2473 lines
91 KiB
Rust
2473 lines
91 KiB
Rust
//! Defines how the compiler represents types internally.
|
|
//!
|
|
//! Two important entities in this module are:
|
|
//!
|
|
//! - [`rustc_middle::ty::Ty`], used to represent the semantics of a type.
|
|
//! - [`rustc_middle::ty::TyCtxt`], the central data structure in the compiler.
|
|
//!
|
|
//! For more information, see ["The `ty` module: representing types"] in the rustc-dev-guide.
|
|
//!
|
|
//! ["The `ty` module: representing types"]: https://rustc-dev-guide.rust-lang.org/ty.html
|
|
|
|
#![allow(rustc::usage_of_ty_tykind)]
|
|
|
|
use std::assert_matches::assert_matches;
|
|
use std::fmt::Debug;
|
|
use std::hash::{Hash, Hasher};
|
|
use std::marker::PhantomData;
|
|
use std::num::NonZero;
|
|
use std::ptr::NonNull;
|
|
use std::{fmt, iter, str};
|
|
|
|
pub use adt::*;
|
|
pub use assoc::*;
|
|
pub use generic_args::{GenericArgKind, TermKind, *};
|
|
pub use generics::*;
|
|
pub use intrinsic::IntrinsicDef;
|
|
use rustc_abi::{Align, FieldIdx, Integer, IntegerType, ReprFlags, ReprOptions, VariantIdx};
|
|
use rustc_ast::expand::typetree::{FncTree, Kind, Type, TypeTree};
|
|
use rustc_ast::node_id::NodeMap;
|
|
pub use rustc_ast_ir::{Movability, Mutability, try_visit};
|
|
use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexMap, FxIndexSet};
|
|
use rustc_data_structures::intern::Interned;
|
|
use rustc_data_structures::stable_hasher::{HashStable, StableHasher};
|
|
use rustc_data_structures::steal::Steal;
|
|
use rustc_data_structures::unord::{UnordMap, UnordSet};
|
|
use rustc_errors::{Diag, ErrorGuaranteed, LintBuffer};
|
|
use rustc_hir::attrs::{AttributeKind, StrippedCfgItem};
|
|
use rustc_hir::def::{CtorKind, CtorOf, DefKind, DocLinkResMap, LifetimeRes, Res};
|
|
use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, LocalDefId, LocalDefIdMap};
|
|
use rustc_hir::{LangItem, attrs as attr, find_attr};
|
|
use rustc_index::IndexVec;
|
|
use rustc_index::bit_set::BitMatrix;
|
|
use rustc_macros::{
|
|
Decodable, Encodable, HashStable, TyDecodable, TyEncodable, TypeFoldable, TypeVisitable,
|
|
extension,
|
|
};
|
|
use rustc_query_system::ich::StableHashingContext;
|
|
use rustc_serialize::{Decodable, Encodable};
|
|
pub use rustc_session::lint::RegisteredTools;
|
|
use rustc_span::hygiene::MacroKind;
|
|
use rustc_span::{DUMMY_SP, ExpnId, ExpnKind, Ident, Span, Symbol, sym};
|
|
pub use rustc_type_ir::data_structures::{DelayedMap, DelayedSet};
|
|
pub use rustc_type_ir::fast_reject::DeepRejectCtxt;
|
|
#[allow(
|
|
hidden_glob_reexports,
|
|
rustc::usage_of_type_ir_inherent,
|
|
rustc::non_glob_import_of_type_ir_inherent
|
|
)]
|
|
use rustc_type_ir::inherent;
|
|
pub use rustc_type_ir::relate::VarianceDiagInfo;
|
|
pub use rustc_type_ir::solve::{CandidatePreferenceMode, SizedTraitKind};
|
|
pub use rustc_type_ir::*;
|
|
#[allow(hidden_glob_reexports, unused_imports)]
|
|
use rustc_type_ir::{InferCtxtLike, Interner};
|
|
use tracing::{debug, instrument, trace};
|
|
pub use vtable::*;
|
|
use {rustc_ast as ast, rustc_hir as hir};
|
|
|
|
pub use self::closure::{
|
|
BorrowKind, CAPTURE_STRUCT_LOCAL, CaptureInfo, CapturedPlace, ClosureTypeInfo,
|
|
MinCaptureInformationMap, MinCaptureList, RootVariableMinCaptureList, UpvarCapture, UpvarId,
|
|
UpvarPath, analyze_coroutine_closure_captures, is_ancestor_or_same_capture,
|
|
place_to_string_for_capture,
|
|
};
|
|
pub use self::consts::{
|
|
AnonConstKind, AtomicOrdering, Const, ConstInt, ConstKind, ConstToValTreeResult, Expr,
|
|
ExprKind, ScalarInt, UnevaluatedConst, ValTree, ValTreeKind, Value,
|
|
};
|
|
pub use self::context::{
|
|
CtxtInterners, CurrentGcx, Feed, FreeRegionInfo, GlobalCtxt, Lift, TyCtxt, TyCtxtFeed, tls,
|
|
};
|
|
pub use self::fold::*;
|
|
pub use self::instance::{Instance, InstanceKind, ReifyReason, UnusedGenericParams};
|
|
pub use self::list::{List, ListWithCachedTypeInfo};
|
|
pub use self::opaque_types::OpaqueTypeKey;
|
|
pub use self::pattern::{Pattern, PatternKind};
|
|
pub use self::predicate::{
|
|
AliasTerm, ArgOutlivesPredicate, Clause, ClauseKind, CoercePredicate, ExistentialPredicate,
|
|
ExistentialPredicateStableCmpExt, ExistentialProjection, ExistentialTraitRef,
|
|
HostEffectPredicate, NormalizesTo, OutlivesPredicate, PolyCoercePredicate,
|
|
PolyExistentialPredicate, PolyExistentialProjection, PolyExistentialTraitRef,
|
|
PolyProjectionPredicate, PolyRegionOutlivesPredicate, PolySubtypePredicate, PolyTraitPredicate,
|
|
PolyTraitRef, PolyTypeOutlivesPredicate, Predicate, PredicateKind, ProjectionPredicate,
|
|
RegionOutlivesPredicate, SubtypePredicate, TraitPredicate, TraitRef, TypeOutlivesPredicate,
|
|
};
|
|
pub use self::region::{
|
|
BoundRegion, BoundRegionKind, EarlyParamRegion, LateParamRegion, LateParamRegionKind, Region,
|
|
RegionKind, RegionVid,
|
|
};
|
|
pub use self::rvalue_scopes::RvalueScopes;
|
|
pub use self::sty::{
|
|
AliasTy, Article, Binder, BoundTy, BoundTyKind, BoundVariableKind, CanonicalPolyFnSig,
|
|
CoroutineArgsExt, EarlyBinder, FnSig, InlineConstArgs, InlineConstArgsParts, ParamConst,
|
|
ParamTy, PolyFnSig, TyKind, TypeAndMut, TypingMode, UpvarArgs,
|
|
};
|
|
pub use self::trait_def::TraitDef;
|
|
pub use self::typeck_results::{
|
|
CanonicalUserType, CanonicalUserTypeAnnotation, CanonicalUserTypeAnnotations, IsIdentity,
|
|
Rust2024IncompatiblePatInfo, TypeckResults, UserType, UserTypeAnnotationIndex, UserTypeKind,
|
|
};
|
|
use crate::error::{OpaqueHiddenTypeMismatch, TypeMismatchReason};
|
|
use crate::metadata::ModChild;
|
|
use crate::middle::privacy::EffectiveVisibilities;
|
|
use crate::mir::{Body, CoroutineLayout, CoroutineSavedLocal, SourceInfo};
|
|
use crate::query::{IntoQueryParam, Providers};
|
|
use crate::ty;
|
|
use crate::ty::codec::{TyDecoder, TyEncoder};
|
|
pub use crate::ty::diagnostics::*;
|
|
use crate::ty::fast_reject::SimplifiedType;
|
|
use crate::ty::layout::LayoutError;
|
|
use crate::ty::util::Discr;
|
|
use crate::ty::walk::TypeWalker;
|
|
|
|
pub mod abstract_const;
|
|
pub mod adjustment;
|
|
pub mod cast;
|
|
pub mod codec;
|
|
pub mod error;
|
|
pub mod fast_reject;
|
|
pub mod inhabitedness;
|
|
pub mod layout;
|
|
pub mod normalize_erasing_regions;
|
|
pub mod pattern;
|
|
pub mod print;
|
|
pub mod relate;
|
|
pub mod significant_drop_order;
|
|
pub mod trait_def;
|
|
pub mod util;
|
|
pub mod vtable;
|
|
|
|
mod adt;
|
|
mod assoc;
|
|
mod closure;
|
|
mod consts;
|
|
mod context;
|
|
mod diagnostics;
|
|
mod elaborate_impl;
|
|
mod erase_regions;
|
|
mod fold;
|
|
mod generic_args;
|
|
mod generics;
|
|
mod impls_ty;
|
|
mod instance;
|
|
mod intrinsic;
|
|
mod list;
|
|
mod opaque_types;
|
|
mod predicate;
|
|
mod region;
|
|
mod rvalue_scopes;
|
|
mod structural_impls;
|
|
#[allow(hidden_glob_reexports)]
|
|
mod sty;
|
|
mod typeck_results;
|
|
mod visit;
|
|
|
|
// Data types
|
|
|
|
#[derive(Debug, HashStable)]
|
|
pub struct ResolverGlobalCtxt {
|
|
pub visibilities_for_hashing: Vec<(LocalDefId, Visibility)>,
|
|
/// Item with a given `LocalDefId` was defined during macro expansion with ID `ExpnId`.
|
|
pub expn_that_defined: UnordMap<LocalDefId, ExpnId>,
|
|
pub effective_visibilities: EffectiveVisibilities,
|
|
pub extern_crate_map: UnordMap<LocalDefId, CrateNum>,
|
|
pub maybe_unused_trait_imports: FxIndexSet<LocalDefId>,
|
|
pub module_children: LocalDefIdMap<Vec<ModChild>>,
|
|
pub glob_map: FxIndexMap<LocalDefId, FxIndexSet<Symbol>>,
|
|
pub main_def: Option<MainDefinition>,
|
|
pub trait_impls: FxIndexMap<DefId, Vec<LocalDefId>>,
|
|
/// A list of proc macro LocalDefIds, written out in the order in which
|
|
/// they are declared in the static array generated by proc_macro_harness.
|
|
pub proc_macros: Vec<LocalDefId>,
|
|
/// Mapping from ident span to path span for paths that don't exist as written, but that
|
|
/// exist under `std`. For example, wrote `str::from_utf8` instead of `std::str::from_utf8`.
|
|
pub confused_type_with_std_module: FxIndexMap<Span, Span>,
|
|
pub doc_link_resolutions: FxIndexMap<LocalDefId, DocLinkResMap>,
|
|
pub doc_link_traits_in_scope: FxIndexMap<LocalDefId, Vec<DefId>>,
|
|
pub all_macro_rules: UnordSet<Symbol>,
|
|
pub stripped_cfg_items: Vec<StrippedCfgItem>,
|
|
}
|
|
|
|
/// Resolutions that should only be used for lowering.
|
|
/// This struct is meant to be consumed by lowering.
|
|
#[derive(Debug)]
|
|
pub struct ResolverAstLowering {
|
|
pub legacy_const_generic_args: FxHashMap<DefId, Option<Vec<usize>>>,
|
|
|
|
/// Resolutions for nodes that have a single resolution.
|
|
pub partial_res_map: NodeMap<hir::def::PartialRes>,
|
|
/// Resolutions for import nodes, which have multiple resolutions in different namespaces.
|
|
pub import_res_map: NodeMap<hir::def::PerNS<Option<Res<ast::NodeId>>>>,
|
|
/// Resolutions for labels (node IDs of their corresponding blocks or loops).
|
|
pub label_res_map: NodeMap<ast::NodeId>,
|
|
/// Resolutions for lifetimes.
|
|
pub lifetimes_res_map: NodeMap<LifetimeRes>,
|
|
/// Lifetime parameters that lowering will have to introduce.
|
|
pub extra_lifetime_params_map: NodeMap<Vec<(Ident, ast::NodeId, LifetimeRes)>>,
|
|
|
|
pub next_node_id: ast::NodeId,
|
|
|
|
pub node_id_to_def_id: NodeMap<LocalDefId>,
|
|
|
|
pub trait_map: NodeMap<Vec<hir::TraitCandidate>>,
|
|
/// List functions and methods for which lifetime elision was successful.
|
|
pub lifetime_elision_allowed: FxHashSet<ast::NodeId>,
|
|
|
|
/// Lints that were emitted by the resolver and early lints.
|
|
pub lint_buffer: Steal<LintBuffer>,
|
|
|
|
/// Information about functions signatures for delegation items expansion
|
|
pub delegation_fn_sigs: LocalDefIdMap<DelegationFnSig>,
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
pub struct DelegationFnSig {
|
|
pub header: ast::FnHeader,
|
|
pub param_count: usize,
|
|
pub has_self: bool,
|
|
pub c_variadic: bool,
|
|
pub target_feature: bool,
|
|
}
|
|
|
|
#[derive(Clone, Copy, Debug, HashStable)]
|
|
pub struct MainDefinition {
|
|
pub res: Res<ast::NodeId>,
|
|
pub is_import: bool,
|
|
pub span: Span,
|
|
}
|
|
|
|
impl MainDefinition {
|
|
pub fn opt_fn_def_id(self) -> Option<DefId> {
|
|
if let Res::Def(DefKind::Fn, def_id) = self.res { Some(def_id) } else { None }
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, TyEncodable, TyDecodable, HashStable)]
|
|
pub struct ImplTraitHeader<'tcx> {
|
|
pub trait_ref: ty::EarlyBinder<'tcx, ty::TraitRef<'tcx>>,
|
|
pub polarity: ImplPolarity,
|
|
pub safety: hir::Safety,
|
|
pub constness: hir::Constness,
|
|
}
|
|
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash, TyEncodable, TyDecodable, HashStable, Debug)]
|
|
#[derive(TypeFoldable, TypeVisitable)]
|
|
pub enum Asyncness {
|
|
Yes,
|
|
No,
|
|
}
|
|
|
|
impl Asyncness {
|
|
pub fn is_async(self) -> bool {
|
|
matches!(self, Asyncness::Yes)
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, Encodable, Decodable, HashStable)]
|
|
pub enum Visibility<Id = LocalDefId> {
|
|
/// Visible everywhere (including in other crates).
|
|
Public,
|
|
/// Visible only in the given crate-local module.
|
|
Restricted(Id),
|
|
}
|
|
|
|
impl Visibility {
|
|
pub fn to_string(self, def_id: LocalDefId, tcx: TyCtxt<'_>) -> String {
|
|
match self {
|
|
ty::Visibility::Restricted(restricted_id) => {
|
|
if restricted_id.is_top_level_module() {
|
|
"pub(crate)".to_string()
|
|
} else if restricted_id == tcx.parent_module_from_def_id(def_id).to_local_def_id() {
|
|
"pub(self)".to_string()
|
|
} else {
|
|
format!(
|
|
"pub(in crate{})",
|
|
tcx.def_path(restricted_id.to_def_id()).to_string_no_crate_verbose()
|
|
)
|
|
}
|
|
}
|
|
ty::Visibility::Public => "pub".to_string(),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Clone, Debug, PartialEq, Eq, Copy, Hash, TyEncodable, TyDecodable, HashStable)]
|
|
#[derive(TypeFoldable, TypeVisitable)]
|
|
pub struct ClosureSizeProfileData<'tcx> {
|
|
/// Tuple containing the types of closure captures before the feature `capture_disjoint_fields`
|
|
pub before_feature_tys: Ty<'tcx>,
|
|
/// Tuple containing the types of closure captures after the feature `capture_disjoint_fields`
|
|
pub after_feature_tys: Ty<'tcx>,
|
|
}
|
|
|
|
impl TyCtxt<'_> {
|
|
#[inline]
|
|
pub fn opt_parent(self, id: DefId) -> Option<DefId> {
|
|
self.def_key(id).parent.map(|index| DefId { index, ..id })
|
|
}
|
|
|
|
#[inline]
|
|
#[track_caller]
|
|
pub fn parent(self, id: DefId) -> DefId {
|
|
match self.opt_parent(id) {
|
|
Some(id) => id,
|
|
// not `unwrap_or_else` to avoid breaking caller tracking
|
|
None => bug!("{id:?} doesn't have a parent"),
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
#[track_caller]
|
|
pub fn opt_local_parent(self, id: LocalDefId) -> Option<LocalDefId> {
|
|
self.opt_parent(id.to_def_id()).map(DefId::expect_local)
|
|
}
|
|
|
|
#[inline]
|
|
#[track_caller]
|
|
pub fn local_parent(self, id: impl Into<LocalDefId>) -> LocalDefId {
|
|
self.parent(id.into().to_def_id()).expect_local()
|
|
}
|
|
|
|
pub fn is_descendant_of(self, mut descendant: DefId, ancestor: DefId) -> bool {
|
|
if descendant.krate != ancestor.krate {
|
|
return false;
|
|
}
|
|
|
|
while descendant != ancestor {
|
|
match self.opt_parent(descendant) {
|
|
Some(parent) => descendant = parent,
|
|
None => return false,
|
|
}
|
|
}
|
|
true
|
|
}
|
|
}
|
|
|
|
impl<Id> Visibility<Id> {
|
|
pub fn is_public(self) -> bool {
|
|
matches!(self, Visibility::Public)
|
|
}
|
|
|
|
pub fn map_id<OutId>(self, f: impl FnOnce(Id) -> OutId) -> Visibility<OutId> {
|
|
match self {
|
|
Visibility::Public => Visibility::Public,
|
|
Visibility::Restricted(id) => Visibility::Restricted(f(id)),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<Id: Into<DefId>> Visibility<Id> {
|
|
pub fn to_def_id(self) -> Visibility<DefId> {
|
|
self.map_id(Into::into)
|
|
}
|
|
|
|
/// Returns `true` if an item with this visibility is accessible from the given module.
|
|
pub fn is_accessible_from(self, module: impl Into<DefId>, tcx: TyCtxt<'_>) -> bool {
|
|
match self {
|
|
// Public items are visible everywhere.
|
|
Visibility::Public => true,
|
|
Visibility::Restricted(id) => tcx.is_descendant_of(module.into(), id.into()),
|
|
}
|
|
}
|
|
|
|
/// Returns `true` if this visibility is at least as accessible as the given visibility
|
|
pub fn is_at_least(self, vis: Visibility<impl Into<DefId>>, tcx: TyCtxt<'_>) -> bool {
|
|
match vis {
|
|
Visibility::Public => self.is_public(),
|
|
Visibility::Restricted(id) => self.is_accessible_from(id, tcx),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Visibility<DefId> {
|
|
pub fn expect_local(self) -> Visibility {
|
|
self.map_id(|id| id.expect_local())
|
|
}
|
|
|
|
/// Returns `true` if this item is visible anywhere in the local crate.
|
|
pub fn is_visible_locally(self) -> bool {
|
|
match self {
|
|
Visibility::Public => true,
|
|
Visibility::Restricted(def_id) => def_id.is_local(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The crate variances map is computed during typeck and contains the
|
|
/// variance of every item in the local crate. You should not use it
|
|
/// directly, because to do so will make your pass dependent on the
|
|
/// HIR of every item in the local crate. Instead, use
|
|
/// `tcx.variances_of()` to get the variance for a *particular*
|
|
/// item.
|
|
#[derive(HashStable, Debug)]
|
|
pub struct CrateVariancesMap<'tcx> {
|
|
/// For each item with generics, maps to a vector of the variance
|
|
/// of its generics. If an item has no generics, it will have no
|
|
/// entry.
|
|
pub variances: DefIdMap<&'tcx [ty::Variance]>,
|
|
}
|
|
|
|
// Contains information needed to resolve types and (in the future) look up
|
|
// the types of AST nodes.
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash)]
|
|
pub struct CReaderCacheKey {
|
|
pub cnum: Option<CrateNum>,
|
|
pub pos: usize,
|
|
}
|
|
|
|
/// Use this rather than `TyKind`, whenever possible.
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash, HashStable)]
|
|
#[rustc_diagnostic_item = "Ty"]
|
|
#[rustc_pass_by_value]
|
|
pub struct Ty<'tcx>(Interned<'tcx, WithCachedTypeInfo<TyKind<'tcx>>>);
|
|
|
|
impl<'tcx> rustc_type_ir::inherent::IntoKind for Ty<'tcx> {
|
|
type Kind = TyKind<'tcx>;
|
|
|
|
fn kind(self) -> TyKind<'tcx> {
|
|
*self.kind()
|
|
}
|
|
}
|
|
|
|
impl<'tcx> rustc_type_ir::Flags for Ty<'tcx> {
|
|
fn flags(&self) -> TypeFlags {
|
|
self.0.flags
|
|
}
|
|
|
|
fn outer_exclusive_binder(&self) -> DebruijnIndex {
|
|
self.0.outer_exclusive_binder
|
|
}
|
|
}
|
|
|
|
/// The crate outlives map is computed during typeck and contains the
|
|
/// outlives of every item in the local crate. You should not use it
|
|
/// directly, because to do so will make your pass dependent on the
|
|
/// HIR of every item in the local crate. Instead, use
|
|
/// `tcx.inferred_outlives_of()` to get the outlives for a *particular*
|
|
/// item.
|
|
#[derive(HashStable, Debug)]
|
|
pub struct CratePredicatesMap<'tcx> {
|
|
/// For each struct with outlive bounds, maps to a vector of the
|
|
/// predicate of its outlive bounds. If an item has no outlives
|
|
/// bounds, it will have no entry.
|
|
pub predicates: DefIdMap<&'tcx [(Clause<'tcx>, Span)]>,
|
|
}
|
|
|
|
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
|
|
pub struct Term<'tcx> {
|
|
ptr: NonNull<()>,
|
|
marker: PhantomData<(Ty<'tcx>, Const<'tcx>)>,
|
|
}
|
|
|
|
impl<'tcx> rustc_type_ir::inherent::Term<TyCtxt<'tcx>> for Term<'tcx> {}
|
|
|
|
impl<'tcx> rustc_type_ir::inherent::IntoKind for Term<'tcx> {
|
|
type Kind = TermKind<'tcx>;
|
|
|
|
fn kind(self) -> Self::Kind {
|
|
self.kind()
|
|
}
|
|
}
|
|
|
|
unsafe impl<'tcx> rustc_data_structures::sync::DynSend for Term<'tcx> where
|
|
&'tcx (Ty<'tcx>, Const<'tcx>): rustc_data_structures::sync::DynSend
|
|
{
|
|
}
|
|
unsafe impl<'tcx> rustc_data_structures::sync::DynSync for Term<'tcx> where
|
|
&'tcx (Ty<'tcx>, Const<'tcx>): rustc_data_structures::sync::DynSync
|
|
{
|
|
}
|
|
unsafe impl<'tcx> Send for Term<'tcx> where &'tcx (Ty<'tcx>, Const<'tcx>): Send {}
|
|
unsafe impl<'tcx> Sync for Term<'tcx> where &'tcx (Ty<'tcx>, Const<'tcx>): Sync {}
|
|
|
|
impl Debug for Term<'_> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
match self.kind() {
|
|
TermKind::Ty(ty) => write!(f, "Term::Ty({ty:?})"),
|
|
TermKind::Const(ct) => write!(f, "Term::Const({ct:?})"),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> From<Ty<'tcx>> for Term<'tcx> {
|
|
fn from(ty: Ty<'tcx>) -> Self {
|
|
TermKind::Ty(ty).pack()
|
|
}
|
|
}
|
|
|
|
impl<'tcx> From<Const<'tcx>> for Term<'tcx> {
|
|
fn from(c: Const<'tcx>) -> Self {
|
|
TermKind::Const(c).pack()
|
|
}
|
|
}
|
|
|
|
impl<'a, 'tcx> HashStable<StableHashingContext<'a>> for Term<'tcx> {
|
|
fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
|
|
self.kind().hash_stable(hcx, hasher);
|
|
}
|
|
}
|
|
|
|
impl<'tcx> TypeFoldable<TyCtxt<'tcx>> for Term<'tcx> {
|
|
fn try_fold_with<F: FallibleTypeFolder<TyCtxt<'tcx>>>(
|
|
self,
|
|
folder: &mut F,
|
|
) -> Result<Self, F::Error> {
|
|
match self.kind() {
|
|
ty::TermKind::Ty(ty) => ty.try_fold_with(folder).map(Into::into),
|
|
ty::TermKind::Const(ct) => ct.try_fold_with(folder).map(Into::into),
|
|
}
|
|
}
|
|
|
|
fn fold_with<F: TypeFolder<TyCtxt<'tcx>>>(self, folder: &mut F) -> Self {
|
|
match self.kind() {
|
|
ty::TermKind::Ty(ty) => ty.fold_with(folder).into(),
|
|
ty::TermKind::Const(ct) => ct.fold_with(folder).into(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> TypeVisitable<TyCtxt<'tcx>> for Term<'tcx> {
|
|
fn visit_with<V: TypeVisitor<TyCtxt<'tcx>>>(&self, visitor: &mut V) -> V::Result {
|
|
match self.kind() {
|
|
ty::TermKind::Ty(ty) => ty.visit_with(visitor),
|
|
ty::TermKind::Const(ct) => ct.visit_with(visitor),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx, E: TyEncoder<'tcx>> Encodable<E> for Term<'tcx> {
|
|
fn encode(&self, e: &mut E) {
|
|
self.kind().encode(e)
|
|
}
|
|
}
|
|
|
|
impl<'tcx, D: TyDecoder<'tcx>> Decodable<D> for Term<'tcx> {
|
|
fn decode(d: &mut D) -> Self {
|
|
let res: TermKind<'tcx> = Decodable::decode(d);
|
|
res.pack()
|
|
}
|
|
}
|
|
|
|
impl<'tcx> Term<'tcx> {
|
|
#[inline]
|
|
pub fn kind(self) -> TermKind<'tcx> {
|
|
let ptr =
|
|
unsafe { self.ptr.map_addr(|addr| NonZero::new_unchecked(addr.get() & !TAG_MASK)) };
|
|
// SAFETY: use of `Interned::new_unchecked` here is ok because these
|
|
// pointers were originally created from `Interned` types in `pack()`,
|
|
// and this is just going in the other direction.
|
|
unsafe {
|
|
match self.ptr.addr().get() & TAG_MASK {
|
|
TYPE_TAG => TermKind::Ty(Ty(Interned::new_unchecked(
|
|
ptr.cast::<WithCachedTypeInfo<ty::TyKind<'tcx>>>().as_ref(),
|
|
))),
|
|
CONST_TAG => TermKind::Const(ty::Const(Interned::new_unchecked(
|
|
ptr.cast::<WithCachedTypeInfo<ty::ConstKind<'tcx>>>().as_ref(),
|
|
))),
|
|
_ => core::intrinsics::unreachable(),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn as_type(&self) -> Option<Ty<'tcx>> {
|
|
if let TermKind::Ty(ty) = self.kind() { Some(ty) } else { None }
|
|
}
|
|
|
|
pub fn expect_type(&self) -> Ty<'tcx> {
|
|
self.as_type().expect("expected a type, but found a const")
|
|
}
|
|
|
|
pub fn as_const(&self) -> Option<Const<'tcx>> {
|
|
if let TermKind::Const(c) = self.kind() { Some(c) } else { None }
|
|
}
|
|
|
|
pub fn expect_const(&self) -> Const<'tcx> {
|
|
self.as_const().expect("expected a const, but found a type")
|
|
}
|
|
|
|
pub fn into_arg(self) -> GenericArg<'tcx> {
|
|
match self.kind() {
|
|
TermKind::Ty(ty) => ty.into(),
|
|
TermKind::Const(c) => c.into(),
|
|
}
|
|
}
|
|
|
|
pub fn to_alias_term(self) -> Option<AliasTerm<'tcx>> {
|
|
match self.kind() {
|
|
TermKind::Ty(ty) => match *ty.kind() {
|
|
ty::Alias(_kind, alias_ty) => Some(alias_ty.into()),
|
|
_ => None,
|
|
},
|
|
TermKind::Const(ct) => match ct.kind() {
|
|
ConstKind::Unevaluated(uv) => Some(uv.into()),
|
|
_ => None,
|
|
},
|
|
}
|
|
}
|
|
|
|
pub fn is_infer(&self) -> bool {
|
|
match self.kind() {
|
|
TermKind::Ty(ty) => ty.is_ty_var(),
|
|
TermKind::Const(ct) => ct.is_ct_infer(),
|
|
}
|
|
}
|
|
|
|
pub fn is_trivially_wf(&self, tcx: TyCtxt<'tcx>) -> bool {
|
|
match self.kind() {
|
|
TermKind::Ty(ty) => ty.is_trivially_wf(tcx),
|
|
TermKind::Const(ct) => ct.is_trivially_wf(),
|
|
}
|
|
}
|
|
|
|
/// Iterator that walks `self` and any types reachable from
|
|
/// `self`, in depth-first order. Note that just walks the types
|
|
/// that appear in `self`, it does not descend into the fields of
|
|
/// structs or variants. For example:
|
|
///
|
|
/// ```text
|
|
/// isize => { isize }
|
|
/// Foo<Bar<isize>> => { Foo<Bar<isize>>, Bar<isize>, isize }
|
|
/// [isize] => { [isize], isize }
|
|
/// ```
|
|
pub fn walk(self) -> TypeWalker<TyCtxt<'tcx>> {
|
|
TypeWalker::new(self.into())
|
|
}
|
|
}
|
|
|
|
const TAG_MASK: usize = 0b11;
|
|
const TYPE_TAG: usize = 0b00;
|
|
const CONST_TAG: usize = 0b01;
|
|
|
|
#[extension(pub trait TermKindPackExt<'tcx>)]
|
|
impl<'tcx> TermKind<'tcx> {
|
|
#[inline]
|
|
fn pack(self) -> Term<'tcx> {
|
|
let (tag, ptr) = match self {
|
|
TermKind::Ty(ty) => {
|
|
// Ensure we can use the tag bits.
|
|
assert_eq!(align_of_val(&*ty.0.0) & TAG_MASK, 0);
|
|
(TYPE_TAG, NonNull::from(ty.0.0).cast())
|
|
}
|
|
TermKind::Const(ct) => {
|
|
// Ensure we can use the tag bits.
|
|
assert_eq!(align_of_val(&*ct.0.0) & TAG_MASK, 0);
|
|
(CONST_TAG, NonNull::from(ct.0.0).cast())
|
|
}
|
|
};
|
|
|
|
Term { ptr: ptr.map_addr(|addr| addr | tag), marker: PhantomData }
|
|
}
|
|
}
|
|
|
|
/// Represents the bounds declared on a particular set of type
|
|
/// parameters. Should eventually be generalized into a flag list of
|
|
/// where-clauses. You can obtain an `InstantiatedPredicates` list from a
|
|
/// `GenericPredicates` by using the `instantiate` method. Note that this method
|
|
/// reflects an important semantic invariant of `InstantiatedPredicates`: while
|
|
/// the `GenericPredicates` are expressed in terms of the bound type
|
|
/// parameters of the impl/trait/whatever, an `InstantiatedPredicates` instance
|
|
/// represented a set of bounds for some particular instantiation,
|
|
/// meaning that the generic parameters have been instantiated with
|
|
/// their values.
|
|
///
|
|
/// Example:
|
|
/// ```ignore (illustrative)
|
|
/// struct Foo<T, U: Bar<T>> { ... }
|
|
/// ```
|
|
/// Here, the `GenericPredicates` for `Foo` would contain a list of bounds like
|
|
/// `[[], [U:Bar<T>]]`. Now if there were some particular reference
|
|
/// like `Foo<isize,usize>`, then the `InstantiatedPredicates` would be `[[],
|
|
/// [usize:Bar<isize>]]`.
|
|
#[derive(Clone, Debug, TypeFoldable, TypeVisitable)]
|
|
pub struct InstantiatedPredicates<'tcx> {
|
|
pub predicates: Vec<Clause<'tcx>>,
|
|
pub spans: Vec<Span>,
|
|
}
|
|
|
|
impl<'tcx> InstantiatedPredicates<'tcx> {
|
|
pub fn empty() -> InstantiatedPredicates<'tcx> {
|
|
InstantiatedPredicates { predicates: vec![], spans: vec![] }
|
|
}
|
|
|
|
pub fn is_empty(&self) -> bool {
|
|
self.predicates.is_empty()
|
|
}
|
|
|
|
pub fn iter(&self) -> <&Self as IntoIterator>::IntoIter {
|
|
self.into_iter()
|
|
}
|
|
}
|
|
|
|
impl<'tcx> IntoIterator for InstantiatedPredicates<'tcx> {
|
|
type Item = (Clause<'tcx>, Span);
|
|
|
|
type IntoIter = std::iter::Zip<std::vec::IntoIter<Clause<'tcx>>, std::vec::IntoIter<Span>>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
debug_assert_eq!(self.predicates.len(), self.spans.len());
|
|
std::iter::zip(self.predicates, self.spans)
|
|
}
|
|
}
|
|
|
|
impl<'a, 'tcx> IntoIterator for &'a InstantiatedPredicates<'tcx> {
|
|
type Item = (Clause<'tcx>, Span);
|
|
|
|
type IntoIter = std::iter::Zip<
|
|
std::iter::Copied<std::slice::Iter<'a, Clause<'tcx>>>,
|
|
std::iter::Copied<std::slice::Iter<'a, Span>>,
|
|
>;
|
|
|
|
fn into_iter(self) -> Self::IntoIter {
|
|
debug_assert_eq!(self.predicates.len(), self.spans.len());
|
|
std::iter::zip(self.predicates.iter().copied(), self.spans.iter().copied())
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, TypeFoldable, TypeVisitable, HashStable, TyEncodable, TyDecodable)]
|
|
pub struct OpaqueHiddenType<'tcx> {
|
|
/// The span of this particular definition of the opaque type. So
|
|
/// for example:
|
|
///
|
|
/// ```ignore (incomplete snippet)
|
|
/// type Foo = impl Baz;
|
|
/// fn bar() -> Foo {
|
|
/// // ^^^ This is the span we are looking for!
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// In cases where the fn returns `(impl Trait, impl Trait)` or
|
|
/// other such combinations, the result is currently
|
|
/// over-approximated, but better than nothing.
|
|
pub span: Span,
|
|
|
|
/// The type variable that represents the value of the opaque type
|
|
/// that we require. In other words, after we compile this function,
|
|
/// we will be created a constraint like:
|
|
/// ```ignore (pseudo-rust)
|
|
/// Foo<'a, T> = ?C
|
|
/// ```
|
|
/// where `?C` is the value of this type variable. =) It may
|
|
/// naturally refer to the type and lifetime parameters in scope
|
|
/// in this function, though ultimately it should only reference
|
|
/// those that are arguments to `Foo` in the constraint above. (In
|
|
/// other words, `?C` should not include `'b`, even though it's a
|
|
/// lifetime parameter on `foo`.)
|
|
pub ty: Ty<'tcx>,
|
|
}
|
|
|
|
/// Whether we're currently in HIR typeck or MIR borrowck.
|
|
#[derive(Debug, Clone, Copy)]
|
|
pub enum DefiningScopeKind {
|
|
/// During writeback in typeck, we don't care about regions and simply
|
|
/// erase them. This means we also don't check whether regions are
|
|
/// universal in the opaque type key. This will only be checked in
|
|
/// MIR borrowck.
|
|
HirTypeck,
|
|
MirBorrowck,
|
|
}
|
|
|
|
impl<'tcx> OpaqueHiddenType<'tcx> {
|
|
pub fn new_error(tcx: TyCtxt<'tcx>, guar: ErrorGuaranteed) -> OpaqueHiddenType<'tcx> {
|
|
OpaqueHiddenType { span: DUMMY_SP, ty: Ty::new_error(tcx, guar) }
|
|
}
|
|
|
|
pub fn build_mismatch_error(
|
|
&self,
|
|
other: &Self,
|
|
tcx: TyCtxt<'tcx>,
|
|
) -> Result<Diag<'tcx>, ErrorGuaranteed> {
|
|
(self.ty, other.ty).error_reported()?;
|
|
// Found different concrete types for the opaque type.
|
|
let sub_diag = if self.span == other.span {
|
|
TypeMismatchReason::ConflictType { span: self.span }
|
|
} else {
|
|
TypeMismatchReason::PreviousUse { span: self.span }
|
|
};
|
|
Ok(tcx.dcx().create_err(OpaqueHiddenTypeMismatch {
|
|
self_ty: self.ty,
|
|
other_ty: other.ty,
|
|
other_span: other.span,
|
|
sub: sub_diag,
|
|
}))
|
|
}
|
|
|
|
#[instrument(level = "debug", skip(tcx), ret)]
|
|
pub fn remap_generic_params_to_declaration_params(
|
|
self,
|
|
opaque_type_key: OpaqueTypeKey<'tcx>,
|
|
tcx: TyCtxt<'tcx>,
|
|
defining_scope_kind: DefiningScopeKind,
|
|
) -> Self {
|
|
let OpaqueTypeKey { def_id, args } = opaque_type_key;
|
|
|
|
// Use args to build up a reverse map from regions to their
|
|
// identity mappings. This is necessary because of `impl
|
|
// Trait` lifetimes are computed by replacing existing
|
|
// lifetimes with 'static and remapping only those used in the
|
|
// `impl Trait` return type, resulting in the parameters
|
|
// shifting.
|
|
let id_args = GenericArgs::identity_for_item(tcx, def_id);
|
|
debug!(?id_args);
|
|
|
|
// This zip may have several times the same lifetime in `args` paired with a different
|
|
// lifetime from `id_args`. Simply `collect`ing the iterator is the correct behaviour:
|
|
// it will pick the last one, which is the one we introduced in the impl-trait desugaring.
|
|
let map = args.iter().zip(id_args).collect();
|
|
debug!("map = {:#?}", map);
|
|
|
|
// Convert the type from the function into a type valid outside by mapping generic
|
|
// parameters to into the context of the opaque.
|
|
//
|
|
// We erase regions when doing this during HIR typeck. We manually use `fold_regions`
|
|
// here as we do not want to anonymize bound variables.
|
|
let this = match defining_scope_kind {
|
|
DefiningScopeKind::HirTypeck => fold_regions(tcx, self, |_, _| tcx.lifetimes.re_erased),
|
|
DefiningScopeKind::MirBorrowck => self,
|
|
};
|
|
let result = this.fold_with(&mut opaque_types::ReverseMapper::new(tcx, map, self.span));
|
|
if cfg!(debug_assertions) && matches!(defining_scope_kind, DefiningScopeKind::HirTypeck) {
|
|
assert_eq!(result.ty, fold_regions(tcx, result.ty, |_, _| tcx.lifetimes.re_erased));
|
|
}
|
|
result
|
|
}
|
|
}
|
|
|
|
/// The "placeholder index" fully defines a placeholder region, type, or const. Placeholders are
|
|
/// identified by both a universe, as well as a name residing within that universe. Distinct bound
|
|
/// regions/types/consts within the same universe simply have an unknown relationship to one
|
|
/// another.
|
|
#[derive(Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
|
|
#[derive(HashStable, TyEncodable, TyDecodable)]
|
|
pub struct Placeholder<T> {
|
|
pub universe: UniverseIndex,
|
|
pub bound: T,
|
|
}
|
|
|
|
pub type PlaceholderRegion = Placeholder<BoundRegion>;
|
|
|
|
impl<'tcx> rustc_type_ir::inherent::PlaceholderLike<TyCtxt<'tcx>> for PlaceholderRegion {
|
|
type Bound = BoundRegion;
|
|
|
|
fn universe(self) -> UniverseIndex {
|
|
self.universe
|
|
}
|
|
|
|
fn var(self) -> BoundVar {
|
|
self.bound.var
|
|
}
|
|
|
|
fn with_updated_universe(self, ui: UniverseIndex) -> Self {
|
|
Placeholder { universe: ui, ..self }
|
|
}
|
|
|
|
fn new(ui: UniverseIndex, bound: BoundRegion) -> Self {
|
|
Placeholder { universe: ui, bound }
|
|
}
|
|
|
|
fn new_anon(ui: UniverseIndex, var: BoundVar) -> Self {
|
|
Placeholder { universe: ui, bound: BoundRegion { var, kind: BoundRegionKind::Anon } }
|
|
}
|
|
}
|
|
|
|
pub type PlaceholderType = Placeholder<BoundTy>;
|
|
|
|
impl<'tcx> rustc_type_ir::inherent::PlaceholderLike<TyCtxt<'tcx>> for PlaceholderType {
|
|
type Bound = BoundTy;
|
|
|
|
fn universe(self) -> UniverseIndex {
|
|
self.universe
|
|
}
|
|
|
|
fn var(self) -> BoundVar {
|
|
self.bound.var
|
|
}
|
|
|
|
fn with_updated_universe(self, ui: UniverseIndex) -> Self {
|
|
Placeholder { universe: ui, ..self }
|
|
}
|
|
|
|
fn new(ui: UniverseIndex, bound: BoundTy) -> Self {
|
|
Placeholder { universe: ui, bound }
|
|
}
|
|
|
|
fn new_anon(ui: UniverseIndex, var: BoundVar) -> Self {
|
|
Placeholder { universe: ui, bound: BoundTy { var, kind: BoundTyKind::Anon } }
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)]
|
|
#[derive(TyEncodable, TyDecodable)]
|
|
pub struct BoundConst {
|
|
pub var: BoundVar,
|
|
}
|
|
|
|
impl<'tcx> rustc_type_ir::inherent::BoundVarLike<TyCtxt<'tcx>> for BoundConst {
|
|
fn var(self) -> BoundVar {
|
|
self.var
|
|
}
|
|
|
|
fn assert_eq(self, var: ty::BoundVariableKind) {
|
|
var.expect_const()
|
|
}
|
|
}
|
|
|
|
pub type PlaceholderConst = Placeholder<BoundConst>;
|
|
|
|
impl<'tcx> rustc_type_ir::inherent::PlaceholderLike<TyCtxt<'tcx>> for PlaceholderConst {
|
|
type Bound = BoundConst;
|
|
|
|
fn universe(self) -> UniverseIndex {
|
|
self.universe
|
|
}
|
|
|
|
fn var(self) -> BoundVar {
|
|
self.bound.var
|
|
}
|
|
|
|
fn with_updated_universe(self, ui: UniverseIndex) -> Self {
|
|
Placeholder { universe: ui, ..self }
|
|
}
|
|
|
|
fn new(ui: UniverseIndex, bound: BoundConst) -> Self {
|
|
Placeholder { universe: ui, bound }
|
|
}
|
|
|
|
fn new_anon(ui: UniverseIndex, var: BoundVar) -> Self {
|
|
Placeholder { universe: ui, bound: BoundConst { var } }
|
|
}
|
|
}
|
|
|
|
pub type Clauses<'tcx> = &'tcx ListWithCachedTypeInfo<Clause<'tcx>>;
|
|
|
|
impl<'tcx> rustc_type_ir::Flags for Clauses<'tcx> {
|
|
fn flags(&self) -> TypeFlags {
|
|
(**self).flags()
|
|
}
|
|
|
|
fn outer_exclusive_binder(&self) -> DebruijnIndex {
|
|
(**self).outer_exclusive_binder()
|
|
}
|
|
}
|
|
|
|
/// When interacting with the type system we must provide information about the
|
|
/// environment. `ParamEnv` is the type that represents this information. See the
|
|
/// [dev guide chapter][param_env_guide] for more information.
|
|
///
|
|
/// [param_env_guide]: https://rustc-dev-guide.rust-lang.org/typing_parameter_envs.html
|
|
#[derive(Debug, Copy, Clone, Hash, PartialEq, Eq)]
|
|
#[derive(HashStable, TypeVisitable, TypeFoldable)]
|
|
pub struct ParamEnv<'tcx> {
|
|
/// Caller bounds are `Obligation`s that the caller must satisfy. This is
|
|
/// basically the set of bounds on the in-scope type parameters, translated
|
|
/// into `Obligation`s, and elaborated and normalized.
|
|
///
|
|
/// Use the `caller_bounds()` method to access.
|
|
caller_bounds: Clauses<'tcx>,
|
|
}
|
|
|
|
impl<'tcx> rustc_type_ir::inherent::ParamEnv<TyCtxt<'tcx>> for ParamEnv<'tcx> {
|
|
fn caller_bounds(self) -> impl inherent::SliceLike<Item = ty::Clause<'tcx>> {
|
|
self.caller_bounds()
|
|
}
|
|
}
|
|
|
|
impl<'tcx> ParamEnv<'tcx> {
|
|
/// Construct a trait environment suitable for contexts where there are
|
|
/// no where-clauses in scope. In the majority of cases it is incorrect
|
|
/// to use an empty environment. See the [dev guide section][param_env_guide]
|
|
/// for information on what a `ParamEnv` is and how to acquire one.
|
|
///
|
|
/// [param_env_guide]: https://rustc-dev-guide.rust-lang.org/typing_parameter_envs.html
|
|
#[inline]
|
|
pub fn empty() -> Self {
|
|
Self::new(ListWithCachedTypeInfo::empty())
|
|
}
|
|
|
|
#[inline]
|
|
pub fn caller_bounds(self) -> Clauses<'tcx> {
|
|
self.caller_bounds
|
|
}
|
|
|
|
/// Construct a trait environment with the given set of predicates.
|
|
#[inline]
|
|
pub fn new(caller_bounds: Clauses<'tcx>) -> Self {
|
|
ParamEnv { caller_bounds }
|
|
}
|
|
|
|
/// Creates a pair of param-env and value for use in queries.
|
|
pub fn and<T: TypeVisitable<TyCtxt<'tcx>>>(self, value: T) -> ParamEnvAnd<'tcx, T> {
|
|
ParamEnvAnd { param_env: self, value }
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, TypeFoldable, TypeVisitable)]
|
|
#[derive(HashStable)]
|
|
pub struct ParamEnvAnd<'tcx, T> {
|
|
pub param_env: ParamEnv<'tcx>,
|
|
pub value: T,
|
|
}
|
|
|
|
/// The environment in which to do trait solving.
|
|
///
|
|
/// Most of the time you only need to care about the `ParamEnv`
|
|
/// as the `TypingMode` is simply stored in the `InferCtxt`.
|
|
///
|
|
/// However, there are some places which rely on trait solving
|
|
/// without using an `InferCtxt` themselves. For these to be
|
|
/// able to use the trait system they have to be able to initialize
|
|
/// such an `InferCtxt` with the right `typing_mode`, so they need
|
|
/// to track both.
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable)]
|
|
#[derive(TypeVisitable, TypeFoldable)]
|
|
pub struct TypingEnv<'tcx> {
|
|
#[type_foldable(identity)]
|
|
#[type_visitable(ignore)]
|
|
pub typing_mode: TypingMode<'tcx>,
|
|
pub param_env: ParamEnv<'tcx>,
|
|
}
|
|
|
|
impl<'tcx> TypingEnv<'tcx> {
|
|
/// Create a typing environment with no where-clauses in scope
|
|
/// where all opaque types and default associated items are revealed.
|
|
///
|
|
/// This is only suitable for monomorphized, post-typeck environments.
|
|
/// Do not use this for MIR optimizations, as even though they also
|
|
/// use `TypingMode::PostAnalysis`, they may still have where-clauses
|
|
/// in scope.
|
|
pub fn fully_monomorphized() -> TypingEnv<'tcx> {
|
|
TypingEnv { typing_mode: TypingMode::PostAnalysis, param_env: ParamEnv::empty() }
|
|
}
|
|
|
|
/// Create a typing environment for use during analysis outside of a body.
|
|
///
|
|
/// Using a typing environment inside of bodies is not supported as the body
|
|
/// may define opaque types. In this case the used functions have to be
|
|
/// converted to use proper canonical inputs instead.
|
|
pub fn non_body_analysis(
|
|
tcx: TyCtxt<'tcx>,
|
|
def_id: impl IntoQueryParam<DefId>,
|
|
) -> TypingEnv<'tcx> {
|
|
TypingEnv { typing_mode: TypingMode::non_body_analysis(), param_env: tcx.param_env(def_id) }
|
|
}
|
|
|
|
pub fn post_analysis(tcx: TyCtxt<'tcx>, def_id: impl IntoQueryParam<DefId>) -> TypingEnv<'tcx> {
|
|
tcx.typing_env_normalized_for_post_analysis(def_id)
|
|
}
|
|
|
|
/// Modify the `typing_mode` to `PostAnalysis` and eagerly reveal all
|
|
/// opaque types in the `param_env`.
|
|
pub fn with_post_analysis_normalized(self, tcx: TyCtxt<'tcx>) -> TypingEnv<'tcx> {
|
|
let TypingEnv { typing_mode, param_env } = self;
|
|
if let TypingMode::PostAnalysis = typing_mode {
|
|
return self;
|
|
}
|
|
|
|
// No need to reveal opaques with the new solver enabled,
|
|
// since we have lazy norm.
|
|
let param_env = if tcx.next_trait_solver_globally() {
|
|
param_env
|
|
} else {
|
|
ParamEnv::new(tcx.reveal_opaque_types_in_bounds(param_env.caller_bounds()))
|
|
};
|
|
TypingEnv { typing_mode: TypingMode::PostAnalysis, param_env }
|
|
}
|
|
|
|
/// Combine this typing environment with the given `value` to be used by
|
|
/// not (yet) canonicalized queries. This only works if the value does not
|
|
/// contain anything local to some `InferCtxt`, i.e. inference variables or
|
|
/// placeholders.
|
|
pub fn as_query_input<T>(self, value: T) -> PseudoCanonicalInput<'tcx, T>
|
|
where
|
|
T: TypeVisitable<TyCtxt<'tcx>>,
|
|
{
|
|
// FIXME(#132279): We should assert that the value does not contain any placeholders
|
|
// as these placeholders are also local to the current inference context. However, we
|
|
// currently use pseudo-canonical queries in the trait solver, which replaces params
|
|
// with placeholders during canonicalization. We should also simply not use pseudo-
|
|
// canonical queries in the trait solver, at which point we can readd this assert.
|
|
//
|
|
// As of writing this comment, this is only used when normalizing consts that mention
|
|
// params.
|
|
/* debug_assert!(
|
|
!value.has_placeholders(),
|
|
"{value:?} which has placeholder shouldn't be pseudo-canonicalized"
|
|
); */
|
|
PseudoCanonicalInput { typing_env: self, value }
|
|
}
|
|
}
|
|
|
|
/// Similar to `CanonicalInput`, this carries the `typing_mode` and the environment
|
|
/// necessary to do any kind of trait solving inside of nested queries.
|
|
///
|
|
/// Unlike proper canonicalization, this requires the `param_env` and the `value` to not
|
|
/// contain anything local to the `infcx` of the caller, so we don't actually canonicalize
|
|
/// anything.
|
|
///
|
|
/// This should be created by using `infcx.pseudo_canonicalize_query(param_env, value)`
|
|
/// or by using `typing_env.as_query_input(value)`.
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
|
|
#[derive(HashStable, TypeVisitable, TypeFoldable)]
|
|
pub struct PseudoCanonicalInput<'tcx, T> {
|
|
pub typing_env: TypingEnv<'tcx>,
|
|
pub value: T,
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, HashStable, Encodable, Decodable)]
|
|
pub struct Destructor {
|
|
/// The `DefId` of the destructor method
|
|
pub did: DefId,
|
|
}
|
|
|
|
// FIXME: consider combining this definition with regular `Destructor`
|
|
#[derive(Copy, Clone, Debug, HashStable, Encodable, Decodable)]
|
|
pub struct AsyncDestructor {
|
|
/// The `DefId` of the `impl AsyncDrop`
|
|
pub impl_did: DefId,
|
|
}
|
|
|
|
#[derive(Clone, Copy, PartialEq, Eq, HashStable, TyEncodable, TyDecodable)]
|
|
pub struct VariantFlags(u8);
|
|
bitflags::bitflags! {
|
|
impl VariantFlags: u8 {
|
|
const NO_VARIANT_FLAGS = 0;
|
|
/// Indicates whether the field list of this variant is `#[non_exhaustive]`.
|
|
const IS_FIELD_LIST_NON_EXHAUSTIVE = 1 << 0;
|
|
}
|
|
}
|
|
rustc_data_structures::external_bitflags_debug! { VariantFlags }
|
|
|
|
/// Definition of a variant -- a struct's fields or an enum variant.
|
|
#[derive(Debug, HashStable, TyEncodable, TyDecodable)]
|
|
pub struct VariantDef {
|
|
/// `DefId` that identifies the variant itself.
|
|
/// If this variant belongs to a struct or union, then this is a copy of its `DefId`.
|
|
pub def_id: DefId,
|
|
/// `DefId` that identifies the variant's constructor.
|
|
/// If this variant is a struct variant, then this is `None`.
|
|
pub ctor: Option<(CtorKind, DefId)>,
|
|
/// Variant or struct name.
|
|
pub name: Symbol,
|
|
/// Discriminant of this variant.
|
|
pub discr: VariantDiscr,
|
|
/// Fields of this variant.
|
|
pub fields: IndexVec<FieldIdx, FieldDef>,
|
|
/// The error guarantees from parser, if any.
|
|
tainted: Option<ErrorGuaranteed>,
|
|
/// Flags of the variant (e.g. is field list non-exhaustive)?
|
|
flags: VariantFlags,
|
|
}
|
|
|
|
impl VariantDef {
|
|
/// Creates a new `VariantDef`.
|
|
///
|
|
/// `variant_did` is the `DefId` that identifies the enum variant (if this `VariantDef`
|
|
/// represents an enum variant).
|
|
///
|
|
/// `ctor_did` is the `DefId` that identifies the constructor of unit or
|
|
/// tuple-variants/structs. If this is a `struct`-variant then this should be `None`.
|
|
///
|
|
/// `parent_did` is the `DefId` of the `AdtDef` representing the enum or struct that
|
|
/// owns this variant. It is used for checking if a struct has `#[non_exhaustive]` w/out having
|
|
/// to go through the redirect of checking the ctor's attributes - but compiling a small crate
|
|
/// requires loading the `AdtDef`s for all the structs in the universe (e.g., coherence for any
|
|
/// built-in trait), and we do not want to load attributes twice.
|
|
///
|
|
/// If someone speeds up attribute loading to not be a performance concern, they can
|
|
/// remove this hack and use the constructor `DefId` everywhere.
|
|
#[instrument(level = "debug")]
|
|
pub fn new(
|
|
name: Symbol,
|
|
variant_did: Option<DefId>,
|
|
ctor: Option<(CtorKind, DefId)>,
|
|
discr: VariantDiscr,
|
|
fields: IndexVec<FieldIdx, FieldDef>,
|
|
parent_did: DefId,
|
|
recover_tainted: Option<ErrorGuaranteed>,
|
|
is_field_list_non_exhaustive: bool,
|
|
) -> Self {
|
|
let mut flags = VariantFlags::NO_VARIANT_FLAGS;
|
|
if is_field_list_non_exhaustive {
|
|
flags |= VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE;
|
|
}
|
|
|
|
VariantDef {
|
|
def_id: variant_did.unwrap_or(parent_did),
|
|
ctor,
|
|
name,
|
|
discr,
|
|
fields,
|
|
flags,
|
|
tainted: recover_tainted,
|
|
}
|
|
}
|
|
|
|
/// Returns `true` if the field list of this variant is `#[non_exhaustive]`.
|
|
///
|
|
/// Note that this function will return `true` even if the type has been
|
|
/// defined in the crate currently being compiled. If that's not what you
|
|
/// want, see [`Self::field_list_has_applicable_non_exhaustive`].
|
|
#[inline]
|
|
pub fn is_field_list_non_exhaustive(&self) -> bool {
|
|
self.flags.intersects(VariantFlags::IS_FIELD_LIST_NON_EXHAUSTIVE)
|
|
}
|
|
|
|
/// Returns `true` if the field list of this variant is `#[non_exhaustive]`
|
|
/// and the type has been defined in another crate.
|
|
#[inline]
|
|
pub fn field_list_has_applicable_non_exhaustive(&self) -> bool {
|
|
self.is_field_list_non_exhaustive() && !self.def_id.is_local()
|
|
}
|
|
|
|
/// Computes the `Ident` of this variant by looking up the `Span`
|
|
pub fn ident(&self, tcx: TyCtxt<'_>) -> Ident {
|
|
Ident::new(self.name, tcx.def_ident_span(self.def_id).unwrap())
|
|
}
|
|
|
|
/// Was this variant obtained as part of recovering from a syntactic error?
|
|
#[inline]
|
|
pub fn has_errors(&self) -> Result<(), ErrorGuaranteed> {
|
|
self.tainted.map_or(Ok(()), Err)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn ctor_kind(&self) -> Option<CtorKind> {
|
|
self.ctor.map(|(kind, _)| kind)
|
|
}
|
|
|
|
#[inline]
|
|
pub fn ctor_def_id(&self) -> Option<DefId> {
|
|
self.ctor.map(|(_, def_id)| def_id)
|
|
}
|
|
|
|
/// Returns the one field in this variant.
|
|
///
|
|
/// `panic!`s if there are no fields or multiple fields.
|
|
#[inline]
|
|
pub fn single_field(&self) -> &FieldDef {
|
|
assert!(self.fields.len() == 1);
|
|
|
|
&self.fields[FieldIdx::ZERO]
|
|
}
|
|
|
|
/// Returns the last field in this variant, if present.
|
|
#[inline]
|
|
pub fn tail_opt(&self) -> Option<&FieldDef> {
|
|
self.fields.raw.last()
|
|
}
|
|
|
|
/// Returns the last field in this variant.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Panics, if the variant has no fields.
|
|
#[inline]
|
|
pub fn tail(&self) -> &FieldDef {
|
|
self.tail_opt().expect("expected unsized ADT to have a tail field")
|
|
}
|
|
|
|
/// Returns whether this variant has unsafe fields.
|
|
pub fn has_unsafe_fields(&self) -> bool {
|
|
self.fields.iter().any(|x| x.safety.is_unsafe())
|
|
}
|
|
}
|
|
|
|
impl PartialEq for VariantDef {
|
|
#[inline]
|
|
fn eq(&self, other: &Self) -> bool {
|
|
// There should be only one `VariantDef` for each `def_id`, therefore
|
|
// it is fine to implement `PartialEq` only based on `def_id`.
|
|
//
|
|
// Below, we exhaustively destructure `self` and `other` so that if the
|
|
// definition of `VariantDef` changes, a compile-error will be produced,
|
|
// reminding us to revisit this assumption.
|
|
|
|
let Self {
|
|
def_id: lhs_def_id,
|
|
ctor: _,
|
|
name: _,
|
|
discr: _,
|
|
fields: _,
|
|
flags: _,
|
|
tainted: _,
|
|
} = &self;
|
|
let Self {
|
|
def_id: rhs_def_id,
|
|
ctor: _,
|
|
name: _,
|
|
discr: _,
|
|
fields: _,
|
|
flags: _,
|
|
tainted: _,
|
|
} = other;
|
|
|
|
let res = lhs_def_id == rhs_def_id;
|
|
|
|
// Double check that implicit assumption detailed above.
|
|
if cfg!(debug_assertions) && res {
|
|
let deep = self.ctor == other.ctor
|
|
&& self.name == other.name
|
|
&& self.discr == other.discr
|
|
&& self.fields == other.fields
|
|
&& self.flags == other.flags;
|
|
assert!(deep, "VariantDef for the same def-id has differing data");
|
|
}
|
|
|
|
res
|
|
}
|
|
}
|
|
|
|
impl Eq for VariantDef {}
|
|
|
|
impl Hash for VariantDef {
|
|
#[inline]
|
|
fn hash<H: Hasher>(&self, s: &mut H) {
|
|
// There should be only one `VariantDef` for each `def_id`, therefore
|
|
// it is fine to implement `Hash` only based on `def_id`.
|
|
//
|
|
// Below, we exhaustively destructure `self` so that if the definition
|
|
// of `VariantDef` changes, a compile-error will be produced, reminding
|
|
// us to revisit this assumption.
|
|
|
|
let Self { def_id, ctor: _, name: _, discr: _, fields: _, flags: _, tainted: _ } = &self;
|
|
def_id.hash(s)
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq, TyEncodable, TyDecodable, HashStable)]
|
|
pub enum VariantDiscr {
|
|
/// Explicit value for this variant, i.e., `X = 123`.
|
|
/// The `DefId` corresponds to the embedded constant.
|
|
Explicit(DefId),
|
|
|
|
/// The previous variant's discriminant plus one.
|
|
/// For efficiency reasons, the distance from the
|
|
/// last `Explicit` discriminant is being stored,
|
|
/// or `0` for the first variant, if it has none.
|
|
Relative(u32),
|
|
}
|
|
|
|
#[derive(Debug, HashStable, TyEncodable, TyDecodable)]
|
|
pub struct FieldDef {
|
|
pub did: DefId,
|
|
pub name: Symbol,
|
|
pub vis: Visibility<DefId>,
|
|
pub safety: hir::Safety,
|
|
pub value: Option<DefId>,
|
|
}
|
|
|
|
impl PartialEq for FieldDef {
|
|
#[inline]
|
|
fn eq(&self, other: &Self) -> bool {
|
|
// There should be only one `FieldDef` for each `did`, therefore it is
|
|
// fine to implement `PartialEq` only based on `did`.
|
|
//
|
|
// Below, we exhaustively destructure `self` so that if the definition
|
|
// of `FieldDef` changes, a compile-error will be produced, reminding
|
|
// us to revisit this assumption.
|
|
|
|
let Self { did: lhs_did, name: _, vis: _, safety: _, value: _ } = &self;
|
|
|
|
let Self { did: rhs_did, name: _, vis: _, safety: _, value: _ } = other;
|
|
|
|
let res = lhs_did == rhs_did;
|
|
|
|
// Double check that implicit assumption detailed above.
|
|
if cfg!(debug_assertions) && res {
|
|
let deep =
|
|
self.name == other.name && self.vis == other.vis && self.safety == other.safety;
|
|
assert!(deep, "FieldDef for the same def-id has differing data");
|
|
}
|
|
|
|
res
|
|
}
|
|
}
|
|
|
|
impl Eq for FieldDef {}
|
|
|
|
impl Hash for FieldDef {
|
|
#[inline]
|
|
fn hash<H: Hasher>(&self, s: &mut H) {
|
|
// There should be only one `FieldDef` for each `did`, therefore it is
|
|
// fine to implement `Hash` only based on `did`.
|
|
//
|
|
// Below, we exhaustively destructure `self` so that if the definition
|
|
// of `FieldDef` changes, a compile-error will be produced, reminding
|
|
// us to revisit this assumption.
|
|
|
|
let Self { did, name: _, vis: _, safety: _, value: _ } = &self;
|
|
|
|
did.hash(s)
|
|
}
|
|
}
|
|
|
|
impl<'tcx> FieldDef {
|
|
/// Returns the type of this field. The resulting type is not normalized. The `arg` is
|
|
/// typically obtained via the second field of [`TyKind::Adt`].
|
|
pub fn ty(&self, tcx: TyCtxt<'tcx>, args: GenericArgsRef<'tcx>) -> Ty<'tcx> {
|
|
tcx.type_of(self.did).instantiate(tcx, args)
|
|
}
|
|
|
|
/// Computes the `Ident` of this variant by looking up the `Span`
|
|
pub fn ident(&self, tcx: TyCtxt<'_>) -> Ident {
|
|
Ident::new(self.name, tcx.def_ident_span(self.did).unwrap())
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, PartialEq, Eq)]
|
|
pub enum ImplOverlapKind {
|
|
/// These impls are always allowed to overlap.
|
|
Permitted {
|
|
/// Whether or not the impl is permitted due to the trait being a `#[marker]` trait
|
|
marker: bool,
|
|
},
|
|
}
|
|
|
|
/// Useful source information about where a desugared associated type for an
|
|
/// RPITIT originated from.
|
|
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash, Encodable, Decodable, HashStable)]
|
|
pub enum ImplTraitInTraitData {
|
|
Trait { fn_def_id: DefId, opaque_def_id: DefId },
|
|
Impl { fn_def_id: DefId },
|
|
}
|
|
|
|
impl<'tcx> TyCtxt<'tcx> {
|
|
pub fn typeck_body(self, body: hir::BodyId) -> &'tcx TypeckResults<'tcx> {
|
|
self.typeck(self.hir_body_owner_def_id(body))
|
|
}
|
|
|
|
pub fn provided_trait_methods(self, id: DefId) -> impl 'tcx + Iterator<Item = &'tcx AssocItem> {
|
|
self.associated_items(id)
|
|
.in_definition_order()
|
|
.filter(move |item| item.is_fn() && item.defaultness(self).has_value())
|
|
}
|
|
|
|
pub fn repr_options_of_def(self, did: LocalDefId) -> ReprOptions {
|
|
let mut flags = ReprFlags::empty();
|
|
let mut size = None;
|
|
let mut max_align: Option<Align> = None;
|
|
let mut min_pack: Option<Align> = None;
|
|
|
|
// Generate a deterministically-derived seed from the item's path hash
|
|
// to allow for cross-crate compilation to actually work
|
|
let mut field_shuffle_seed = self.def_path_hash(did.to_def_id()).0.to_smaller_hash();
|
|
|
|
// If the user defined a custom seed for layout randomization, xor the item's
|
|
// path hash with the user defined seed, this will allowing determinism while
|
|
// still allowing users to further randomize layout generation for e.g. fuzzing
|
|
if let Some(user_seed) = self.sess.opts.unstable_opts.layout_seed {
|
|
field_shuffle_seed ^= user_seed;
|
|
}
|
|
|
|
if let Some(reprs) =
|
|
find_attr!(self.get_all_attrs(did), AttributeKind::Repr { reprs, .. } => reprs)
|
|
{
|
|
for (r, _) in reprs {
|
|
flags.insert(match *r {
|
|
attr::ReprRust => ReprFlags::empty(),
|
|
attr::ReprC => ReprFlags::IS_C,
|
|
attr::ReprPacked(pack) => {
|
|
min_pack = Some(if let Some(min_pack) = min_pack {
|
|
min_pack.min(pack)
|
|
} else {
|
|
pack
|
|
});
|
|
ReprFlags::empty()
|
|
}
|
|
attr::ReprTransparent => ReprFlags::IS_TRANSPARENT,
|
|
attr::ReprSimd => ReprFlags::IS_SIMD,
|
|
attr::ReprInt(i) => {
|
|
size = Some(match i {
|
|
attr::IntType::SignedInt(x) => match x {
|
|
ast::IntTy::Isize => IntegerType::Pointer(true),
|
|
ast::IntTy::I8 => IntegerType::Fixed(Integer::I8, true),
|
|
ast::IntTy::I16 => IntegerType::Fixed(Integer::I16, true),
|
|
ast::IntTy::I32 => IntegerType::Fixed(Integer::I32, true),
|
|
ast::IntTy::I64 => IntegerType::Fixed(Integer::I64, true),
|
|
ast::IntTy::I128 => IntegerType::Fixed(Integer::I128, true),
|
|
},
|
|
attr::IntType::UnsignedInt(x) => match x {
|
|
ast::UintTy::Usize => IntegerType::Pointer(false),
|
|
ast::UintTy::U8 => IntegerType::Fixed(Integer::I8, false),
|
|
ast::UintTy::U16 => IntegerType::Fixed(Integer::I16, false),
|
|
ast::UintTy::U32 => IntegerType::Fixed(Integer::I32, false),
|
|
ast::UintTy::U64 => IntegerType::Fixed(Integer::I64, false),
|
|
ast::UintTy::U128 => IntegerType::Fixed(Integer::I128, false),
|
|
},
|
|
});
|
|
ReprFlags::empty()
|
|
}
|
|
attr::ReprAlign(align) => {
|
|
max_align = max_align.max(Some(align));
|
|
ReprFlags::empty()
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
// If `-Z randomize-layout` was enabled for the type definition then we can
|
|
// consider performing layout randomization
|
|
if self.sess.opts.unstable_opts.randomize_layout {
|
|
flags.insert(ReprFlags::RANDOMIZE_LAYOUT);
|
|
}
|
|
|
|
// box is special, on the one hand the compiler assumes an ordered layout, with the pointer
|
|
// always at offset zero. On the other hand we want scalar abi optimizations.
|
|
let is_box = self.is_lang_item(did.to_def_id(), LangItem::OwnedBox);
|
|
|
|
// This is here instead of layout because the choice must make it into metadata.
|
|
if is_box {
|
|
flags.insert(ReprFlags::IS_LINEAR);
|
|
}
|
|
|
|
ReprOptions { int: size, align: max_align, pack: min_pack, flags, field_shuffle_seed }
|
|
}
|
|
|
|
/// Look up the name of a definition across crates. This does not look at HIR.
|
|
pub fn opt_item_name(self, def_id: impl IntoQueryParam<DefId>) -> Option<Symbol> {
|
|
let def_id = def_id.into_query_param();
|
|
if let Some(cnum) = def_id.as_crate_root() {
|
|
Some(self.crate_name(cnum))
|
|
} else {
|
|
let def_key = self.def_key(def_id);
|
|
match def_key.disambiguated_data.data {
|
|
// The name of a constructor is that of its parent.
|
|
rustc_hir::definitions::DefPathData::Ctor => self
|
|
.opt_item_name(DefId { krate: def_id.krate, index: def_key.parent.unwrap() }),
|
|
_ => def_key.get_opt_name(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Look up the name of a definition across crates. This does not look at HIR.
|
|
///
|
|
/// This method will ICE if the corresponding item does not have a name. In these cases, use
|
|
/// [`opt_item_name`] instead.
|
|
///
|
|
/// [`opt_item_name`]: Self::opt_item_name
|
|
pub fn item_name(self, id: impl IntoQueryParam<DefId>) -> Symbol {
|
|
let id = id.into_query_param();
|
|
self.opt_item_name(id).unwrap_or_else(|| {
|
|
bug!("item_name: no name for {:?}", self.def_path(id));
|
|
})
|
|
}
|
|
|
|
/// Look up the name and span of a definition.
|
|
///
|
|
/// See [`item_name`][Self::item_name] for more information.
|
|
pub fn opt_item_ident(self, def_id: impl IntoQueryParam<DefId>) -> Option<Ident> {
|
|
let def_id = def_id.into_query_param();
|
|
let def = self.opt_item_name(def_id)?;
|
|
let span = self
|
|
.def_ident_span(def_id)
|
|
.unwrap_or_else(|| bug!("missing ident span for {def_id:?}"));
|
|
Some(Ident::new(def, span))
|
|
}
|
|
|
|
/// Look up the name and span of a definition.
|
|
///
|
|
/// See [`item_name`][Self::item_name] for more information.
|
|
pub fn item_ident(self, def_id: impl IntoQueryParam<DefId>) -> Ident {
|
|
let def_id = def_id.into_query_param();
|
|
self.opt_item_ident(def_id).unwrap_or_else(|| {
|
|
bug!("item_ident: no name for {:?}", self.def_path(def_id));
|
|
})
|
|
}
|
|
|
|
pub fn opt_associated_item(self, def_id: DefId) -> Option<AssocItem> {
|
|
if let DefKind::AssocConst | DefKind::AssocFn | DefKind::AssocTy = self.def_kind(def_id) {
|
|
Some(self.associated_item(def_id))
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
/// If the `def_id` is an associated type that was desugared from a
|
|
/// return-position `impl Trait` from a trait, then provide the source info
|
|
/// about where that RPITIT came from.
|
|
pub fn opt_rpitit_info(self, def_id: DefId) -> Option<ImplTraitInTraitData> {
|
|
if let DefKind::AssocTy = self.def_kind(def_id)
|
|
&& let AssocKind::Type { data: AssocTypeData::Rpitit(rpitit_info) } =
|
|
self.associated_item(def_id).kind
|
|
{
|
|
Some(rpitit_info)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
pub fn find_field_index(self, ident: Ident, variant: &VariantDef) -> Option<FieldIdx> {
|
|
variant.fields.iter_enumerated().find_map(|(i, field)| {
|
|
self.hygienic_eq(ident, field.ident(self), variant.def_id).then_some(i)
|
|
})
|
|
}
|
|
|
|
/// Returns `Some` if the impls are the same polarity and the trait either
|
|
/// has no items or is annotated `#[marker]` and prevents item overrides.
|
|
#[instrument(level = "debug", skip(self), ret)]
|
|
pub fn impls_are_allowed_to_overlap(
|
|
self,
|
|
def_id1: DefId,
|
|
def_id2: DefId,
|
|
) -> Option<ImplOverlapKind> {
|
|
let impl1 = self.impl_trait_header(def_id1);
|
|
let impl2 = self.impl_trait_header(def_id2);
|
|
|
|
let trait_ref1 = impl1.trait_ref.skip_binder();
|
|
let trait_ref2 = impl2.trait_ref.skip_binder();
|
|
|
|
// If either trait impl references an error, they're allowed to overlap,
|
|
// as one of them essentially doesn't exist.
|
|
if trait_ref1.references_error() || trait_ref2.references_error() {
|
|
return Some(ImplOverlapKind::Permitted { marker: false });
|
|
}
|
|
|
|
match (impl1.polarity, impl2.polarity) {
|
|
(ImplPolarity::Reservation, _) | (_, ImplPolarity::Reservation) => {
|
|
// `#[rustc_reservation_impl]` impls don't overlap with anything
|
|
return Some(ImplOverlapKind::Permitted { marker: false });
|
|
}
|
|
(ImplPolarity::Positive, ImplPolarity::Negative)
|
|
| (ImplPolarity::Negative, ImplPolarity::Positive) => {
|
|
// `impl AutoTrait for Type` + `impl !AutoTrait for Type`
|
|
return None;
|
|
}
|
|
(ImplPolarity::Positive, ImplPolarity::Positive)
|
|
| (ImplPolarity::Negative, ImplPolarity::Negative) => {}
|
|
};
|
|
|
|
let is_marker_impl = |trait_ref: TraitRef<'_>| self.trait_def(trait_ref.def_id).is_marker;
|
|
let is_marker_overlap = is_marker_impl(trait_ref1) && is_marker_impl(trait_ref2);
|
|
|
|
if is_marker_overlap {
|
|
return Some(ImplOverlapKind::Permitted { marker: true });
|
|
}
|
|
|
|
None
|
|
}
|
|
|
|
/// Returns `ty::VariantDef` if `res` refers to a struct,
|
|
/// or variant or their constructors, panics otherwise.
|
|
pub fn expect_variant_res(self, res: Res) -> &'tcx VariantDef {
|
|
match res {
|
|
Res::Def(DefKind::Variant, did) => {
|
|
let enum_did = self.parent(did);
|
|
self.adt_def(enum_did).variant_with_id(did)
|
|
}
|
|
Res::Def(DefKind::Struct | DefKind::Union, did) => self.adt_def(did).non_enum_variant(),
|
|
Res::Def(DefKind::Ctor(CtorOf::Variant, ..), variant_ctor_did) => {
|
|
let variant_did = self.parent(variant_ctor_did);
|
|
let enum_did = self.parent(variant_did);
|
|
self.adt_def(enum_did).variant_with_ctor_id(variant_ctor_did)
|
|
}
|
|
Res::Def(DefKind::Ctor(CtorOf::Struct, ..), ctor_did) => {
|
|
let struct_did = self.parent(ctor_did);
|
|
self.adt_def(struct_did).non_enum_variant()
|
|
}
|
|
_ => bug!("expect_variant_res used with unexpected res {:?}", res),
|
|
}
|
|
}
|
|
|
|
/// Returns the possibly-auto-generated MIR of a [`ty::InstanceKind`].
|
|
#[instrument(skip(self), level = "debug")]
|
|
pub fn instance_mir(self, instance: ty::InstanceKind<'tcx>) -> &'tcx Body<'tcx> {
|
|
match instance {
|
|
ty::InstanceKind::Item(def) => {
|
|
debug!("calling def_kind on def: {:?}", def);
|
|
let def_kind = self.def_kind(def);
|
|
debug!("returned from def_kind: {:?}", def_kind);
|
|
match def_kind {
|
|
DefKind::Const
|
|
| DefKind::Static { .. }
|
|
| DefKind::AssocConst
|
|
| DefKind::Ctor(..)
|
|
| DefKind::AnonConst
|
|
| DefKind::InlineConst => self.mir_for_ctfe(def),
|
|
// If the caller wants `mir_for_ctfe` of a function they should not be using
|
|
// `instance_mir`, so we'll assume const fn also wants the optimized version.
|
|
_ => self.optimized_mir(def),
|
|
}
|
|
}
|
|
ty::InstanceKind::VTableShim(..)
|
|
| ty::InstanceKind::ReifyShim(..)
|
|
| ty::InstanceKind::Intrinsic(..)
|
|
| ty::InstanceKind::FnPtrShim(..)
|
|
| ty::InstanceKind::Virtual(..)
|
|
| ty::InstanceKind::ClosureOnceShim { .. }
|
|
| ty::InstanceKind::ConstructCoroutineInClosureShim { .. }
|
|
| ty::InstanceKind::FutureDropPollShim(..)
|
|
| ty::InstanceKind::DropGlue(..)
|
|
| ty::InstanceKind::CloneShim(..)
|
|
| ty::InstanceKind::ThreadLocalShim(..)
|
|
| ty::InstanceKind::FnPtrAddrShim(..)
|
|
| ty::InstanceKind::AsyncDropGlueCtorShim(..)
|
|
| ty::InstanceKind::AsyncDropGlue(..) => self.mir_shims(instance),
|
|
}
|
|
}
|
|
|
|
/// Gets all attributes with the given name.
|
|
pub fn get_attrs(
|
|
self,
|
|
did: impl Into<DefId>,
|
|
attr: Symbol,
|
|
) -> impl Iterator<Item = &'tcx hir::Attribute> {
|
|
self.get_all_attrs(did).iter().filter(move |a: &&hir::Attribute| a.has_name(attr))
|
|
}
|
|
|
|
/// Gets all attributes.
|
|
///
|
|
/// To see if an item has a specific attribute, you should use
|
|
/// [`rustc_hir::find_attr!`] so you can use matching.
|
|
pub fn get_all_attrs(self, did: impl Into<DefId>) -> &'tcx [hir::Attribute] {
|
|
let did: DefId = did.into();
|
|
if let Some(did) = did.as_local() {
|
|
self.hir_attrs(self.local_def_id_to_hir_id(did))
|
|
} else {
|
|
self.attrs_for_def(did)
|
|
}
|
|
}
|
|
|
|
/// Get an attribute from the diagnostic attribute namespace
|
|
///
|
|
/// This function requests an attribute with the following structure:
|
|
///
|
|
/// `#[diagnostic::$attr]`
|
|
///
|
|
/// This function performs feature checking, so if an attribute is returned
|
|
/// it can be used by the consumer
|
|
pub fn get_diagnostic_attr(
|
|
self,
|
|
did: impl Into<DefId>,
|
|
attr: Symbol,
|
|
) -> Option<&'tcx hir::Attribute> {
|
|
let did: DefId = did.into();
|
|
if did.as_local().is_some() {
|
|
// it's a crate local item, we need to check feature flags
|
|
if rustc_feature::is_stable_diagnostic_attribute(attr, self.features()) {
|
|
self.get_attrs_by_path(did, &[sym::diagnostic, sym::do_not_recommend]).next()
|
|
} else {
|
|
None
|
|
}
|
|
} else {
|
|
// we filter out unstable diagnostic attributes before
|
|
// encoding attributes
|
|
debug_assert!(rustc_feature::encode_cross_crate(attr));
|
|
self.attrs_for_def(did)
|
|
.iter()
|
|
.find(|a| matches!(a.path().as_ref(), [sym::diagnostic, a] if *a == attr))
|
|
}
|
|
}
|
|
|
|
pub fn get_attrs_by_path(
|
|
self,
|
|
did: DefId,
|
|
attr: &[Symbol],
|
|
) -> impl Iterator<Item = &'tcx hir::Attribute> {
|
|
let filter_fn = move |a: &&hir::Attribute| a.path_matches(attr);
|
|
if let Some(did) = did.as_local() {
|
|
self.hir_attrs(self.local_def_id_to_hir_id(did)).iter().filter(filter_fn)
|
|
} else {
|
|
self.attrs_for_def(did).iter().filter(filter_fn)
|
|
}
|
|
}
|
|
|
|
pub fn get_attr(self, did: impl Into<DefId>, attr: Symbol) -> Option<&'tcx hir::Attribute> {
|
|
if cfg!(debug_assertions) && !rustc_feature::is_valid_for_get_attr(attr) {
|
|
let did: DefId = did.into();
|
|
bug!("get_attr: unexpected called with DefId `{:?}`, attr `{:?}`", did, attr);
|
|
} else {
|
|
self.get_attrs(did, attr).next()
|
|
}
|
|
}
|
|
|
|
/// Determines whether an item is annotated with an attribute.
|
|
pub fn has_attr(self, did: impl Into<DefId>, attr: Symbol) -> bool {
|
|
self.get_attrs(did, attr).next().is_some()
|
|
}
|
|
|
|
/// Determines whether an item is annotated with a multi-segment attribute
|
|
pub fn has_attrs_with_path(self, did: impl Into<DefId>, attrs: &[Symbol]) -> bool {
|
|
self.get_attrs_by_path(did.into(), attrs).next().is_some()
|
|
}
|
|
|
|
/// Returns `true` if this is an `auto trait`.
|
|
pub fn trait_is_auto(self, trait_def_id: DefId) -> bool {
|
|
self.trait_def(trait_def_id).has_auto_impl
|
|
}
|
|
|
|
/// Returns `true` if this is coinductive, either because it is
|
|
/// an auto trait or because it has the `#[rustc_coinductive]` attribute.
|
|
pub fn trait_is_coinductive(self, trait_def_id: DefId) -> bool {
|
|
self.trait_def(trait_def_id).is_coinductive
|
|
}
|
|
|
|
/// Returns `true` if this is a trait alias.
|
|
pub fn trait_is_alias(self, trait_def_id: DefId) -> bool {
|
|
self.def_kind(trait_def_id) == DefKind::TraitAlias
|
|
}
|
|
|
|
/// Arena-alloc of LayoutError for coroutine layout
|
|
fn layout_error(self, err: LayoutError<'tcx>) -> &'tcx LayoutError<'tcx> {
|
|
self.arena.alloc(err)
|
|
}
|
|
|
|
/// Returns layout of a non-async-drop coroutine. Layout might be unavailable if the
|
|
/// coroutine is tainted by errors.
|
|
///
|
|
/// Takes `coroutine_kind` which can be acquired from the `CoroutineArgs::kind_ty`,
|
|
/// e.g. `args.as_coroutine().kind_ty()`.
|
|
fn ordinary_coroutine_layout(
|
|
self,
|
|
def_id: DefId,
|
|
args: GenericArgsRef<'tcx>,
|
|
) -> Result<&'tcx CoroutineLayout<'tcx>, &'tcx LayoutError<'tcx>> {
|
|
let coroutine_kind_ty = args.as_coroutine().kind_ty();
|
|
let mir = self.optimized_mir(def_id);
|
|
let ty = || Ty::new_coroutine(self, def_id, args);
|
|
// Regular coroutine
|
|
if coroutine_kind_ty.is_unit() {
|
|
mir.coroutine_layout_raw().ok_or_else(|| self.layout_error(LayoutError::Unknown(ty())))
|
|
} else {
|
|
// If we have a `Coroutine` that comes from an coroutine-closure,
|
|
// then it may be a by-move or by-ref body.
|
|
let ty::Coroutine(_, identity_args) =
|
|
*self.type_of(def_id).instantiate_identity().kind()
|
|
else {
|
|
unreachable!();
|
|
};
|
|
let identity_kind_ty = identity_args.as_coroutine().kind_ty();
|
|
// If the types differ, then we must be getting the by-move body of
|
|
// a by-ref coroutine.
|
|
if identity_kind_ty == coroutine_kind_ty {
|
|
mir.coroutine_layout_raw()
|
|
.ok_or_else(|| self.layout_error(LayoutError::Unknown(ty())))
|
|
} else {
|
|
assert_matches!(coroutine_kind_ty.to_opt_closure_kind(), Some(ClosureKind::FnOnce));
|
|
assert_matches!(
|
|
identity_kind_ty.to_opt_closure_kind(),
|
|
Some(ClosureKind::Fn | ClosureKind::FnMut)
|
|
);
|
|
self.optimized_mir(self.coroutine_by_move_body_def_id(def_id))
|
|
.coroutine_layout_raw()
|
|
.ok_or_else(|| self.layout_error(LayoutError::Unknown(ty())))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns layout of a `async_drop_in_place::{closure}` coroutine
|
|
/// (returned from `async fn async_drop_in_place<T>(..)`).
|
|
/// Layout might be unavailable if the coroutine is tainted by errors.
|
|
fn async_drop_coroutine_layout(
|
|
self,
|
|
def_id: DefId,
|
|
args: GenericArgsRef<'tcx>,
|
|
) -> Result<&'tcx CoroutineLayout<'tcx>, &'tcx LayoutError<'tcx>> {
|
|
let ty = || Ty::new_coroutine(self, def_id, args);
|
|
if args[0].has_placeholders() || args[0].has_non_region_param() {
|
|
return Err(self.layout_error(LayoutError::TooGeneric(ty())));
|
|
}
|
|
let instance = InstanceKind::AsyncDropGlue(def_id, Ty::new_coroutine(self, def_id, args));
|
|
self.mir_shims(instance)
|
|
.coroutine_layout_raw()
|
|
.ok_or_else(|| self.layout_error(LayoutError::Unknown(ty())))
|
|
}
|
|
|
|
/// Returns layout of a coroutine. Layout might be unavailable if the
|
|
/// coroutine is tainted by errors.
|
|
pub fn coroutine_layout(
|
|
self,
|
|
def_id: DefId,
|
|
args: GenericArgsRef<'tcx>,
|
|
) -> Result<&'tcx CoroutineLayout<'tcx>, &'tcx LayoutError<'tcx>> {
|
|
if self.is_async_drop_in_place_coroutine(def_id) {
|
|
// layout of `async_drop_in_place<T>::{closure}` in case,
|
|
// when T is a coroutine, contains this internal coroutine's ptr in upvars
|
|
// and doesn't require any locals. Here is an `empty coroutine's layout`
|
|
let arg_cor_ty = args.first().unwrap().expect_ty();
|
|
if arg_cor_ty.is_coroutine() {
|
|
let span = self.def_span(def_id);
|
|
let source_info = SourceInfo::outermost(span);
|
|
// Even minimal, empty coroutine has 3 states (RESERVED_VARIANTS),
|
|
// so variant_fields and variant_source_info should have 3 elements.
|
|
let variant_fields: IndexVec<VariantIdx, IndexVec<FieldIdx, CoroutineSavedLocal>> =
|
|
iter::repeat(IndexVec::new()).take(CoroutineArgs::RESERVED_VARIANTS).collect();
|
|
let variant_source_info: IndexVec<VariantIdx, SourceInfo> =
|
|
iter::repeat(source_info).take(CoroutineArgs::RESERVED_VARIANTS).collect();
|
|
let proxy_layout = CoroutineLayout {
|
|
field_tys: [].into(),
|
|
field_names: [].into(),
|
|
variant_fields,
|
|
variant_source_info,
|
|
storage_conflicts: BitMatrix::new(0, 0),
|
|
};
|
|
return Ok(self.arena.alloc(proxy_layout));
|
|
} else {
|
|
self.async_drop_coroutine_layout(def_id, args)
|
|
}
|
|
} else {
|
|
self.ordinary_coroutine_layout(def_id, args)
|
|
}
|
|
}
|
|
|
|
/// If the given `DefId` is an associated item, returns the `DefId` and `DefKind` of the parent trait or impl.
|
|
pub fn assoc_parent(self, def_id: DefId) -> Option<(DefId, DefKind)> {
|
|
if !self.def_kind(def_id).is_assoc() {
|
|
return None;
|
|
}
|
|
let parent = self.parent(def_id);
|
|
let def_kind = self.def_kind(parent);
|
|
Some((parent, def_kind))
|
|
}
|
|
|
|
/// Returns the trait item that is implemented by the given item `DefId`.
|
|
pub fn trait_item_of(self, def_id: impl IntoQueryParam<DefId>) -> Option<DefId> {
|
|
self.opt_associated_item(def_id.into_query_param())?.trait_item_def_id()
|
|
}
|
|
|
|
/// If the given `DefId` is an associated item of a trait,
|
|
/// returns the `DefId` of the trait; otherwise, returns `None`.
|
|
pub fn trait_of_assoc(self, def_id: DefId) -> Option<DefId> {
|
|
match self.assoc_parent(def_id) {
|
|
Some((id, DefKind::Trait)) => Some(id),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
pub fn impl_is_of_trait(self, def_id: impl IntoQueryParam<DefId>) -> bool {
|
|
let def_id = def_id.into_query_param();
|
|
let DefKind::Impl { of_trait } = self.def_kind(def_id) else {
|
|
panic!("expected Impl for {def_id:?}");
|
|
};
|
|
of_trait
|
|
}
|
|
|
|
/// If the given `DefId` is an associated item of an impl,
|
|
/// returns the `DefId` of the impl; otherwise returns `None`.
|
|
pub fn impl_of_assoc(self, def_id: DefId) -> Option<DefId> {
|
|
match self.assoc_parent(def_id) {
|
|
Some((id, DefKind::Impl { .. })) => Some(id),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
/// If the given `DefId` is an associated item of an inherent impl,
|
|
/// returns the `DefId` of the impl; otherwise, returns `None`.
|
|
pub fn inherent_impl_of_assoc(self, def_id: DefId) -> Option<DefId> {
|
|
match self.assoc_parent(def_id) {
|
|
Some((id, DefKind::Impl { of_trait: false })) => Some(id),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
/// If the given `DefId` is an associated item of a trait impl,
|
|
/// returns the `DefId` of the impl; otherwise, returns `None`.
|
|
pub fn trait_impl_of_assoc(self, def_id: DefId) -> Option<DefId> {
|
|
match self.assoc_parent(def_id) {
|
|
Some((id, DefKind::Impl { of_trait: true })) => Some(id),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
pub fn impl_polarity(self, def_id: impl IntoQueryParam<DefId>) -> ty::ImplPolarity {
|
|
self.impl_trait_header(def_id).polarity
|
|
}
|
|
|
|
/// Given an `impl_id`, return the trait it implements.
|
|
pub fn impl_trait_ref(
|
|
self,
|
|
def_id: impl IntoQueryParam<DefId>,
|
|
) -> ty::EarlyBinder<'tcx, ty::TraitRef<'tcx>> {
|
|
self.impl_trait_header(def_id).trait_ref
|
|
}
|
|
|
|
/// Given an `impl_id`, return the trait it implements.
|
|
/// Returns `None` if it is an inherent impl.
|
|
pub fn impl_opt_trait_ref(
|
|
self,
|
|
def_id: impl IntoQueryParam<DefId>,
|
|
) -> Option<ty::EarlyBinder<'tcx, ty::TraitRef<'tcx>>> {
|
|
let def_id = def_id.into_query_param();
|
|
self.impl_is_of_trait(def_id).then(|| self.impl_trait_ref(def_id))
|
|
}
|
|
|
|
/// Given the `DefId` of an impl, returns the `DefId` of the trait it implements.
|
|
pub fn impl_trait_id(self, def_id: impl IntoQueryParam<DefId>) -> DefId {
|
|
self.impl_trait_ref(def_id).skip_binder().def_id
|
|
}
|
|
|
|
/// Given the `DefId` of an impl, returns the `DefId` of the trait it implements.
|
|
/// Returns `None` if it is an inherent impl.
|
|
pub fn impl_opt_trait_id(self, def_id: impl IntoQueryParam<DefId>) -> Option<DefId> {
|
|
let def_id = def_id.into_query_param();
|
|
self.impl_is_of_trait(def_id).then(|| self.impl_trait_id(def_id))
|
|
}
|
|
|
|
pub fn is_exportable(self, def_id: DefId) -> bool {
|
|
self.exportable_items(def_id.krate).contains(&def_id)
|
|
}
|
|
|
|
/// Check if the given `DefId` is `#\[automatically_derived\]`, *and*
|
|
/// whether it was produced by expanding a builtin derive macro.
|
|
pub fn is_builtin_derived(self, def_id: DefId) -> bool {
|
|
if self.is_automatically_derived(def_id)
|
|
&& let Some(def_id) = def_id.as_local()
|
|
&& let outer = self.def_span(def_id).ctxt().outer_expn_data()
|
|
&& matches!(outer.kind, ExpnKind::Macro(MacroKind::Derive, _))
|
|
&& find_attr!(
|
|
self.get_all_attrs(outer.macro_def_id.unwrap()),
|
|
AttributeKind::RustcBuiltinMacro { .. }
|
|
)
|
|
{
|
|
true
|
|
} else {
|
|
false
|
|
}
|
|
}
|
|
|
|
/// Check if the given `DefId` is `#\[automatically_derived\]`.
|
|
pub fn is_automatically_derived(self, def_id: DefId) -> bool {
|
|
find_attr!(self.get_all_attrs(def_id), AttributeKind::AutomaticallyDerived(..))
|
|
}
|
|
|
|
/// Looks up the span of `impl_did` if the impl is local; otherwise returns `Err`
|
|
/// with the name of the crate containing the impl.
|
|
pub fn span_of_impl(self, impl_def_id: DefId) -> Result<Span, Symbol> {
|
|
if let Some(impl_def_id) = impl_def_id.as_local() {
|
|
Ok(self.def_span(impl_def_id))
|
|
} else {
|
|
Err(self.crate_name(impl_def_id.krate))
|
|
}
|
|
}
|
|
|
|
/// Hygienically compares a use-site name (`use_name`) for a field or an associated item with
|
|
/// its supposed definition name (`def_name`). The method also needs `DefId` of the supposed
|
|
/// definition's parent/scope to perform comparison.
|
|
pub fn hygienic_eq(self, use_ident: Ident, def_ident: Ident, def_parent_def_id: DefId) -> bool {
|
|
// We could use `Ident::eq` here, but we deliberately don't. The identifier
|
|
// comparison fails frequently, and we want to avoid the expensive
|
|
// `normalize_to_macros_2_0()` calls required for the span comparison whenever possible.
|
|
use_ident.name == def_ident.name
|
|
&& use_ident
|
|
.span
|
|
.ctxt()
|
|
.hygienic_eq(def_ident.span.ctxt(), self.expn_that_defined(def_parent_def_id))
|
|
}
|
|
|
|
pub fn adjust_ident(self, mut ident: Ident, scope: DefId) -> Ident {
|
|
ident.span.normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope));
|
|
ident
|
|
}
|
|
|
|
// FIXME(vincenzopalazzo): move the HirId to a LocalDefId
|
|
pub fn adjust_ident_and_get_scope(
|
|
self,
|
|
mut ident: Ident,
|
|
scope: DefId,
|
|
block: hir::HirId,
|
|
) -> (Ident, DefId) {
|
|
let scope = ident
|
|
.span
|
|
.normalize_to_macros_2_0_and_adjust(self.expn_that_defined(scope))
|
|
.and_then(|actual_expansion| actual_expansion.expn_data().parent_module)
|
|
.unwrap_or_else(|| self.parent_module(block).to_def_id());
|
|
(ident, scope)
|
|
}
|
|
|
|
/// Checks whether this is a `const fn`. Returns `false` for non-functions.
|
|
///
|
|
/// Even if this returns `true`, constness may still be unstable!
|
|
#[inline]
|
|
pub fn is_const_fn(self, def_id: DefId) -> bool {
|
|
matches!(
|
|
self.def_kind(def_id),
|
|
DefKind::Fn | DefKind::AssocFn | DefKind::Ctor(_, CtorKind::Fn) | DefKind::Closure
|
|
) && self.constness(def_id) == hir::Constness::Const
|
|
}
|
|
|
|
/// Whether this item is conditionally constant for the purposes of the
|
|
/// effects implementation.
|
|
///
|
|
/// This roughly corresponds to all const functions and other callable
|
|
/// items, along with const impls and traits, and associated types within
|
|
/// those impls and traits.
|
|
pub fn is_conditionally_const(self, def_id: impl Into<DefId>) -> bool {
|
|
let def_id: DefId = def_id.into();
|
|
match self.def_kind(def_id) {
|
|
DefKind::Impl { of_trait: true } => {
|
|
let header = self.impl_trait_header(def_id);
|
|
header.constness == hir::Constness::Const
|
|
&& self.is_const_trait(header.trait_ref.skip_binder().def_id)
|
|
}
|
|
DefKind::Fn | DefKind::Ctor(_, CtorKind::Fn) => {
|
|
self.constness(def_id) == hir::Constness::Const
|
|
}
|
|
DefKind::TraitAlias | DefKind::Trait => self.is_const_trait(def_id),
|
|
DefKind::AssocTy => {
|
|
let parent_def_id = self.parent(def_id);
|
|
match self.def_kind(parent_def_id) {
|
|
DefKind::Impl { of_trait: false } => false,
|
|
DefKind::Impl { of_trait: true } | DefKind::Trait => {
|
|
self.is_conditionally_const(parent_def_id)
|
|
}
|
|
_ => bug!("unexpected parent item of associated type: {parent_def_id:?}"),
|
|
}
|
|
}
|
|
DefKind::AssocFn => {
|
|
let parent_def_id = self.parent(def_id);
|
|
match self.def_kind(parent_def_id) {
|
|
DefKind::Impl { of_trait: false } => {
|
|
self.constness(def_id) == hir::Constness::Const
|
|
}
|
|
DefKind::Impl { of_trait: true } | DefKind::Trait => {
|
|
self.is_conditionally_const(parent_def_id)
|
|
}
|
|
_ => bug!("unexpected parent item of associated fn: {parent_def_id:?}"),
|
|
}
|
|
}
|
|
DefKind::OpaqueTy => match self.opaque_ty_origin(def_id) {
|
|
hir::OpaqueTyOrigin::FnReturn { parent, .. } => self.is_conditionally_const(parent),
|
|
hir::OpaqueTyOrigin::AsyncFn { .. } => false,
|
|
// FIXME(const_trait_impl): ATPITs could be conditionally const?
|
|
hir::OpaqueTyOrigin::TyAlias { .. } => false,
|
|
},
|
|
DefKind::Closure => {
|
|
// Closures and RPITs will eventually have const conditions
|
|
// for `[const]` bounds.
|
|
false
|
|
}
|
|
DefKind::Ctor(_, CtorKind::Const)
|
|
| DefKind::Impl { of_trait: false }
|
|
| DefKind::Mod
|
|
| DefKind::Struct
|
|
| DefKind::Union
|
|
| DefKind::Enum
|
|
| DefKind::Variant
|
|
| DefKind::TyAlias
|
|
| DefKind::ForeignTy
|
|
| DefKind::TyParam
|
|
| DefKind::Const
|
|
| DefKind::ConstParam
|
|
| DefKind::Static { .. }
|
|
| DefKind::AssocConst
|
|
| DefKind::Macro(_)
|
|
| DefKind::ExternCrate
|
|
| DefKind::Use
|
|
| DefKind::ForeignMod
|
|
| DefKind::AnonConst
|
|
| DefKind::InlineConst
|
|
| DefKind::Field
|
|
| DefKind::LifetimeParam
|
|
| DefKind::GlobalAsm
|
|
| DefKind::SyntheticCoroutineBody => false,
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn is_const_trait(self, def_id: DefId) -> bool {
|
|
self.trait_def(def_id).constness == hir::Constness::Const
|
|
}
|
|
|
|
#[inline]
|
|
pub fn is_const_default_method(self, def_id: DefId) -> bool {
|
|
matches!(self.trait_of_assoc(def_id), Some(trait_id) if self.is_const_trait(trait_id))
|
|
}
|
|
|
|
pub fn impl_method_has_trait_impl_trait_tys(self, def_id: DefId) -> bool {
|
|
if self.def_kind(def_id) != DefKind::AssocFn {
|
|
return false;
|
|
}
|
|
|
|
let Some(item) = self.opt_associated_item(def_id) else {
|
|
return false;
|
|
};
|
|
|
|
let AssocContainer::TraitImpl(Ok(trait_item_def_id)) = item.container else {
|
|
return false;
|
|
};
|
|
|
|
!self.associated_types_for_impl_traits_in_associated_fn(trait_item_def_id).is_empty()
|
|
}
|
|
}
|
|
|
|
pub fn provide(providers: &mut Providers) {
|
|
closure::provide(providers);
|
|
context::provide(providers);
|
|
erase_regions::provide(providers);
|
|
inhabitedness::provide(providers);
|
|
util::provide(providers);
|
|
print::provide(providers);
|
|
super::util::bug::provide(providers);
|
|
*providers = Providers {
|
|
trait_impls_of: trait_def::trait_impls_of_provider,
|
|
incoherent_impls: trait_def::incoherent_impls_provider,
|
|
trait_impls_in_crate: trait_def::trait_impls_in_crate_provider,
|
|
traits: trait_def::traits_provider,
|
|
vtable_allocation: vtable::vtable_allocation_provider,
|
|
..*providers
|
|
};
|
|
}
|
|
|
|
/// A map for the local crate mapping each type to a vector of its
|
|
/// inherent impls. This is not meant to be used outside of coherence;
|
|
/// rather, you should request the vector for a specific type via
|
|
/// `tcx.inherent_impls(def_id)` so as to minimize your dependencies
|
|
/// (constructing this map requires touching the entire crate).
|
|
#[derive(Clone, Debug, Default, HashStable)]
|
|
pub struct CrateInherentImpls {
|
|
pub inherent_impls: FxIndexMap<LocalDefId, Vec<DefId>>,
|
|
pub incoherent_impls: FxIndexMap<SimplifiedType, Vec<LocalDefId>>,
|
|
}
|
|
|
|
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash, TyEncodable, HashStable)]
|
|
pub struct SymbolName<'tcx> {
|
|
/// `&str` gives a consistent ordering, which ensures reproducible builds.
|
|
pub name: &'tcx str,
|
|
}
|
|
|
|
impl<'tcx> SymbolName<'tcx> {
|
|
pub fn new(tcx: TyCtxt<'tcx>, name: &str) -> SymbolName<'tcx> {
|
|
SymbolName { name: tcx.arena.alloc_str(name) }
|
|
}
|
|
}
|
|
|
|
impl<'tcx> fmt::Display for SymbolName<'tcx> {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
fmt::Display::fmt(&self.name, fmt)
|
|
}
|
|
}
|
|
|
|
impl<'tcx> fmt::Debug for SymbolName<'tcx> {
|
|
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
fmt::Display::fmt(&self.name, fmt)
|
|
}
|
|
}
|
|
|
|
/// The constituent parts of a type level constant of kind ADT or array.
|
|
#[derive(Copy, Clone, Debug, HashStable)]
|
|
pub struct DestructuredConst<'tcx> {
|
|
pub variant: Option<VariantIdx>,
|
|
pub fields: &'tcx [ty::Const<'tcx>],
|
|
}
|
|
|
|
/// Generate TypeTree information for autodiff.
|
|
/// This function creates TypeTree metadata that describes the memory layout
|
|
/// of function parameters and return types for Enzyme autodiff.
|
|
pub fn fnc_typetrees<'tcx>(tcx: TyCtxt<'tcx>, fn_ty: Ty<'tcx>) -> FncTree {
|
|
// Check if TypeTrees are disabled via NoTT flag
|
|
if tcx.sess.opts.unstable_opts.autodiff.contains(&rustc_session::config::AutoDiff::NoTT) {
|
|
return FncTree { args: vec![], ret: TypeTree::new() };
|
|
}
|
|
|
|
// Check if this is actually a function type
|
|
if !fn_ty.is_fn() {
|
|
return FncTree { args: vec![], ret: TypeTree::new() };
|
|
}
|
|
|
|
// Get the function signature
|
|
let fn_sig = fn_ty.fn_sig(tcx);
|
|
let sig = tcx.instantiate_bound_regions_with_erased(fn_sig);
|
|
|
|
// Create TypeTrees for each input parameter
|
|
let mut args = vec![];
|
|
for ty in sig.inputs().iter() {
|
|
let type_tree = typetree_from_ty(tcx, *ty);
|
|
args.push(type_tree);
|
|
}
|
|
|
|
// Create TypeTree for return type
|
|
let ret = typetree_from_ty(tcx, sig.output());
|
|
|
|
FncTree { args, ret }
|
|
}
|
|
|
|
/// Generate TypeTree for a specific type.
|
|
/// This function analyzes a Rust type and creates appropriate TypeTree metadata.
|
|
pub fn typetree_from_ty<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> TypeTree {
|
|
let mut visited = Vec::new();
|
|
typetree_from_ty_inner(tcx, ty, 0, &mut visited)
|
|
}
|
|
|
|
/// Maximum recursion depth for TypeTree generation to prevent stack overflow
|
|
/// from pathological deeply nested types. Combined with cycle detection.
|
|
const MAX_TYPETREE_DEPTH: usize = 6;
|
|
|
|
/// Internal recursive function for TypeTree generation with cycle detection and depth limiting.
|
|
fn typetree_from_ty_inner<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
ty: Ty<'tcx>,
|
|
depth: usize,
|
|
visited: &mut Vec<Ty<'tcx>>,
|
|
) -> TypeTree {
|
|
if depth >= MAX_TYPETREE_DEPTH {
|
|
trace!("typetree depth limit {} reached for type: {}", MAX_TYPETREE_DEPTH, ty);
|
|
return TypeTree::new();
|
|
}
|
|
|
|
if visited.contains(&ty) {
|
|
return TypeTree::new();
|
|
}
|
|
|
|
visited.push(ty);
|
|
let result = typetree_from_ty_impl(tcx, ty, depth, visited);
|
|
visited.pop();
|
|
result
|
|
}
|
|
|
|
/// Implementation of TypeTree generation logic.
|
|
fn typetree_from_ty_impl<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
ty: Ty<'tcx>,
|
|
depth: usize,
|
|
visited: &mut Vec<Ty<'tcx>>,
|
|
) -> TypeTree {
|
|
typetree_from_ty_impl_inner(tcx, ty, depth, visited, false)
|
|
}
|
|
|
|
/// Internal implementation with context about whether this is for a reference target.
|
|
fn typetree_from_ty_impl_inner<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
ty: Ty<'tcx>,
|
|
depth: usize,
|
|
visited: &mut Vec<Ty<'tcx>>,
|
|
is_reference_target: bool,
|
|
) -> TypeTree {
|
|
if ty.is_scalar() {
|
|
let (kind, size) = if ty.is_integral() || ty.is_char() || ty.is_bool() {
|
|
(Kind::Integer, ty.primitive_size(tcx).bytes_usize())
|
|
} else if ty.is_floating_point() {
|
|
match ty {
|
|
x if x == tcx.types.f16 => (Kind::Half, 2),
|
|
x if x == tcx.types.f32 => (Kind::Float, 4),
|
|
x if x == tcx.types.f64 => (Kind::Double, 8),
|
|
x if x == tcx.types.f128 => (Kind::F128, 16),
|
|
_ => (Kind::Integer, 0),
|
|
}
|
|
} else {
|
|
(Kind::Integer, 0)
|
|
};
|
|
|
|
// Use offset 0 for scalars that are direct targets of references (like &f64)
|
|
// Use offset -1 for scalars used directly (like function return types)
|
|
let offset = if is_reference_target && !ty.is_array() { 0 } else { -1 };
|
|
return TypeTree(vec![Type { offset, size, kind, child: TypeTree::new() }]);
|
|
}
|
|
|
|
if ty.is_ref() || ty.is_raw_ptr() || ty.is_box() {
|
|
let inner_ty = if let Some(inner) = ty.builtin_deref(true) {
|
|
inner
|
|
} else {
|
|
return TypeTree::new();
|
|
};
|
|
|
|
let child = typetree_from_ty_impl_inner(tcx, inner_ty, depth + 1, visited, true);
|
|
return TypeTree(vec![Type {
|
|
offset: -1,
|
|
size: tcx.data_layout.pointer_size().bytes_usize(),
|
|
kind: Kind::Pointer,
|
|
child,
|
|
}]);
|
|
}
|
|
|
|
if ty.is_array() {
|
|
if let ty::Array(element_ty, len_const) = ty.kind() {
|
|
let len = len_const.try_to_target_usize(tcx).unwrap_or(0);
|
|
if len == 0 {
|
|
return TypeTree::new();
|
|
}
|
|
let element_tree =
|
|
typetree_from_ty_impl_inner(tcx, *element_ty, depth + 1, visited, false);
|
|
let mut types = Vec::new();
|
|
for elem_type in &element_tree.0 {
|
|
types.push(Type {
|
|
offset: -1,
|
|
size: elem_type.size,
|
|
kind: elem_type.kind,
|
|
child: elem_type.child.clone(),
|
|
});
|
|
}
|
|
|
|
return TypeTree(types);
|
|
}
|
|
}
|
|
|
|
if ty.is_slice() {
|
|
if let ty::Slice(element_ty) = ty.kind() {
|
|
let element_tree =
|
|
typetree_from_ty_impl_inner(tcx, *element_ty, depth + 1, visited, false);
|
|
return element_tree;
|
|
}
|
|
}
|
|
|
|
if let ty::Tuple(tuple_types) = ty.kind() {
|
|
if tuple_types.is_empty() {
|
|
return TypeTree::new();
|
|
}
|
|
|
|
let mut types = Vec::new();
|
|
let mut current_offset = 0;
|
|
|
|
for tuple_ty in tuple_types.iter() {
|
|
let element_tree =
|
|
typetree_from_ty_impl_inner(tcx, tuple_ty, depth + 1, visited, false);
|
|
|
|
let element_layout = tcx
|
|
.layout_of(ty::TypingEnv::fully_monomorphized().as_query_input(tuple_ty))
|
|
.ok()
|
|
.map(|layout| layout.size.bytes_usize())
|
|
.unwrap_or(0);
|
|
|
|
for elem_type in &element_tree.0 {
|
|
types.push(Type {
|
|
offset: if elem_type.offset == -1 {
|
|
current_offset as isize
|
|
} else {
|
|
current_offset as isize + elem_type.offset
|
|
},
|
|
size: elem_type.size,
|
|
kind: elem_type.kind,
|
|
child: elem_type.child.clone(),
|
|
});
|
|
}
|
|
|
|
current_offset += element_layout;
|
|
}
|
|
|
|
return TypeTree(types);
|
|
}
|
|
|
|
if let ty::Adt(adt_def, args) = ty.kind() {
|
|
if adt_def.is_struct() {
|
|
let struct_layout =
|
|
tcx.layout_of(ty::TypingEnv::fully_monomorphized().as_query_input(ty));
|
|
if let Ok(layout) = struct_layout {
|
|
let mut types = Vec::new();
|
|
|
|
for (field_idx, field_def) in adt_def.all_fields().enumerate() {
|
|
let field_ty = field_def.ty(tcx, args);
|
|
let field_tree =
|
|
typetree_from_ty_impl_inner(tcx, field_ty, depth + 1, visited, false);
|
|
|
|
let field_offset = layout.fields.offset(field_idx).bytes_usize();
|
|
|
|
for elem_type in &field_tree.0 {
|
|
types.push(Type {
|
|
offset: if elem_type.offset == -1 {
|
|
field_offset as isize
|
|
} else {
|
|
field_offset as isize + elem_type.offset
|
|
},
|
|
size: elem_type.size,
|
|
kind: elem_type.kind,
|
|
child: elem_type.child.clone(),
|
|
});
|
|
}
|
|
}
|
|
|
|
return TypeTree(types);
|
|
}
|
|
}
|
|
}
|
|
|
|
TypeTree::new()
|
|
}
|