Files
rust/compiler/rustc_mir_dataflow/src/framework/tests.rs
Tomasz Miąsko 39de03d844 Change Direction::{is_forward,is_backward} functions into constants
Make it explicit that the analysis direction is constant.

This also makes the value immediately available for optimizations.
Previously those functions were neither inline nor generic and so their
definition was unavailable when using data flow framework from other
crates.
2022-06-07 17:02:55 +02:00

323 lines
10 KiB
Rust

//! A test for the logic that updates the state in a `ResultsCursor` during seek.
use std::marker::PhantomData;
use rustc_index::bit_set::BitSet;
use rustc_index::vec::IndexVec;
use rustc_middle::mir::{self, BasicBlock, Location};
use rustc_middle::ty;
use rustc_span::DUMMY_SP;
use super::*;
/// Creates a `mir::Body` with a few disconnected basic blocks.
///
/// This is the `Body` that will be used by the `MockAnalysis` below. The shape of its CFG is not
/// important.
fn mock_body<'tcx>() -> mir::Body<'tcx> {
let source_info = mir::SourceInfo::outermost(DUMMY_SP);
let mut blocks = IndexVec::new();
let mut block = |n, kind| {
let nop = mir::Statement { source_info, kind: mir::StatementKind::Nop };
blocks.push(mir::BasicBlockData {
statements: std::iter::repeat(&nop).cloned().take(n).collect(),
terminator: Some(mir::Terminator { source_info, kind }),
is_cleanup: false,
})
};
let dummy_place = mir::Place { local: mir::RETURN_PLACE, projection: ty::List::empty() };
block(4, mir::TerminatorKind::Return);
block(1, mir::TerminatorKind::Return);
block(
2,
mir::TerminatorKind::Call {
func: mir::Operand::Copy(dummy_place.clone()),
args: vec![],
destination: dummy_place.clone(),
target: Some(mir::START_BLOCK),
cleanup: None,
from_hir_call: false,
fn_span: DUMMY_SP,
},
);
block(3, mir::TerminatorKind::Return);
block(0, mir::TerminatorKind::Return);
block(
4,
mir::TerminatorKind::Call {
func: mir::Operand::Copy(dummy_place.clone()),
args: vec![],
destination: dummy_place.clone(),
target: Some(mir::START_BLOCK),
cleanup: None,
from_hir_call: false,
fn_span: DUMMY_SP,
},
);
mir::Body::new_cfg_only(blocks)
}
/// A dataflow analysis whose state is unique at every possible `SeekTarget`.
///
/// Uniqueness is achieved by having a *locally* unique effect before and after each statement and
/// terminator (see `effect_at_target`) while ensuring that the entry set for each block is
/// *globally* unique (see `mock_entry_set`).
///
/// For example, a `BasicBlock` with ID `2` and a `Call` terminator has the following state at each
/// location ("+x" indicates that "x" is added to the state).
///
/// | Location | Before | After |
/// |------------------------|-------------------|--------|
/// | (on_entry) | {102} ||
/// | statement 0 | +0 | +1 |
/// | statement 1 | +2 | +3 |
/// | `Call` terminator | +4 | +5 |
/// | (on unwind) | {102,0,1,2,3,4,5} ||
///
/// The `102` in the block's entry set is derived from the basic block index and ensures that the
/// expected state is unique across all basic blocks. Remember, it is generated by
/// `mock_entry_sets`, not from actually running `MockAnalysis` to fixpoint.
struct MockAnalysis<'tcx, D> {
body: &'tcx mir::Body<'tcx>,
dir: PhantomData<D>,
}
impl<D: Direction> MockAnalysis<'_, D> {
const BASIC_BLOCK_OFFSET: usize = 100;
/// The entry set for each `BasicBlock` is the ID of that block offset by a fixed amount to
/// avoid colliding with the statement/terminator effects.
fn mock_entry_set(&self, bb: BasicBlock) -> BitSet<usize> {
let mut ret = self.bottom_value(self.body);
ret.insert(Self::BASIC_BLOCK_OFFSET + bb.index());
ret
}
fn mock_entry_sets(&self) -> IndexVec<BasicBlock, BitSet<usize>> {
let empty = self.bottom_value(self.body);
let mut ret = IndexVec::from_elem(empty, &self.body.basic_blocks());
for (bb, _) in self.body.basic_blocks().iter_enumerated() {
ret[bb] = self.mock_entry_set(bb);
}
ret
}
/// Returns the index that should be added to the dataflow state at the given target.
fn effect(&self, loc: EffectIndex) -> usize {
let idx = match loc.effect {
Effect::Before => loc.statement_index * 2,
Effect::Primary => loc.statement_index * 2 + 1,
};
assert!(idx < Self::BASIC_BLOCK_OFFSET, "Too many statements in basic block");
idx
}
/// Returns the expected state at the given `SeekTarget`.
///
/// This is the union of index of the target basic block, the index assigned to the
/// target statement or terminator, and the indices of all preceding statements in the target
/// basic block.
///
/// For example, the expected state when calling
/// `seek_before_primary_effect(Location { block: 2, statement_index: 2 })`
/// would be `[102, 0, 1, 2, 3, 4]`.
fn expected_state_at_target(&self, target: SeekTarget) -> BitSet<usize> {
let block = target.block();
let mut ret = self.bottom_value(self.body);
ret.insert(Self::BASIC_BLOCK_OFFSET + block.index());
let target = match target {
SeekTarget::BlockEntry { .. } => return ret,
SeekTarget::Before(loc) => Effect::Before.at_index(loc.statement_index),
SeekTarget::After(loc) => Effect::Primary.at_index(loc.statement_index),
};
let mut pos = if D::IS_FORWARD {
Effect::Before.at_index(0)
} else {
Effect::Before.at_index(self.body[block].statements.len())
};
loop {
ret.insert(self.effect(pos));
if pos == target {
return ret;
}
if D::IS_FORWARD {
pos = pos.next_in_forward_order();
} else {
pos = pos.next_in_backward_order();
}
}
}
}
impl<'tcx, D: Direction> AnalysisDomain<'tcx> for MockAnalysis<'tcx, D> {
type Domain = BitSet<usize>;
type Direction = D;
const NAME: &'static str = "mock";
fn bottom_value(&self, body: &mir::Body<'tcx>) -> Self::Domain {
BitSet::new_empty(Self::BASIC_BLOCK_OFFSET + body.basic_blocks().len())
}
fn initialize_start_block(&self, _: &mir::Body<'tcx>, _: &mut Self::Domain) {
unimplemented!("This is never called since `MockAnalysis` is never iterated to fixpoint");
}
}
impl<'tcx, D: Direction> Analysis<'tcx> for MockAnalysis<'tcx, D> {
fn apply_statement_effect(
&self,
state: &mut Self::Domain,
_statement: &mir::Statement<'tcx>,
location: Location,
) {
let idx = self.effect(Effect::Primary.at_index(location.statement_index));
assert!(state.insert(idx));
}
fn apply_before_statement_effect(
&self,
state: &mut Self::Domain,
_statement: &mir::Statement<'tcx>,
location: Location,
) {
let idx = self.effect(Effect::Before.at_index(location.statement_index));
assert!(state.insert(idx));
}
fn apply_terminator_effect(
&self,
state: &mut Self::Domain,
_terminator: &mir::Terminator<'tcx>,
location: Location,
) {
let idx = self.effect(Effect::Primary.at_index(location.statement_index));
assert!(state.insert(idx));
}
fn apply_before_terminator_effect(
&self,
state: &mut Self::Domain,
_terminator: &mir::Terminator<'tcx>,
location: Location,
) {
let idx = self.effect(Effect::Before.at_index(location.statement_index));
assert!(state.insert(idx));
}
fn apply_call_return_effect(
&self,
_state: &mut Self::Domain,
_block: BasicBlock,
_return_places: CallReturnPlaces<'_, 'tcx>,
) {
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
enum SeekTarget {
BlockEntry(BasicBlock),
Before(Location),
After(Location),
}
impl SeekTarget {
fn block(&self) -> BasicBlock {
use SeekTarget::*;
match *self {
BlockEntry(block) => block,
Before(loc) | After(loc) => loc.block,
}
}
/// An iterator over all possible `SeekTarget`s in a given block in order, starting with
/// `BlockEntry`.
fn iter_in_block(body: &mir::Body<'_>, block: BasicBlock) -> impl Iterator<Item = Self> {
let statements_and_terminator = (0..=body[block].statements.len())
.flat_map(|i| (0..2).map(move |j| (i, j)))
.map(move |(i, kind)| {
let loc = Location { block, statement_index: i };
match kind {
0 => SeekTarget::Before(loc),
1 => SeekTarget::After(loc),
_ => unreachable!(),
}
});
std::iter::once(SeekTarget::BlockEntry(block)).chain(statements_and_terminator)
}
}
fn test_cursor<D: Direction>(analysis: MockAnalysis<'_, D>) {
let body = analysis.body;
let mut cursor =
Results { entry_sets: analysis.mock_entry_sets(), analysis }.into_results_cursor(body);
cursor.allow_unreachable();
let every_target = || {
body.basic_blocks()
.iter_enumerated()
.flat_map(|(bb, _)| SeekTarget::iter_in_block(body, bb))
};
let mut seek_to_target = |targ| {
use SeekTarget::*;
match targ {
BlockEntry(block) => cursor.seek_to_block_entry(block),
Before(loc) => cursor.seek_before_primary_effect(loc),
After(loc) => cursor.seek_after_primary_effect(loc),
}
assert_eq!(cursor.get(), &cursor.analysis().expected_state_at_target(targ));
};
// Seek *to* every possible `SeekTarget` *from* every possible `SeekTarget`.
//
// By resetting the cursor to `from` each time it changes, we end up checking some edges twice.
// What we really want is an Eulerian cycle for the complete digraph over all possible
// `SeekTarget`s, but it's not worth spending the time to compute it.
for from in every_target() {
seek_to_target(from);
for to in every_target() {
dbg!(from);
dbg!(to);
seek_to_target(to);
seek_to_target(from);
}
}
}
#[test]
fn backward_cursor() {
let body = mock_body();
let body = &body;
let analysis = MockAnalysis { body, dir: PhantomData::<Backward> };
test_cursor(analysis)
}
#[test]
fn forward_cursor() {
let body = mock_body();
let body = &body;
let analysis = MockAnalysis { body, dir: PhantomData::<Forward> };
test_cursor(analysis)
}