Let's avoid using two different terms for the same thing -- let's just call it "provenance" everywhere. In Miri, provenance consists of an AllocId and an SbTag (Stacked Borrows tag), which made this even more confusing.
1211 lines
49 KiB
Rust
1211 lines
49 KiB
Rust
//! The memory subsystem.
|
|
//!
|
|
//! Generally, we use `Pointer` to denote memory addresses. However, some operations
|
|
//! have a "size"-like parameter, and they take `Scalar` for the address because
|
|
//! if the size is 0, then the pointer can also be a (properly aligned, non-null)
|
|
//! integer. It is crucial that these operations call `check_align` *before*
|
|
//! short-circuiting the empty case!
|
|
|
|
use std::assert_matches::assert_matches;
|
|
use std::borrow::Cow;
|
|
use std::collections::VecDeque;
|
|
use std::convert::TryFrom;
|
|
use std::fmt;
|
|
use std::ptr;
|
|
|
|
use rustc_ast::Mutability;
|
|
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
|
|
use rustc_middle::mir::display_allocation;
|
|
use rustc_middle::ty::{Instance, ParamEnv, TyCtxt};
|
|
use rustc_target::abi::{Align, HasDataLayout, Size};
|
|
|
|
use super::{
|
|
alloc_range, AllocId, AllocMap, AllocRange, Allocation, CheckInAllocMsg, GlobalAlloc, InterpCx,
|
|
InterpResult, Machine, MayLeak, Pointer, PointerArithmetic, Provenance, Scalar,
|
|
ScalarMaybeUninit,
|
|
};
|
|
|
|
#[derive(Debug, PartialEq, Copy, Clone)]
|
|
pub enum MemoryKind<T> {
|
|
/// Stack memory. Error if deallocated except during a stack pop.
|
|
Stack,
|
|
/// Memory allocated by `caller_location` intrinsic. Error if ever deallocated.
|
|
CallerLocation,
|
|
/// Additional memory kinds a machine wishes to distinguish from the builtin ones.
|
|
Machine(T),
|
|
}
|
|
|
|
impl<T: MayLeak> MayLeak for MemoryKind<T> {
|
|
#[inline]
|
|
fn may_leak(self) -> bool {
|
|
match self {
|
|
MemoryKind::Stack => false,
|
|
MemoryKind::CallerLocation => true,
|
|
MemoryKind::Machine(k) => k.may_leak(),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<T: fmt::Display> fmt::Display for MemoryKind<T> {
|
|
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
|
|
match self {
|
|
MemoryKind::Stack => write!(f, "stack variable"),
|
|
MemoryKind::CallerLocation => write!(f, "caller location"),
|
|
MemoryKind::Machine(m) => write!(f, "{}", m),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The return value of `get_alloc_info` indicates the "kind" of the allocation.
|
|
pub enum AllocKind {
|
|
/// A regular live data allocation.
|
|
LiveData,
|
|
/// A function allocation (that fn ptrs point to).
|
|
Function,
|
|
/// A dead allocation.
|
|
Dead,
|
|
}
|
|
|
|
/// The value of a function pointer.
|
|
#[derive(Debug, Copy, Clone)]
|
|
pub enum FnVal<'tcx, Other> {
|
|
Instance(Instance<'tcx>),
|
|
Other(Other),
|
|
}
|
|
|
|
impl<'tcx, Other> FnVal<'tcx, Other> {
|
|
pub fn as_instance(self) -> InterpResult<'tcx, Instance<'tcx>> {
|
|
match self {
|
|
FnVal::Instance(instance) => Ok(instance),
|
|
FnVal::Other(_) => {
|
|
throw_unsup_format!("'foreign' function pointers are not supported in this context")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// `Memory` has to depend on the `Machine` because some of its operations
|
|
// (e.g., `get`) call a `Machine` hook.
|
|
pub struct Memory<'mir, 'tcx, M: Machine<'mir, 'tcx>> {
|
|
/// Allocations local to this instance of the miri engine. The kind
|
|
/// helps ensure that the same mechanism is used for allocation and
|
|
/// deallocation. When an allocation is not found here, it is a
|
|
/// global and looked up in the `tcx` for read access. Some machines may
|
|
/// have to mutate this map even on a read-only access to a global (because
|
|
/// they do pointer provenance tracking and the allocations in `tcx` have
|
|
/// the wrong type), so we let the machine override this type.
|
|
/// Either way, if the machine allows writing to a global, doing so will
|
|
/// create a copy of the global allocation here.
|
|
// FIXME: this should not be public, but interning currently needs access to it
|
|
pub(super) alloc_map: M::MemoryMap,
|
|
|
|
/// Map for "extra" function pointers.
|
|
extra_fn_ptr_map: FxHashMap<AllocId, M::ExtraFnVal>,
|
|
|
|
/// To be able to compare pointers with null, and to check alignment for accesses
|
|
/// to ZSTs (where pointers may dangle), we keep track of the size even for allocations
|
|
/// that do not exist any more.
|
|
// FIXME: this should not be public, but interning currently needs access to it
|
|
pub(super) dead_alloc_map: FxHashMap<AllocId, (Size, Align)>,
|
|
}
|
|
|
|
/// A reference to some allocation that was already bounds-checked for the given region
|
|
/// and had the on-access machine hooks run.
|
|
#[derive(Copy, Clone)]
|
|
pub struct AllocRef<'a, 'tcx, Prov, Extra> {
|
|
alloc: &'a Allocation<Prov, Extra>,
|
|
range: AllocRange,
|
|
tcx: TyCtxt<'tcx>,
|
|
alloc_id: AllocId,
|
|
}
|
|
/// A reference to some allocation that was already bounds-checked for the given region
|
|
/// and had the on-access machine hooks run.
|
|
pub struct AllocRefMut<'a, 'tcx, Prov, Extra> {
|
|
alloc: &'a mut Allocation<Prov, Extra>,
|
|
range: AllocRange,
|
|
tcx: TyCtxt<'tcx>,
|
|
alloc_id: AllocId,
|
|
}
|
|
|
|
impl<'mir, 'tcx, M: Machine<'mir, 'tcx>> Memory<'mir, 'tcx, M> {
|
|
pub fn new() -> Self {
|
|
Memory {
|
|
alloc_map: M::MemoryMap::default(),
|
|
extra_fn_ptr_map: FxHashMap::default(),
|
|
dead_alloc_map: FxHashMap::default(),
|
|
}
|
|
}
|
|
|
|
/// This is used by [priroda](https://github.com/oli-obk/priroda)
|
|
pub fn alloc_map(&self) -> &M::MemoryMap {
|
|
&self.alloc_map
|
|
}
|
|
}
|
|
|
|
impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
|
|
/// Call this to turn untagged "global" pointers (obtained via `tcx`) into
|
|
/// the machine pointer to the allocation. Must never be used
|
|
/// for any other pointers, nor for TLS statics.
|
|
///
|
|
/// Using the resulting pointer represents a *direct* access to that memory
|
|
/// (e.g. by directly using a `static`),
|
|
/// as opposed to access through a pointer that was created by the program.
|
|
///
|
|
/// This function can fail only if `ptr` points to an `extern static`.
|
|
#[inline]
|
|
pub fn global_base_pointer(
|
|
&self,
|
|
ptr: Pointer<AllocId>,
|
|
) -> InterpResult<'tcx, Pointer<M::Provenance>> {
|
|
let alloc_id = ptr.provenance;
|
|
// We need to handle `extern static`.
|
|
match self.tcx.get_global_alloc(alloc_id) {
|
|
Some(GlobalAlloc::Static(def_id)) if self.tcx.is_thread_local_static(def_id) => {
|
|
bug!("global memory cannot point to thread-local static")
|
|
}
|
|
Some(GlobalAlloc::Static(def_id)) if self.tcx.is_foreign_item(def_id) => {
|
|
return M::extern_static_base_pointer(self, def_id);
|
|
}
|
|
_ => {}
|
|
}
|
|
// And we need to get the provenance.
|
|
Ok(M::adjust_alloc_base_pointer(self, ptr))
|
|
}
|
|
|
|
pub fn create_fn_alloc_ptr(
|
|
&mut self,
|
|
fn_val: FnVal<'tcx, M::ExtraFnVal>,
|
|
) -> Pointer<M::Provenance> {
|
|
let id = match fn_val {
|
|
FnVal::Instance(instance) => self.tcx.create_fn_alloc(instance),
|
|
FnVal::Other(extra) => {
|
|
// FIXME(RalfJung): Should we have a cache here?
|
|
let id = self.tcx.reserve_alloc_id();
|
|
let old = self.memory.extra_fn_ptr_map.insert(id, extra);
|
|
assert!(old.is_none());
|
|
id
|
|
}
|
|
};
|
|
// Functions are global allocations, so make sure we get the right base pointer.
|
|
// We know this is not an `extern static` so this cannot fail.
|
|
self.global_base_pointer(Pointer::from(id)).unwrap()
|
|
}
|
|
|
|
pub fn allocate_ptr(
|
|
&mut self,
|
|
size: Size,
|
|
align: Align,
|
|
kind: MemoryKind<M::MemoryKind>,
|
|
) -> InterpResult<'tcx, Pointer<M::Provenance>> {
|
|
let alloc = Allocation::uninit(size, align, M::PANIC_ON_ALLOC_FAIL)?;
|
|
// We can `unwrap` since `alloc` contains no pointers.
|
|
Ok(self.allocate_raw_ptr(alloc, kind).unwrap())
|
|
}
|
|
|
|
pub fn allocate_bytes_ptr(
|
|
&mut self,
|
|
bytes: &[u8],
|
|
align: Align,
|
|
kind: MemoryKind<M::MemoryKind>,
|
|
mutability: Mutability,
|
|
) -> Pointer<M::Provenance> {
|
|
let alloc = Allocation::from_bytes(bytes, align, mutability);
|
|
// We can `unwrap` since `alloc` contains no pointers.
|
|
self.allocate_raw_ptr(alloc, kind).unwrap()
|
|
}
|
|
|
|
/// This can fail only of `alloc` contains relocations.
|
|
pub fn allocate_raw_ptr(
|
|
&mut self,
|
|
alloc: Allocation,
|
|
kind: MemoryKind<M::MemoryKind>,
|
|
) -> InterpResult<'tcx, Pointer<M::Provenance>> {
|
|
let id = self.tcx.reserve_alloc_id();
|
|
debug_assert_ne!(
|
|
Some(kind),
|
|
M::GLOBAL_KIND.map(MemoryKind::Machine),
|
|
"dynamically allocating global memory"
|
|
);
|
|
let alloc = M::adjust_allocation(self, id, Cow::Owned(alloc), Some(kind))?;
|
|
self.memory.alloc_map.insert(id, (kind, alloc.into_owned()));
|
|
Ok(M::adjust_alloc_base_pointer(self, Pointer::from(id)))
|
|
}
|
|
|
|
pub fn reallocate_ptr(
|
|
&mut self,
|
|
ptr: Pointer<Option<M::Provenance>>,
|
|
old_size_and_align: Option<(Size, Align)>,
|
|
new_size: Size,
|
|
new_align: Align,
|
|
kind: MemoryKind<M::MemoryKind>,
|
|
) -> InterpResult<'tcx, Pointer<M::Provenance>> {
|
|
let (alloc_id, offset, _prov) = self.ptr_get_alloc_id(ptr)?;
|
|
if offset.bytes() != 0 {
|
|
throw_ub_format!(
|
|
"reallocating {:?} which does not point to the beginning of an object",
|
|
ptr
|
|
);
|
|
}
|
|
|
|
// For simplicities' sake, we implement reallocate as "alloc, copy, dealloc".
|
|
// This happens so rarely, the perf advantage is outweighed by the maintenance cost.
|
|
let new_ptr = self.allocate_ptr(new_size, new_align, kind)?;
|
|
let old_size = match old_size_and_align {
|
|
Some((size, _align)) => size,
|
|
None => self.get_alloc_raw(alloc_id)?.size(),
|
|
};
|
|
// This will also call the access hooks.
|
|
self.mem_copy(
|
|
ptr,
|
|
Align::ONE,
|
|
new_ptr.into(),
|
|
Align::ONE,
|
|
old_size.min(new_size),
|
|
/*nonoverlapping*/ true,
|
|
)?;
|
|
self.deallocate_ptr(ptr, old_size_and_align, kind)?;
|
|
|
|
Ok(new_ptr)
|
|
}
|
|
|
|
#[instrument(skip(self), level = "debug")]
|
|
pub fn deallocate_ptr(
|
|
&mut self,
|
|
ptr: Pointer<Option<M::Provenance>>,
|
|
old_size_and_align: Option<(Size, Align)>,
|
|
kind: MemoryKind<M::MemoryKind>,
|
|
) -> InterpResult<'tcx> {
|
|
let (alloc_id, offset, prov) = self.ptr_get_alloc_id(ptr)?;
|
|
trace!("deallocating: {alloc_id:?}");
|
|
|
|
if offset.bytes() != 0 {
|
|
throw_ub_format!(
|
|
"deallocating {:?} which does not point to the beginning of an object",
|
|
ptr
|
|
);
|
|
}
|
|
|
|
let Some((alloc_kind, mut alloc)) = self.memory.alloc_map.remove(&alloc_id) else {
|
|
// Deallocating global memory -- always an error
|
|
return Err(match self.tcx.get_global_alloc(alloc_id) {
|
|
Some(GlobalAlloc::Function(..)) => {
|
|
err_ub_format!("deallocating {alloc_id:?}, which is a function")
|
|
}
|
|
Some(GlobalAlloc::Static(..) | GlobalAlloc::Memory(..)) => {
|
|
err_ub_format!("deallocating {alloc_id:?}, which is static memory")
|
|
}
|
|
None => err_ub!(PointerUseAfterFree(alloc_id)),
|
|
}
|
|
.into());
|
|
};
|
|
|
|
debug!(?alloc);
|
|
|
|
if alloc.mutability == Mutability::Not {
|
|
throw_ub_format!("deallocating immutable allocation {alloc_id:?}");
|
|
}
|
|
if alloc_kind != kind {
|
|
throw_ub_format!(
|
|
"deallocating {alloc_id:?}, which is {alloc_kind} memory, using {kind} deallocation operation"
|
|
);
|
|
}
|
|
if let Some((size, align)) = old_size_and_align {
|
|
if size != alloc.size() || align != alloc.align {
|
|
throw_ub_format!(
|
|
"incorrect layout on deallocation: {alloc_id:?} has size {} and alignment {}, but gave size {} and alignment {}",
|
|
alloc.size().bytes(),
|
|
alloc.align.bytes(),
|
|
size.bytes(),
|
|
align.bytes(),
|
|
)
|
|
}
|
|
}
|
|
|
|
// Let the machine take some extra action
|
|
let size = alloc.size();
|
|
M::memory_deallocated(
|
|
*self.tcx,
|
|
&mut self.machine,
|
|
&mut alloc.extra,
|
|
(alloc_id, prov),
|
|
alloc_range(Size::ZERO, size),
|
|
)?;
|
|
|
|
// Don't forget to remember size and align of this now-dead allocation
|
|
let old = self.memory.dead_alloc_map.insert(alloc_id, (size, alloc.align));
|
|
if old.is_some() {
|
|
bug!("Nothing can be deallocated twice");
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
/// Internal helper function to determine the allocation and offset of a pointer (if any).
|
|
#[inline(always)]
|
|
fn get_ptr_access(
|
|
&self,
|
|
ptr: Pointer<Option<M::Provenance>>,
|
|
size: Size,
|
|
align: Align,
|
|
) -> InterpResult<'tcx, Option<(AllocId, Size, M::ProvenanceExtra)>> {
|
|
let align = M::enforce_alignment(&self).then_some(align);
|
|
self.check_and_deref_ptr(
|
|
ptr,
|
|
size,
|
|
align,
|
|
CheckInAllocMsg::MemoryAccessTest,
|
|
|alloc_id, offset, prov| {
|
|
let (size, align) = self.get_live_alloc_size_and_align(alloc_id)?;
|
|
Ok((size, align, (alloc_id, offset, prov)))
|
|
},
|
|
)
|
|
}
|
|
|
|
/// Check if the given pointer points to live memory of given `size` and `align`
|
|
/// (ignoring `M::enforce_alignment`). The caller can control the error message for the
|
|
/// out-of-bounds case.
|
|
#[inline(always)]
|
|
pub fn check_ptr_access_align(
|
|
&self,
|
|
ptr: Pointer<Option<M::Provenance>>,
|
|
size: Size,
|
|
align: Align,
|
|
msg: CheckInAllocMsg,
|
|
) -> InterpResult<'tcx> {
|
|
self.check_and_deref_ptr(ptr, size, Some(align), msg, |alloc_id, _, _| {
|
|
let (size, align) = self.get_live_alloc_size_and_align(alloc_id)?;
|
|
Ok((size, align, ()))
|
|
})?;
|
|
Ok(())
|
|
}
|
|
|
|
/// Low-level helper function to check if a ptr is in-bounds and potentially return a reference
|
|
/// to the allocation it points to. Supports both shared and mutable references, as the actual
|
|
/// checking is offloaded to a helper closure. `align` defines whether and which alignment check
|
|
/// is done. Returns `None` for size 0, and otherwise `Some` of what `alloc_size` returned.
|
|
fn check_and_deref_ptr<T>(
|
|
&self,
|
|
ptr: Pointer<Option<M::Provenance>>,
|
|
size: Size,
|
|
align: Option<Align>,
|
|
msg: CheckInAllocMsg,
|
|
alloc_size: impl FnOnce(
|
|
AllocId,
|
|
Size,
|
|
M::ProvenanceExtra,
|
|
) -> InterpResult<'tcx, (Size, Align, T)>,
|
|
) -> InterpResult<'tcx, Option<T>> {
|
|
fn check_offset_align<'tcx>(offset: u64, align: Align) -> InterpResult<'tcx> {
|
|
if offset % align.bytes() == 0 {
|
|
Ok(())
|
|
} else {
|
|
// The biggest power of two through which `offset` is divisible.
|
|
let offset_pow2 = 1 << offset.trailing_zeros();
|
|
throw_ub!(AlignmentCheckFailed {
|
|
has: Align::from_bytes(offset_pow2).unwrap(),
|
|
required: align,
|
|
})
|
|
}
|
|
}
|
|
|
|
Ok(match self.ptr_try_get_alloc_id(ptr) {
|
|
Err(addr) => {
|
|
// We couldn't get a proper allocation. This is only okay if the access size is 0,
|
|
// and the address is not null.
|
|
if size.bytes() > 0 || addr == 0 {
|
|
throw_ub!(DanglingIntPointer(addr, msg));
|
|
}
|
|
// Must be aligned.
|
|
if let Some(align) = align {
|
|
check_offset_align(addr, align)?;
|
|
}
|
|
None
|
|
}
|
|
Ok((alloc_id, offset, prov)) => {
|
|
let (alloc_size, alloc_align, ret_val) = alloc_size(alloc_id, offset, prov)?;
|
|
// Test bounds. This also ensures non-null.
|
|
// It is sufficient to check this for the end pointer. Also check for overflow!
|
|
if offset.checked_add(size, &self.tcx).map_or(true, |end| end > alloc_size) {
|
|
throw_ub!(PointerOutOfBounds {
|
|
alloc_id,
|
|
alloc_size,
|
|
ptr_offset: self.machine_usize_to_isize(offset.bytes()),
|
|
ptr_size: size,
|
|
msg,
|
|
})
|
|
}
|
|
// Ensure we never consider the null pointer dereferencable.
|
|
if M::Provenance::OFFSET_IS_ADDR {
|
|
assert_ne!(ptr.addr(), Size::ZERO);
|
|
}
|
|
// Test align. Check this last; if both bounds and alignment are violated
|
|
// we want the error to be about the bounds.
|
|
if let Some(align) = align {
|
|
if M::force_int_for_alignment_check(self) {
|
|
// `force_int_for_alignment_check` can only be true if `OFFSET_IS_ADDR` is true.
|
|
check_offset_align(ptr.addr().bytes(), align)?;
|
|
} else {
|
|
// Check allocation alignment and offset alignment.
|
|
if alloc_align.bytes() < align.bytes() {
|
|
throw_ub!(AlignmentCheckFailed { has: alloc_align, required: align });
|
|
}
|
|
check_offset_align(offset.bytes(), align)?;
|
|
}
|
|
}
|
|
|
|
// We can still be zero-sized in this branch, in which case we have to
|
|
// return `None`.
|
|
if size.bytes() == 0 { None } else { Some(ret_val) }
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
/// Allocation accessors
|
|
impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
|
|
/// Helper function to obtain a global (tcx) allocation.
|
|
/// This attempts to return a reference to an existing allocation if
|
|
/// one can be found in `tcx`. That, however, is only possible if `tcx` and
|
|
/// this machine use the same pointer provenance, so it is indirected through
|
|
/// `M::adjust_allocation`.
|
|
fn get_global_alloc(
|
|
&self,
|
|
id: AllocId,
|
|
is_write: bool,
|
|
) -> InterpResult<'tcx, Cow<'tcx, Allocation<M::Provenance, M::AllocExtra>>> {
|
|
let (alloc, def_id) = match self.tcx.get_global_alloc(id) {
|
|
Some(GlobalAlloc::Memory(mem)) => {
|
|
// Memory of a constant or promoted or anonymous memory referenced by a static.
|
|
(mem, None)
|
|
}
|
|
Some(GlobalAlloc::Function(..)) => throw_ub!(DerefFunctionPointer(id)),
|
|
None => throw_ub!(PointerUseAfterFree(id)),
|
|
Some(GlobalAlloc::Static(def_id)) => {
|
|
assert!(self.tcx.is_static(def_id));
|
|
assert!(!self.tcx.is_thread_local_static(def_id));
|
|
// Notice that every static has two `AllocId` that will resolve to the same
|
|
// thing here: one maps to `GlobalAlloc::Static`, this is the "lazy" ID,
|
|
// and the other one is maps to `GlobalAlloc::Memory`, this is returned by
|
|
// `eval_static_initializer` and it is the "resolved" ID.
|
|
// The resolved ID is never used by the interpreted program, it is hidden.
|
|
// This is relied upon for soundness of const-patterns; a pointer to the resolved
|
|
// ID would "sidestep" the checks that make sure consts do not point to statics!
|
|
// The `GlobalAlloc::Memory` branch here is still reachable though; when a static
|
|
// contains a reference to memory that was created during its evaluation (i.e., not
|
|
// to another static), those inner references only exist in "resolved" form.
|
|
if self.tcx.is_foreign_item(def_id) {
|
|
throw_unsup!(ReadExternStatic(def_id));
|
|
}
|
|
|
|
// Use a precise span for better cycle errors.
|
|
(self.tcx.at(self.cur_span()).eval_static_initializer(def_id)?, Some(def_id))
|
|
}
|
|
};
|
|
M::before_access_global(*self.tcx, &self.machine, id, alloc, def_id, is_write)?;
|
|
// We got tcx memory. Let the machine initialize its "extra" stuff.
|
|
M::adjust_allocation(
|
|
self,
|
|
id, // always use the ID we got as input, not the "hidden" one.
|
|
Cow::Borrowed(alloc.inner()),
|
|
M::GLOBAL_KIND.map(MemoryKind::Machine),
|
|
)
|
|
}
|
|
|
|
/// Gives raw access to the `Allocation`, without bounds or alignment checks.
|
|
/// The caller is responsible for calling the access hooks!
|
|
fn get_alloc_raw(
|
|
&self,
|
|
id: AllocId,
|
|
) -> InterpResult<'tcx, &Allocation<M::Provenance, M::AllocExtra>> {
|
|
// The error type of the inner closure here is somewhat funny. We have two
|
|
// ways of "erroring": An actual error, or because we got a reference from
|
|
// `get_global_alloc` that we can actually use directly without inserting anything anywhere.
|
|
// So the error type is `InterpResult<'tcx, &Allocation<M::Provenance>>`.
|
|
let a = self.memory.alloc_map.get_or(id, || {
|
|
let alloc = self.get_global_alloc(id, /*is_write*/ false).map_err(Err)?;
|
|
match alloc {
|
|
Cow::Borrowed(alloc) => {
|
|
// We got a ref, cheaply return that as an "error" so that the
|
|
// map does not get mutated.
|
|
Err(Ok(alloc))
|
|
}
|
|
Cow::Owned(alloc) => {
|
|
// Need to put it into the map and return a ref to that
|
|
let kind = M::GLOBAL_KIND.expect(
|
|
"I got a global allocation that I have to copy but the machine does \
|
|
not expect that to happen",
|
|
);
|
|
Ok((MemoryKind::Machine(kind), alloc))
|
|
}
|
|
}
|
|
});
|
|
// Now unpack that funny error type
|
|
match a {
|
|
Ok(a) => Ok(&a.1),
|
|
Err(a) => a,
|
|
}
|
|
}
|
|
|
|
/// "Safe" (bounds and align-checked) allocation access.
|
|
pub fn get_ptr_alloc<'a>(
|
|
&'a self,
|
|
ptr: Pointer<Option<M::Provenance>>,
|
|
size: Size,
|
|
align: Align,
|
|
) -> InterpResult<'tcx, Option<AllocRef<'a, 'tcx, M::Provenance, M::AllocExtra>>> {
|
|
let align = M::enforce_alignment(self).then_some(align);
|
|
let ptr_and_alloc = self.check_and_deref_ptr(
|
|
ptr,
|
|
size,
|
|
align,
|
|
CheckInAllocMsg::MemoryAccessTest,
|
|
|alloc_id, offset, prov| {
|
|
let alloc = self.get_alloc_raw(alloc_id)?;
|
|
Ok((alloc.size(), alloc.align, (alloc_id, offset, prov, alloc)))
|
|
},
|
|
)?;
|
|
if let Some((alloc_id, offset, prov, alloc)) = ptr_and_alloc {
|
|
let range = alloc_range(offset, size);
|
|
M::memory_read(*self.tcx, &self.machine, &alloc.extra, (alloc_id, prov), range)?;
|
|
Ok(Some(AllocRef { alloc, range, tcx: *self.tcx, alloc_id }))
|
|
} else {
|
|
// Even in this branch we have to be sure that we actually access the allocation, in
|
|
// order to ensure that `static FOO: Type = FOO;` causes a cycle error instead of
|
|
// magically pulling *any* ZST value from the ether. However, the `get_raw` above is
|
|
// always called when `ptr` has an `AllocId`.
|
|
Ok(None)
|
|
}
|
|
}
|
|
|
|
/// Return the `extra` field of the given allocation.
|
|
pub fn get_alloc_extra<'a>(&'a self, id: AllocId) -> InterpResult<'tcx, &'a M::AllocExtra> {
|
|
Ok(&self.get_alloc_raw(id)?.extra)
|
|
}
|
|
|
|
/// Gives raw mutable access to the `Allocation`, without bounds or alignment checks.
|
|
/// The caller is responsible for calling the access hooks!
|
|
///
|
|
/// Also returns a ptr to `self.extra` so that the caller can use it in parallel with the
|
|
/// allocation.
|
|
fn get_alloc_raw_mut(
|
|
&mut self,
|
|
id: AllocId,
|
|
) -> InterpResult<'tcx, (&mut Allocation<M::Provenance, M::AllocExtra>, &mut M)> {
|
|
// We have "NLL problem case #3" here, which cannot be worked around without loss of
|
|
// efficiency even for the common case where the key is in the map.
|
|
// <https://rust-lang.github.io/rfcs/2094-nll.html#problem-case-3-conditional-control-flow-across-functions>
|
|
// (Cannot use `get_mut_or` since `get_global_alloc` needs `&self`.)
|
|
if self.memory.alloc_map.get_mut(id).is_none() {
|
|
// Slow path.
|
|
// Allocation not found locally, go look global.
|
|
let alloc = self.get_global_alloc(id, /*is_write*/ true)?;
|
|
let kind = M::GLOBAL_KIND.expect(
|
|
"I got a global allocation that I have to copy but the machine does \
|
|
not expect that to happen",
|
|
);
|
|
self.memory.alloc_map.insert(id, (MemoryKind::Machine(kind), alloc.into_owned()));
|
|
}
|
|
|
|
let (_kind, alloc) = self.memory.alloc_map.get_mut(id).unwrap();
|
|
if alloc.mutability == Mutability::Not {
|
|
throw_ub!(WriteToReadOnly(id))
|
|
}
|
|
Ok((alloc, &mut self.machine))
|
|
}
|
|
|
|
/// "Safe" (bounds and align-checked) allocation access.
|
|
pub fn get_ptr_alloc_mut<'a>(
|
|
&'a mut self,
|
|
ptr: Pointer<Option<M::Provenance>>,
|
|
size: Size,
|
|
align: Align,
|
|
) -> InterpResult<'tcx, Option<AllocRefMut<'a, 'tcx, M::Provenance, M::AllocExtra>>> {
|
|
let parts = self.get_ptr_access(ptr, size, align)?;
|
|
if let Some((alloc_id, offset, prov)) = parts {
|
|
let tcx = *self.tcx;
|
|
// FIXME: can we somehow avoid looking up the allocation twice here?
|
|
// We cannot call `get_raw_mut` inside `check_and_deref_ptr` as that would duplicate `&mut self`.
|
|
let (alloc, machine) = self.get_alloc_raw_mut(alloc_id)?;
|
|
let range = alloc_range(offset, size);
|
|
M::memory_written(tcx, machine, &mut alloc.extra, (alloc_id, prov), range)?;
|
|
Ok(Some(AllocRefMut { alloc, range, tcx, alloc_id }))
|
|
} else {
|
|
Ok(None)
|
|
}
|
|
}
|
|
|
|
/// Return the `extra` field of the given allocation.
|
|
pub fn get_alloc_extra_mut<'a>(
|
|
&'a mut self,
|
|
id: AllocId,
|
|
) -> InterpResult<'tcx, (&'a mut M::AllocExtra, &'a mut M)> {
|
|
let (alloc, machine) = self.get_alloc_raw_mut(id)?;
|
|
Ok((&mut alloc.extra, machine))
|
|
}
|
|
|
|
/// Obtain the size and alignment of an allocation, even if that allocation has
|
|
/// been deallocated.
|
|
pub fn get_alloc_info(&self, id: AllocId) -> (Size, Align, AllocKind) {
|
|
// # Regular allocations
|
|
// Don't use `self.get_raw` here as that will
|
|
// a) cause cycles in case `id` refers to a static
|
|
// b) duplicate a global's allocation in miri
|
|
if let Some((_, alloc)) = self.memory.alloc_map.get(id) {
|
|
return (alloc.size(), alloc.align, AllocKind::LiveData);
|
|
}
|
|
|
|
// # Function pointers
|
|
// (both global from `alloc_map` and local from `extra_fn_ptr_map`)
|
|
if self.get_fn_alloc(id).is_some() {
|
|
return (Size::ZERO, Align::ONE, AllocKind::Function);
|
|
}
|
|
|
|
// # Statics
|
|
// Can't do this in the match argument, we may get cycle errors since the lock would
|
|
// be held throughout the match.
|
|
match self.tcx.get_global_alloc(id) {
|
|
Some(GlobalAlloc::Static(did)) => {
|
|
assert!(!self.tcx.is_thread_local_static(did));
|
|
// Use size and align of the type.
|
|
let ty = self.tcx.type_of(did);
|
|
let layout = self.tcx.layout_of(ParamEnv::empty().and(ty)).unwrap();
|
|
(layout.size, layout.align.abi, AllocKind::LiveData)
|
|
}
|
|
Some(GlobalAlloc::Memory(alloc)) => {
|
|
// Need to duplicate the logic here, because the global allocations have
|
|
// different associated types than the interpreter-local ones.
|
|
let alloc = alloc.inner();
|
|
(alloc.size(), alloc.align, AllocKind::LiveData)
|
|
}
|
|
Some(GlobalAlloc::Function(_)) => bug!("We already checked function pointers above"),
|
|
// The rest must be dead.
|
|
None => {
|
|
// Deallocated pointers are allowed, we should be able to find
|
|
// them in the map.
|
|
let (size, align) = *self
|
|
.memory
|
|
.dead_alloc_map
|
|
.get(&id)
|
|
.expect("deallocated pointers should all be recorded in `dead_alloc_map`");
|
|
(size, align, AllocKind::Dead)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Obtain the size and alignment of a live allocation.
|
|
pub fn get_live_alloc_size_and_align(&self, id: AllocId) -> InterpResult<'tcx, (Size, Align)> {
|
|
let (size, align, kind) = self.get_alloc_info(id);
|
|
if matches!(kind, AllocKind::Dead) {
|
|
throw_ub!(PointerUseAfterFree(id))
|
|
}
|
|
Ok((size, align))
|
|
}
|
|
|
|
fn get_fn_alloc(&self, id: AllocId) -> Option<FnVal<'tcx, M::ExtraFnVal>> {
|
|
if let Some(extra) = self.memory.extra_fn_ptr_map.get(&id) {
|
|
Some(FnVal::Other(*extra))
|
|
} else {
|
|
match self.tcx.get_global_alloc(id) {
|
|
Some(GlobalAlloc::Function(instance)) => Some(FnVal::Instance(instance)),
|
|
_ => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn get_ptr_fn(
|
|
&self,
|
|
ptr: Pointer<Option<M::Provenance>>,
|
|
) -> InterpResult<'tcx, FnVal<'tcx, M::ExtraFnVal>> {
|
|
trace!("get_fn({:?})", ptr);
|
|
let (alloc_id, offset, _prov) = self.ptr_get_alloc_id(ptr)?;
|
|
if offset.bytes() != 0 {
|
|
throw_ub!(InvalidFunctionPointer(Pointer::new(alloc_id, offset)))
|
|
}
|
|
self.get_fn_alloc(alloc_id)
|
|
.ok_or_else(|| err_ub!(InvalidFunctionPointer(Pointer::new(alloc_id, offset))).into())
|
|
}
|
|
|
|
pub fn alloc_mark_immutable(&mut self, id: AllocId) -> InterpResult<'tcx> {
|
|
self.get_alloc_raw_mut(id)?.0.mutability = Mutability::Not;
|
|
Ok(())
|
|
}
|
|
|
|
/// Create a lazy debug printer that prints the given allocation and all allocations it points
|
|
/// to, recursively.
|
|
#[must_use]
|
|
pub fn dump_alloc<'a>(&'a self, id: AllocId) -> DumpAllocs<'a, 'mir, 'tcx, M> {
|
|
self.dump_allocs(vec![id])
|
|
}
|
|
|
|
/// Create a lazy debug printer for a list of allocations and all allocations they point to,
|
|
/// recursively.
|
|
#[must_use]
|
|
pub fn dump_allocs<'a>(&'a self, mut allocs: Vec<AllocId>) -> DumpAllocs<'a, 'mir, 'tcx, M> {
|
|
allocs.sort();
|
|
allocs.dedup();
|
|
DumpAllocs { ecx: self, allocs }
|
|
}
|
|
|
|
/// Print leaked memory. Allocations reachable from `static_roots` or a `Global` allocation
|
|
/// are not considered leaked. Leaks whose kind `may_leak()` returns true are not reported.
|
|
pub fn leak_report(&self, static_roots: &[AllocId]) -> usize {
|
|
// Collect the set of allocations that are *reachable* from `Global` allocations.
|
|
let reachable = {
|
|
let mut reachable = FxHashSet::default();
|
|
let global_kind = M::GLOBAL_KIND.map(MemoryKind::Machine);
|
|
let mut todo: Vec<_> =
|
|
self.memory.alloc_map.filter_map_collect(move |&id, &(kind, _)| {
|
|
if Some(kind) == global_kind { Some(id) } else { None }
|
|
});
|
|
todo.extend(static_roots);
|
|
while let Some(id) = todo.pop() {
|
|
if reachable.insert(id) {
|
|
// This is a new allocation, add its relocations to `todo`.
|
|
if let Some((_, alloc)) = self.memory.alloc_map.get(id) {
|
|
todo.extend(
|
|
alloc.relocations().values().filter_map(|prov| prov.get_alloc_id()),
|
|
);
|
|
}
|
|
}
|
|
}
|
|
reachable
|
|
};
|
|
|
|
// All allocations that are *not* `reachable` and *not* `may_leak` are considered leaking.
|
|
let leaks: Vec<_> = self.memory.alloc_map.filter_map_collect(|&id, &(kind, _)| {
|
|
if kind.may_leak() || reachable.contains(&id) { None } else { Some(id) }
|
|
});
|
|
let n = leaks.len();
|
|
if n > 0 {
|
|
eprintln!("The following memory was leaked: {:?}", self.dump_allocs(leaks));
|
|
}
|
|
n
|
|
}
|
|
}
|
|
|
|
#[doc(hidden)]
|
|
/// There's no way to use this directly, it's just a helper struct for the `dump_alloc(s)` methods.
|
|
pub struct DumpAllocs<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> {
|
|
ecx: &'a InterpCx<'mir, 'tcx, M>,
|
|
allocs: Vec<AllocId>,
|
|
}
|
|
|
|
impl<'a, 'mir, 'tcx, M: Machine<'mir, 'tcx>> std::fmt::Debug for DumpAllocs<'a, 'mir, 'tcx, M> {
|
|
fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
|
|
// Cannot be a closure because it is generic in `Prov`, `Extra`.
|
|
fn write_allocation_track_relocs<'tcx, Prov: Provenance, Extra>(
|
|
fmt: &mut std::fmt::Formatter<'_>,
|
|
tcx: TyCtxt<'tcx>,
|
|
allocs_to_print: &mut VecDeque<AllocId>,
|
|
alloc: &Allocation<Prov, Extra>,
|
|
) -> std::fmt::Result {
|
|
for alloc_id in alloc.relocations().values().filter_map(|prov| prov.get_alloc_id()) {
|
|
allocs_to_print.push_back(alloc_id);
|
|
}
|
|
write!(fmt, "{}", display_allocation(tcx, alloc))
|
|
}
|
|
|
|
let mut allocs_to_print: VecDeque<_> = self.allocs.iter().copied().collect();
|
|
// `allocs_printed` contains all allocations that we have already printed.
|
|
let mut allocs_printed = FxHashSet::default();
|
|
|
|
while let Some(id) = allocs_to_print.pop_front() {
|
|
if !allocs_printed.insert(id) {
|
|
// Already printed, so skip this.
|
|
continue;
|
|
}
|
|
|
|
write!(fmt, "{id:?}")?;
|
|
match self.ecx.memory.alloc_map.get(id) {
|
|
Some(&(kind, ref alloc)) => {
|
|
// normal alloc
|
|
write!(fmt, " ({}, ", kind)?;
|
|
write_allocation_track_relocs(
|
|
&mut *fmt,
|
|
*self.ecx.tcx,
|
|
&mut allocs_to_print,
|
|
alloc,
|
|
)?;
|
|
}
|
|
None => {
|
|
// global alloc
|
|
match self.ecx.tcx.get_global_alloc(id) {
|
|
Some(GlobalAlloc::Memory(alloc)) => {
|
|
write!(fmt, " (unchanged global, ")?;
|
|
write_allocation_track_relocs(
|
|
&mut *fmt,
|
|
*self.ecx.tcx,
|
|
&mut allocs_to_print,
|
|
alloc.inner(),
|
|
)?;
|
|
}
|
|
Some(GlobalAlloc::Function(func)) => {
|
|
write!(fmt, " (fn: {})", func)?;
|
|
}
|
|
Some(GlobalAlloc::Static(did)) => {
|
|
write!(fmt, " (static: {})", self.ecx.tcx.def_path_str(did))?;
|
|
}
|
|
None => {
|
|
write!(fmt, " (deallocated)")?;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
writeln!(fmt)?;
|
|
}
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
/// Reading and writing.
|
|
impl<'tcx, 'a, Prov: Provenance, Extra> AllocRefMut<'a, 'tcx, Prov, Extra> {
|
|
/// `range` is relative to this allocation reference, not the base of the allocation.
|
|
pub fn write_scalar(
|
|
&mut self,
|
|
range: AllocRange,
|
|
val: ScalarMaybeUninit<Prov>,
|
|
) -> InterpResult<'tcx> {
|
|
let range = self.range.subrange(range);
|
|
debug!("write_scalar at {:?}{range:?}: {val:?}", self.alloc_id);
|
|
Ok(self
|
|
.alloc
|
|
.write_scalar(&self.tcx, range, val)
|
|
.map_err(|e| e.to_interp_error(self.alloc_id))?)
|
|
}
|
|
|
|
/// `offset` is relative to this allocation reference, not the base of the allocation.
|
|
pub fn write_ptr_sized(
|
|
&mut self,
|
|
offset: Size,
|
|
val: ScalarMaybeUninit<Prov>,
|
|
) -> InterpResult<'tcx> {
|
|
self.write_scalar(alloc_range(offset, self.tcx.data_layout().pointer_size), val)
|
|
}
|
|
|
|
/// Mark the entire referenced range as uninitalized
|
|
pub fn write_uninit(&mut self) -> InterpResult<'tcx> {
|
|
Ok(self
|
|
.alloc
|
|
.write_uninit(&self.tcx, self.range)
|
|
.map_err(|e| e.to_interp_error(self.alloc_id))?)
|
|
}
|
|
}
|
|
|
|
impl<'tcx, 'a, Prov: Provenance, Extra> AllocRef<'a, 'tcx, Prov, Extra> {
|
|
/// `range` is relative to this allocation reference, not the base of the allocation.
|
|
pub fn read_scalar(
|
|
&self,
|
|
range: AllocRange,
|
|
read_provenance: bool,
|
|
) -> InterpResult<'tcx, ScalarMaybeUninit<Prov>> {
|
|
let range = self.range.subrange(range);
|
|
let res = self
|
|
.alloc
|
|
.read_scalar(&self.tcx, range, read_provenance)
|
|
.map_err(|e| e.to_interp_error(self.alloc_id))?;
|
|
debug!("read_scalar at {:?}{range:?}: {res:?}", self.alloc_id);
|
|
Ok(res)
|
|
}
|
|
|
|
/// `range` is relative to this allocation reference, not the base of the allocation.
|
|
pub fn read_integer(&self, range: AllocRange) -> InterpResult<'tcx, ScalarMaybeUninit<Prov>> {
|
|
self.read_scalar(range, /*read_provenance*/ false)
|
|
}
|
|
|
|
/// `offset` is relative to this allocation reference, not the base of the allocation.
|
|
pub fn read_pointer(&self, offset: Size) -> InterpResult<'tcx, ScalarMaybeUninit<Prov>> {
|
|
self.read_scalar(
|
|
alloc_range(offset, self.tcx.data_layout().pointer_size),
|
|
/*read_provenance*/ true,
|
|
)
|
|
}
|
|
|
|
/// `range` is relative to this allocation reference, not the base of the allocation.
|
|
pub fn check_bytes(
|
|
&self,
|
|
range: AllocRange,
|
|
allow_uninit: bool,
|
|
allow_ptr: bool,
|
|
) -> InterpResult<'tcx> {
|
|
Ok(self
|
|
.alloc
|
|
.check_bytes(&self.tcx, self.range.subrange(range), allow_uninit, allow_ptr)
|
|
.map_err(|e| e.to_interp_error(self.alloc_id))?)
|
|
}
|
|
|
|
/// Returns whether the allocation has relocations for the entire range of the `AllocRef`.
|
|
pub(crate) fn has_relocations(&self) -> bool {
|
|
self.alloc.has_relocations(&self.tcx, self.range)
|
|
}
|
|
}
|
|
|
|
impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
|
|
/// Reads the given number of bytes from memory. Returns them as a slice.
|
|
///
|
|
/// Performs appropriate bounds checks.
|
|
pub fn read_bytes_ptr(
|
|
&self,
|
|
ptr: Pointer<Option<M::Provenance>>,
|
|
size: Size,
|
|
) -> InterpResult<'tcx, &[u8]> {
|
|
let Some(alloc_ref) = self.get_ptr_alloc(ptr, size, Align::ONE)? else {
|
|
// zero-sized access
|
|
return Ok(&[]);
|
|
};
|
|
// Side-step AllocRef and directly access the underlying bytes more efficiently.
|
|
// (We are staying inside the bounds here so all is good.)
|
|
Ok(alloc_ref
|
|
.alloc
|
|
.get_bytes(&alloc_ref.tcx, alloc_ref.range)
|
|
.map_err(|e| e.to_interp_error(alloc_ref.alloc_id))?)
|
|
}
|
|
|
|
/// Writes the given stream of bytes into memory.
|
|
///
|
|
/// Performs appropriate bounds checks.
|
|
pub fn write_bytes_ptr(
|
|
&mut self,
|
|
ptr: Pointer<Option<M::Provenance>>,
|
|
src: impl IntoIterator<Item = u8>,
|
|
) -> InterpResult<'tcx> {
|
|
let mut src = src.into_iter();
|
|
let (lower, upper) = src.size_hint();
|
|
let len = upper.expect("can only write bounded iterators");
|
|
assert_eq!(lower, len, "can only write iterators with a precise length");
|
|
|
|
let size = Size::from_bytes(len);
|
|
let Some(alloc_ref) = self.get_ptr_alloc_mut(ptr, size, Align::ONE)? else {
|
|
// zero-sized access
|
|
assert_matches!(
|
|
src.next(),
|
|
None,
|
|
"iterator said it was empty but returned an element"
|
|
);
|
|
return Ok(());
|
|
};
|
|
|
|
// Side-step AllocRef and directly access the underlying bytes more efficiently.
|
|
// (We are staying inside the bounds here so all is good.)
|
|
let alloc_id = alloc_ref.alloc_id;
|
|
let bytes = alloc_ref
|
|
.alloc
|
|
.get_bytes_mut(&alloc_ref.tcx, alloc_ref.range)
|
|
.map_err(move |e| e.to_interp_error(alloc_id))?;
|
|
// `zip` would stop when the first iterator ends; we want to definitely
|
|
// cover all of `bytes`.
|
|
for dest in bytes {
|
|
*dest = src.next().expect("iterator was shorter than it said it would be");
|
|
}
|
|
assert_matches!(src.next(), None, "iterator was longer than it said it would be");
|
|
Ok(())
|
|
}
|
|
|
|
pub fn mem_copy(
|
|
&mut self,
|
|
src: Pointer<Option<M::Provenance>>,
|
|
src_align: Align,
|
|
dest: Pointer<Option<M::Provenance>>,
|
|
dest_align: Align,
|
|
size: Size,
|
|
nonoverlapping: bool,
|
|
) -> InterpResult<'tcx> {
|
|
self.mem_copy_repeatedly(src, src_align, dest, dest_align, size, 1, nonoverlapping)
|
|
}
|
|
|
|
pub fn mem_copy_repeatedly(
|
|
&mut self,
|
|
src: Pointer<Option<M::Provenance>>,
|
|
src_align: Align,
|
|
dest: Pointer<Option<M::Provenance>>,
|
|
dest_align: Align,
|
|
size: Size,
|
|
num_copies: u64,
|
|
nonoverlapping: bool,
|
|
) -> InterpResult<'tcx> {
|
|
let tcx = self.tcx;
|
|
// We need to do our own bounds-checks.
|
|
let src_parts = self.get_ptr_access(src, size, src_align)?;
|
|
let dest_parts = self.get_ptr_access(dest, size * num_copies, dest_align)?; // `Size` multiplication
|
|
|
|
// FIXME: we look up both allocations twice here, once before for the `check_ptr_access`
|
|
// and once below to get the underlying `&[mut] Allocation`.
|
|
|
|
// Source alloc preparations and access hooks.
|
|
let Some((src_alloc_id, src_offset, src_prov)) = src_parts else {
|
|
// Zero-sized *source*, that means dst is also zero-sized and we have nothing to do.
|
|
return Ok(());
|
|
};
|
|
let src_alloc = self.get_alloc_raw(src_alloc_id)?;
|
|
let src_range = alloc_range(src_offset, size);
|
|
M::memory_read(*tcx, &self.machine, &src_alloc.extra, (src_alloc_id, src_prov), src_range)?;
|
|
// We need the `dest` ptr for the next operation, so we get it now.
|
|
// We already did the source checks and called the hooks so we are good to return early.
|
|
let Some((dest_alloc_id, dest_offset, dest_prov)) = dest_parts else {
|
|
// Zero-sized *destination*.
|
|
return Ok(());
|
|
};
|
|
|
|
// This checks relocation edges on the src, which needs to happen before
|
|
// `prepare_relocation_copy`.
|
|
let src_bytes = src_alloc
|
|
.get_bytes_with_uninit_and_ptr(&tcx, src_range)
|
|
.map_err(|e| e.to_interp_error(src_alloc_id))?
|
|
.as_ptr(); // raw ptr, so we can also get a ptr to the destination allocation
|
|
// first copy the relocations to a temporary buffer, because
|
|
// `get_bytes_mut` will clear the relocations, which is correct,
|
|
// since we don't want to keep any relocations at the target.
|
|
let relocations =
|
|
src_alloc.prepare_relocation_copy(self, src_range, dest_offset, num_copies);
|
|
// Prepare a copy of the initialization mask.
|
|
let compressed = src_alloc.compress_uninit_range(src_range);
|
|
|
|
// Destination alloc preparations and access hooks.
|
|
let (dest_alloc, extra) = self.get_alloc_raw_mut(dest_alloc_id)?;
|
|
let dest_range = alloc_range(dest_offset, size * num_copies);
|
|
M::memory_written(
|
|
*tcx,
|
|
extra,
|
|
&mut dest_alloc.extra,
|
|
(dest_alloc_id, dest_prov),
|
|
dest_range,
|
|
)?;
|
|
let dest_bytes = dest_alloc
|
|
.get_bytes_mut_ptr(&tcx, dest_range)
|
|
.map_err(|e| e.to_interp_error(dest_alloc_id))?
|
|
.as_mut_ptr();
|
|
|
|
if compressed.no_bytes_init() {
|
|
// Fast path: If all bytes are `uninit` then there is nothing to copy. The target range
|
|
// is marked as uninitialized but we otherwise omit changing the byte representation which may
|
|
// be arbitrary for uninitialized bytes.
|
|
// This also avoids writing to the target bytes so that the backing allocation is never
|
|
// touched if the bytes stay uninitialized for the whole interpreter execution. On contemporary
|
|
// operating system this can avoid physically allocating the page.
|
|
dest_alloc
|
|
.write_uninit(&tcx, dest_range)
|
|
.map_err(|e| e.to_interp_error(dest_alloc_id))?;
|
|
// We can forget about the relocations, this is all not initialized anyway.
|
|
return Ok(());
|
|
}
|
|
|
|
// SAFE: The above indexing would have panicked if there weren't at least `size` bytes
|
|
// behind `src` and `dest`. Also, we use the overlapping-safe `ptr::copy` if `src` and
|
|
// `dest` could possibly overlap.
|
|
// The pointers above remain valid even if the `HashMap` table is moved around because they
|
|
// point into the `Vec` storing the bytes.
|
|
unsafe {
|
|
if src_alloc_id == dest_alloc_id {
|
|
if nonoverlapping {
|
|
// `Size` additions
|
|
if (src_offset <= dest_offset && src_offset + size > dest_offset)
|
|
|| (dest_offset <= src_offset && dest_offset + size > src_offset)
|
|
{
|
|
throw_ub_format!("copy_nonoverlapping called on overlapping ranges")
|
|
}
|
|
}
|
|
|
|
for i in 0..num_copies {
|
|
ptr::copy(
|
|
src_bytes,
|
|
dest_bytes.add((size * i).bytes_usize()), // `Size` multiplication
|
|
size.bytes_usize(),
|
|
);
|
|
}
|
|
} else {
|
|
for i in 0..num_copies {
|
|
ptr::copy_nonoverlapping(
|
|
src_bytes,
|
|
dest_bytes.add((size * i).bytes_usize()), // `Size` multiplication
|
|
size.bytes_usize(),
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
// now fill in all the "init" data
|
|
dest_alloc.mark_compressed_init_range(
|
|
&compressed,
|
|
alloc_range(dest_offset, size), // just a single copy (i.e., not full `dest_range`)
|
|
num_copies,
|
|
);
|
|
// copy the relocations to the destination
|
|
dest_alloc.mark_relocation_range(relocations);
|
|
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
/// Machine pointer introspection.
|
|
impl<'mir, 'tcx: 'mir, M: Machine<'mir, 'tcx>> InterpCx<'mir, 'tcx, M> {
|
|
pub fn scalar_to_ptr(
|
|
&self,
|
|
scalar: Scalar<M::Provenance>,
|
|
) -> InterpResult<'tcx, Pointer<Option<M::Provenance>>> {
|
|
// We use `to_bits_or_ptr_internal` since we are just implementing the method people need to
|
|
// call to force getting out a pointer.
|
|
Ok(
|
|
match scalar
|
|
.to_bits_or_ptr_internal(self.pointer_size())
|
|
.map_err(|s| err_ub!(ScalarSizeMismatch(s)))?
|
|
{
|
|
Err(ptr) => ptr.into(),
|
|
Ok(bits) => {
|
|
let addr = u64::try_from(bits).unwrap();
|
|
M::ptr_from_addr_transmute(&self, addr)
|
|
}
|
|
},
|
|
)
|
|
}
|
|
|
|
/// Test if this value might be null.
|
|
/// If the machine does not support ptr-to-int casts, this is conservative.
|
|
pub fn scalar_may_be_null(&self, scalar: Scalar<M::Provenance>) -> InterpResult<'tcx, bool> {
|
|
Ok(match scalar.try_to_int() {
|
|
Ok(int) => int.is_null(),
|
|
Err(_) => {
|
|
// Can only happen during CTFE.
|
|
let ptr = self.scalar_to_ptr(scalar)?;
|
|
match self.ptr_try_get_alloc_id(ptr) {
|
|
Ok((alloc_id, offset, _)) => {
|
|
let (size, _align, _kind) = self.get_alloc_info(alloc_id);
|
|
// If the pointer is out-of-bounds, it may be null.
|
|
// Note that one-past-the-end (offset == size) is still inbounds, and never null.
|
|
offset > size
|
|
}
|
|
Err(_offset) => bug!("a non-int scalar is always a pointer"),
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
/// Turning a "maybe pointer" into a proper pointer (and some information
|
|
/// about where it points), or an absolute address.
|
|
pub fn ptr_try_get_alloc_id(
|
|
&self,
|
|
ptr: Pointer<Option<M::Provenance>>,
|
|
) -> Result<(AllocId, Size, M::ProvenanceExtra), u64> {
|
|
match ptr.into_pointer_or_addr() {
|
|
Ok(ptr) => match M::ptr_get_alloc(self, ptr) {
|
|
Some((alloc_id, offset, extra)) => Ok((alloc_id, offset, extra)),
|
|
None => {
|
|
assert!(M::Provenance::OFFSET_IS_ADDR);
|
|
let (_, addr) = ptr.into_parts();
|
|
Err(addr.bytes())
|
|
}
|
|
},
|
|
Err(addr) => Err(addr.bytes()),
|
|
}
|
|
}
|
|
|
|
/// Turning a "maybe pointer" into a proper pointer (and some information about where it points).
|
|
#[inline(always)]
|
|
pub fn ptr_get_alloc_id(
|
|
&self,
|
|
ptr: Pointer<Option<M::Provenance>>,
|
|
) -> InterpResult<'tcx, (AllocId, Size, M::ProvenanceExtra)> {
|
|
self.ptr_try_get_alloc_id(ptr).map_err(|offset| {
|
|
err_ub!(DanglingIntPointer(offset, CheckInAllocMsg::InboundsTest)).into()
|
|
})
|
|
}
|
|
}
|