..) | Eof => unreachable!(),
}
}
fn to_internal(self) -> tokenstream::TokenStream {
use syntax::parse::token::*;
use syntax::tokenstream::{TokenTree, Delimited};
let (op, kind, span) = match self {
self::TokenTree::Op(tt) => (tt.op(), tt.spacing(), tt.span()),
self::TokenTree::Group(tt) => {
return TokenTree::Delimited(tt.span.0, Delimited {
delim: tt.delimiter.to_internal(),
tts: tt.stream.0.into(),
}).into();
},
self::TokenTree::Term(tt) => {
let ident = ast::Ident::new(tt.sym, tt.span.0);
let sym_str = tt.sym.to_string();
let token = if sym_str.starts_with("'") {
Lifetime(ident)
} else if sym_str.starts_with("r#") {
let name = Symbol::intern(&sym_str[2..]);
let ident = ast::Ident::new(name, ident.span);
Ident(ident, true)
} else {
Ident(ident, false)
};
return TokenTree::Token(tt.span.0, token).into();
}
self::TokenTree::Literal(self::Literal {
lit: Lit::Integer(ref a),
suffix,
span,
})
if a.as_str().starts_with("-") =>
{
let minus = BinOp(BinOpToken::Minus);
let integer = Symbol::intern(&a.as_str()[1..]);
let integer = Literal(Lit::Integer(integer), suffix);
let a = TokenTree::Token(span.0, minus);
let b = TokenTree::Token(span.0, integer);
return vec![a, b].into_iter().collect()
}
self::TokenTree::Literal(self::Literal {
lit: Lit::Float(ref a),
suffix,
span,
})
if a.as_str().starts_with("-") =>
{
let minus = BinOp(BinOpToken::Minus);
let float = Symbol::intern(&a.as_str()[1..]);
let float = Literal(Lit::Float(float), suffix);
let a = TokenTree::Token(span.0, minus);
let b = TokenTree::Token(span.0, float);
return vec![a, b].into_iter().collect()
}
self::TokenTree::Literal(tt) => {
let token = Literal(tt.lit, tt.suffix);
return TokenTree::Token(tt.span.0, token).into()
}
};
let token = match op {
'=' => Eq,
'<' => Lt,
'>' => Gt,
'!' => Not,
'~' => Tilde,
'+' => BinOp(Plus),
'-' => BinOp(Minus),
'*' => BinOp(Star),
'/' => BinOp(Slash),
'%' => BinOp(Percent),
'^' => BinOp(Caret),
'&' => BinOp(And),
'|' => BinOp(Or),
'@' => At,
'.' => Dot,
',' => Comma,
';' => Semi,
':' => Colon,
'#' => Pound,
'$' => Dollar,
'?' => Question,
_ => panic!("unsupported character {}", op),
};
let tree = TokenTree::Token(span.0, token);
match kind {
Spacing::Alone => tree.into(),
Spacing::Joint => tree.joint(),
}
}
}
/// Permanently unstable internal implementation details of this crate. This
/// should not be used.
///
/// These methods are used by the rest of the compiler to generate instances of
/// `TokenStream` to hand to macro definitions, as well as consume the output.
///
/// Note that this module is also intentionally separate from the rest of the
/// crate. This allows the `#[unstable]` directive below to naturally apply to
/// all of the contents.
#[unstable(feature = "proc_macro_internals", issue = "27812")]
#[doc(hidden)]
pub mod __internal {
pub use quote::{LiteralKind, Quoter, unquote};
use std::cell::Cell;
use syntax::ast;
use syntax::ext::base::ExtCtxt;
use syntax::ext::hygiene::Mark;
use syntax::ptr::P;
use syntax::parse::{self, ParseSess};
use syntax::parse::token::{self, Token};
use syntax::tokenstream;
use syntax_pos::{BytePos, Loc, DUMMY_SP};
use super::{TokenStream, LexError};
pub fn lookup_char_pos(pos: BytePos) -> Loc {
with_sess(|(sess, _)| sess.codemap().lookup_char_pos(pos))
}
pub fn new_token_stream(item: P<ast::Item>) -> TokenStream {
let token = Token::interpolated(token::NtItem(item));
TokenStream(tokenstream::TokenTree::Token(DUMMY_SP, token).into())
}
pub fn token_stream_wrap(inner: tokenstream::TokenStream) -> TokenStream {
TokenStream(inner)
}
pub fn token_stream_parse_items(stream: TokenStream) -> Result<Vec<P<ast::Item>>, LexError> {
with_sess(move |(sess, _)| {
let mut parser = parse::stream_to_parser(sess, stream.0);
let mut items = Vec::new();
while let Some(item) = try!(parser.parse_item().map_err(super::parse_to_lex_err)) {
items.push(item)
}
Ok(items)
})
}
pub fn token_stream_inner(stream: TokenStream) -> tokenstream::TokenStream {
stream.0
}
pub trait Registry {
fn register_custom_derive(&mut self,
trait_name: &str,
expand: fn(TokenStream) -> TokenStream,
attributes: &[&'static str]);
fn register_attr_proc_macro(&mut self,
name: &str,
expand: fn(TokenStream, TokenStream) -> TokenStream);
fn register_bang_proc_macro(&mut self,
name: &str,
expand: fn(TokenStream) -> TokenStream);
}
// Emulate scoped_thread_local!() here essentially
thread_local! {
static CURRENT_SESS: Cell<(*const ParseSess, Mark)> =
Cell::new((0 as *const _, Mark::root()));
}
pub fn set_sess<F, R>(cx: &ExtCtxt, f: F) -> R
where F: FnOnce() -> R
{
struct Reset { prev: (*const ParseSess, Mark) }
impl Drop for Reset {
fn drop(&mut self) {
CURRENT_SESS.with(|p| p.set(self.prev));
}
}
CURRENT_SESS.with(|p| {
let _reset = Reset { prev: p.get() };
p.set((cx.parse_sess, cx.current_expansion.mark));
f()
})
}
pub fn in_sess() -> bool
{
let p = CURRENT_SESS.with(|p| p.get());
!p.0.is_null()
}
pub fn with_sess<F, R>(f: F) -> R
where F: FnOnce((&ParseSess, Mark)) -> R
{
let p = CURRENT_SESS.with(|p| p.get());
assert!(!p.0.is_null(), "proc_macro::__internal::with_sess() called \
before set_parse_sess()!");
f(unsafe { (&*p.0, p.1) })
}
}
fn parse_to_lex_err(mut err: DiagnosticBuilder) -> LexError {
err.cancel();
LexError { _inner: () }
}