972 lines
35 KiB
Rust
972 lines
35 KiB
Rust
/*!
|
|
|
|
# typeck: check phase
|
|
|
|
Within the check phase of type check, we check each item one at a time
|
|
(bodies of function expressions are checked as part of the containing
|
|
function). Inference is used to supply types wherever they are unknown.
|
|
|
|
By far the most complex case is checking the body of a function. This
|
|
can be broken down into several distinct phases:
|
|
|
|
- gather: creates type variables to represent the type of each local
|
|
variable and pattern binding.
|
|
|
|
- main: the main pass does the lion's share of the work: it
|
|
determines the types of all expressions, resolves
|
|
methods, checks for most invalid conditions, and so forth. In
|
|
some cases, where a type is unknown, it may create a type or region
|
|
variable and use that as the type of an expression.
|
|
|
|
In the process of checking, various constraints will be placed on
|
|
these type variables through the subtyping relationships requested
|
|
through the `demand` module. The `infer` module is in charge
|
|
of resolving those constraints.
|
|
|
|
- regionck: after main is complete, the regionck pass goes over all
|
|
types looking for regions and making sure that they did not escape
|
|
into places where they are not in scope. This may also influence the
|
|
final assignments of the various region variables if there is some
|
|
flexibility.
|
|
|
|
- writeback: writes the final types within a function body, replacing
|
|
type variables with their final inferred types. These final types
|
|
are written into the `tcx.node_types` table, which should *never* contain
|
|
any reference to a type variable.
|
|
|
|
## Intermediate types
|
|
|
|
While type checking a function, the intermediate types for the
|
|
expressions, blocks, and so forth contained within the function are
|
|
stored in `fcx.node_types` and `fcx.node_substs`. These types
|
|
may contain unresolved type variables. After type checking is
|
|
complete, the functions in the writeback module are used to take the
|
|
types from this table, resolve them, and then write them into their
|
|
permanent home in the type context `tcx`.
|
|
|
|
This means that during inferencing you should use `fcx.write_ty()`
|
|
and `fcx.expr_ty()` / `fcx.node_ty()` to write/obtain the types of
|
|
nodes within the function.
|
|
|
|
The types of top-level items, which never contain unbound type
|
|
variables, are stored directly into the `tcx` typeck_results.
|
|
|
|
N.B., a type variable is not the same thing as a type parameter. A
|
|
type variable is an instance of a type parameter. That is,
|
|
given a generic function `fn foo<T>(t: T)`, while checking the
|
|
function `foo`, the type `ty_param(0)` refers to the type `T`, which
|
|
is treated in abstract. However, when `foo()` is called, `T` will be
|
|
substituted for a fresh type variable `N`. This variable will
|
|
eventually be resolved to some concrete type (which might itself be
|
|
a type parameter).
|
|
|
|
*/
|
|
|
|
pub mod _match;
|
|
mod autoderef;
|
|
mod callee;
|
|
pub mod cast;
|
|
mod check;
|
|
mod closure;
|
|
pub mod coercion;
|
|
mod compare_method;
|
|
pub mod demand;
|
|
mod diverges;
|
|
pub mod dropck;
|
|
mod expectation;
|
|
mod expr;
|
|
mod fallback;
|
|
mod fn_ctxt;
|
|
mod gather_locals;
|
|
mod generator_interior;
|
|
mod inherited;
|
|
pub mod intrinsic;
|
|
mod intrinsicck;
|
|
pub mod method;
|
|
mod op;
|
|
mod pat;
|
|
mod place_op;
|
|
mod region;
|
|
pub mod rvalue_scopes;
|
|
mod upvar;
|
|
pub mod wfcheck;
|
|
pub mod writeback;
|
|
|
|
use check::{check_abi, check_fn, check_mod_item_types};
|
|
pub use diverges::Diverges;
|
|
pub use expectation::Expectation;
|
|
pub use fn_ctxt::*;
|
|
pub use inherited::{Inherited, InheritedBuilder};
|
|
|
|
use crate::astconv::AstConv;
|
|
use crate::check::gather_locals::GatherLocalsVisitor;
|
|
use rustc_data_structures::fx::{FxHashMap, FxHashSet};
|
|
use rustc_errors::{
|
|
pluralize, struct_span_err, Applicability, Diagnostic, DiagnosticBuilder, MultiSpan,
|
|
};
|
|
use rustc_hir as hir;
|
|
use rustc_hir::def::Res;
|
|
use rustc_hir::def_id::{DefId, LocalDefId};
|
|
use rustc_hir::intravisit::Visitor;
|
|
use rustc_hir::{HirIdMap, ImplicitSelfKind, Node};
|
|
use rustc_index::bit_set::BitSet;
|
|
use rustc_infer::infer::type_variable::{TypeVariableOrigin, TypeVariableOriginKind};
|
|
use rustc_middle::ty::query::Providers;
|
|
use rustc_middle::ty::{self, Ty, TyCtxt, UserType};
|
|
use rustc_middle::ty::{InternalSubsts, SubstsRef};
|
|
use rustc_session::config;
|
|
use rustc_session::parse::feature_err;
|
|
use rustc_session::Session;
|
|
use rustc_span::source_map::DUMMY_SP;
|
|
use rustc_span::symbol::{kw, Ident};
|
|
use rustc_span::{self, BytePos, Span, Symbol};
|
|
use rustc_target::abi::VariantIdx;
|
|
use rustc_target::spec::abi::Abi;
|
|
use rustc_trait_selection::traits;
|
|
use rustc_trait_selection::traits::error_reporting::suggestions::ReturnsVisitor;
|
|
use std::cell::RefCell;
|
|
use std::num::NonZeroU32;
|
|
|
|
use crate::require_c_abi_if_c_variadic;
|
|
use crate::util::common::indenter;
|
|
|
|
use self::coercion::DynamicCoerceMany;
|
|
use self::compare_method::collect_trait_impl_trait_tys;
|
|
use self::region::region_scope_tree;
|
|
pub use self::Expectation::*;
|
|
|
|
#[macro_export]
|
|
macro_rules! type_error_struct {
|
|
($session:expr, $span:expr, $typ:expr, $code:ident, $($message:tt)*) => ({
|
|
let mut err = rustc_errors::struct_span_err!($session, $span, $code, $($message)*);
|
|
|
|
if $typ.references_error() {
|
|
err.downgrade_to_delayed_bug();
|
|
}
|
|
|
|
err
|
|
})
|
|
}
|
|
|
|
/// The type of a local binding, including the revealed type for anon types.
|
|
#[derive(Copy, Clone, Debug)]
|
|
pub struct LocalTy<'tcx> {
|
|
decl_ty: Ty<'tcx>,
|
|
revealed_ty: Ty<'tcx>,
|
|
}
|
|
|
|
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
|
|
pub enum Needs {
|
|
MutPlace,
|
|
None,
|
|
}
|
|
|
|
impl Needs {
|
|
fn maybe_mut_place(m: hir::Mutability) -> Self {
|
|
match m {
|
|
hir::Mutability::Mut => Needs::MutPlace,
|
|
hir::Mutability::Not => Needs::None,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Copy, Clone)]
|
|
pub struct UnsafetyState {
|
|
pub def: hir::HirId,
|
|
pub unsafety: hir::Unsafety,
|
|
from_fn: bool,
|
|
}
|
|
|
|
impl UnsafetyState {
|
|
pub fn function(unsafety: hir::Unsafety, def: hir::HirId) -> UnsafetyState {
|
|
UnsafetyState { def, unsafety, from_fn: true }
|
|
}
|
|
|
|
pub fn recurse(self, blk: &hir::Block<'_>) -> UnsafetyState {
|
|
use hir::BlockCheckMode;
|
|
match self.unsafety {
|
|
// If this unsafe, then if the outer function was already marked as
|
|
// unsafe we shouldn't attribute the unsafe'ness to the block. This
|
|
// way the block can be warned about instead of ignoring this
|
|
// extraneous block (functions are never warned about).
|
|
hir::Unsafety::Unsafe if self.from_fn => self,
|
|
|
|
unsafety => {
|
|
let (unsafety, def) = match blk.rules {
|
|
BlockCheckMode::UnsafeBlock(..) => (hir::Unsafety::Unsafe, blk.hir_id),
|
|
BlockCheckMode::DefaultBlock => (unsafety, self.def),
|
|
};
|
|
UnsafetyState { def, unsafety, from_fn: false }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug, Copy, Clone)]
|
|
pub enum PlaceOp {
|
|
Deref,
|
|
Index,
|
|
}
|
|
|
|
pub struct BreakableCtxt<'tcx> {
|
|
may_break: bool,
|
|
|
|
// this is `null` for loops where break with a value is illegal,
|
|
// such as `while`, `for`, and `while let`
|
|
coerce: Option<DynamicCoerceMany<'tcx>>,
|
|
}
|
|
|
|
pub struct EnclosingBreakables<'tcx> {
|
|
stack: Vec<BreakableCtxt<'tcx>>,
|
|
by_id: HirIdMap<usize>,
|
|
}
|
|
|
|
impl<'tcx> EnclosingBreakables<'tcx> {
|
|
fn find_breakable(&mut self, target_id: hir::HirId) -> &mut BreakableCtxt<'tcx> {
|
|
self.opt_find_breakable(target_id).unwrap_or_else(|| {
|
|
bug!("could not find enclosing breakable with id {}", target_id);
|
|
})
|
|
}
|
|
|
|
fn opt_find_breakable(&mut self, target_id: hir::HirId) -> Option<&mut BreakableCtxt<'tcx>> {
|
|
match self.by_id.get(&target_id) {
|
|
Some(ix) => Some(&mut self.stack[*ix]),
|
|
None => None,
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn provide(providers: &mut Providers) {
|
|
method::provide(providers);
|
|
wfcheck::provide(providers);
|
|
*providers = Providers {
|
|
typeck_item_bodies,
|
|
typeck_const_arg,
|
|
typeck,
|
|
diagnostic_only_typeck,
|
|
has_typeck_results,
|
|
adt_destructor,
|
|
used_trait_imports,
|
|
check_mod_item_types,
|
|
region_scope_tree,
|
|
collect_trait_impl_trait_tys,
|
|
compare_assoc_const_impl_item_with_trait_item: compare_method::raw_compare_const_impl,
|
|
..*providers
|
|
};
|
|
}
|
|
|
|
fn adt_destructor(tcx: TyCtxt<'_>, def_id: DefId) -> Option<ty::Destructor> {
|
|
tcx.calculate_dtor(def_id, dropck::check_drop_impl)
|
|
}
|
|
|
|
/// If this `DefId` is a "primary tables entry", returns
|
|
/// `Some((body_id, body_ty, fn_sig))`. Otherwise, returns `None`.
|
|
///
|
|
/// If this function returns `Some`, then `typeck_results(def_id)` will
|
|
/// succeed; if it returns `None`, then `typeck_results(def_id)` may or
|
|
/// may not succeed. In some cases where this function returns `None`
|
|
/// (notably closures), `typeck_results(def_id)` would wind up
|
|
/// redirecting to the owning function.
|
|
fn primary_body_of(
|
|
tcx: TyCtxt<'_>,
|
|
id: hir::HirId,
|
|
) -> Option<(hir::BodyId, Option<&hir::Ty<'_>>, Option<&hir::FnSig<'_>>)> {
|
|
match tcx.hir().get(id) {
|
|
Node::Item(item) => match item.kind {
|
|
hir::ItemKind::Const(ty, body) | hir::ItemKind::Static(ty, _, body) => {
|
|
Some((body, Some(ty), None))
|
|
}
|
|
hir::ItemKind::Fn(ref sig, .., body) => Some((body, None, Some(sig))),
|
|
_ => None,
|
|
},
|
|
Node::TraitItem(item) => match item.kind {
|
|
hir::TraitItemKind::Const(ty, Some(body)) => Some((body, Some(ty), None)),
|
|
hir::TraitItemKind::Fn(ref sig, hir::TraitFn::Provided(body)) => {
|
|
Some((body, None, Some(sig)))
|
|
}
|
|
_ => None,
|
|
},
|
|
Node::ImplItem(item) => match item.kind {
|
|
hir::ImplItemKind::Const(ty, body) => Some((body, Some(ty), None)),
|
|
hir::ImplItemKind::Fn(ref sig, body) => Some((body, None, Some(sig))),
|
|
_ => None,
|
|
},
|
|
Node::AnonConst(constant) => Some((constant.body, None, None)),
|
|
_ => None,
|
|
}
|
|
}
|
|
|
|
fn has_typeck_results(tcx: TyCtxt<'_>, def_id: DefId) -> bool {
|
|
// Closures' typeck results come from their outermost function,
|
|
// as they are part of the same "inference environment".
|
|
let typeck_root_def_id = tcx.typeck_root_def_id(def_id);
|
|
if typeck_root_def_id != def_id {
|
|
return tcx.has_typeck_results(typeck_root_def_id);
|
|
}
|
|
|
|
if let Some(def_id) = def_id.as_local() {
|
|
let id = tcx.hir().local_def_id_to_hir_id(def_id);
|
|
primary_body_of(tcx, id).is_some()
|
|
} else {
|
|
false
|
|
}
|
|
}
|
|
|
|
fn used_trait_imports(tcx: TyCtxt<'_>, def_id: LocalDefId) -> &FxHashSet<LocalDefId> {
|
|
&*tcx.typeck(def_id).used_trait_imports
|
|
}
|
|
|
|
fn typeck_const_arg<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
(did, param_did): (LocalDefId, DefId),
|
|
) -> &ty::TypeckResults<'tcx> {
|
|
let fallback = move || tcx.type_of(param_did);
|
|
typeck_with_fallback(tcx, did, fallback)
|
|
}
|
|
|
|
fn typeck<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> &ty::TypeckResults<'tcx> {
|
|
if let Some(param_did) = tcx.opt_const_param_of(def_id) {
|
|
tcx.typeck_const_arg((def_id, param_did))
|
|
} else {
|
|
let fallback = move || tcx.type_of(def_id.to_def_id());
|
|
typeck_with_fallback(tcx, def_id, fallback)
|
|
}
|
|
}
|
|
|
|
/// Used only to get `TypeckResults` for type inference during error recovery.
|
|
/// Currently only used for type inference of `static`s and `const`s to avoid type cycle errors.
|
|
fn diagnostic_only_typeck<'tcx>(tcx: TyCtxt<'tcx>, def_id: LocalDefId) -> &ty::TypeckResults<'tcx> {
|
|
let fallback = move || {
|
|
let span = tcx.hir().span(tcx.hir().local_def_id_to_hir_id(def_id));
|
|
tcx.ty_error_with_message(span, "diagnostic only typeck table used")
|
|
};
|
|
typeck_with_fallback(tcx, def_id, fallback)
|
|
}
|
|
|
|
fn typeck_with_fallback<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
def_id: LocalDefId,
|
|
fallback: impl Fn() -> Ty<'tcx> + 'tcx,
|
|
) -> &'tcx ty::TypeckResults<'tcx> {
|
|
// Closures' typeck results come from their outermost function,
|
|
// as they are part of the same "inference environment".
|
|
let typeck_root_def_id = tcx.typeck_root_def_id(def_id.to_def_id()).expect_local();
|
|
if typeck_root_def_id != def_id {
|
|
return tcx.typeck(typeck_root_def_id);
|
|
}
|
|
|
|
let id = tcx.hir().local_def_id_to_hir_id(def_id);
|
|
let span = tcx.hir().span(id);
|
|
|
|
// Figure out what primary body this item has.
|
|
let (body_id, body_ty, fn_sig) = primary_body_of(tcx, id).unwrap_or_else(|| {
|
|
span_bug!(span, "can't type-check body of {:?}", def_id);
|
|
});
|
|
let body = tcx.hir().body(body_id);
|
|
|
|
let typeck_results = Inherited::build(tcx, def_id).enter(|inh| {
|
|
let param_env = tcx.param_env(def_id);
|
|
let mut fcx = if let Some(hir::FnSig { header, decl, .. }) = fn_sig {
|
|
let fn_sig = if crate::collect::get_infer_ret_ty(&decl.output).is_some() {
|
|
let fcx = FnCtxt::new(&inh, param_env, body.value.hir_id);
|
|
<dyn AstConv<'_>>::ty_of_fn(&fcx, id, header.unsafety, header.abi, decl, None, None)
|
|
} else {
|
|
tcx.fn_sig(def_id)
|
|
};
|
|
|
|
check_abi(tcx, id, span, fn_sig.abi());
|
|
|
|
// Compute the function signature from point of view of inside the fn.
|
|
let fn_sig = tcx.liberate_late_bound_regions(def_id.to_def_id(), fn_sig);
|
|
let fn_sig = inh.normalize_associated_types_in(
|
|
body.value.span,
|
|
body_id.hir_id,
|
|
param_env,
|
|
fn_sig,
|
|
);
|
|
check_fn(&inh, param_env, fn_sig, decl, id, body, None, true).0
|
|
} else {
|
|
let fcx = FnCtxt::new(&inh, param_env, body.value.hir_id);
|
|
let expected_type = body_ty
|
|
.and_then(|ty| match ty.kind {
|
|
hir::TyKind::Infer => Some(<dyn AstConv<'_>>::ast_ty_to_ty(&fcx, ty)),
|
|
_ => None,
|
|
})
|
|
.unwrap_or_else(|| match tcx.hir().get(id) {
|
|
Node::AnonConst(_) => match tcx.hir().get(tcx.hir().get_parent_node(id)) {
|
|
Node::Expr(&hir::Expr {
|
|
kind: hir::ExprKind::ConstBlock(ref anon_const),
|
|
..
|
|
}) if anon_const.hir_id == id => fcx.next_ty_var(TypeVariableOrigin {
|
|
kind: TypeVariableOriginKind::TypeInference,
|
|
span,
|
|
}),
|
|
Node::Ty(&hir::Ty {
|
|
kind: hir::TyKind::Typeof(ref anon_const), ..
|
|
}) if anon_const.hir_id == id => fcx.next_ty_var(TypeVariableOrigin {
|
|
kind: TypeVariableOriginKind::TypeInference,
|
|
span,
|
|
}),
|
|
Node::Expr(&hir::Expr { kind: hir::ExprKind::InlineAsm(asm), .. })
|
|
| Node::Item(&hir::Item { kind: hir::ItemKind::GlobalAsm(asm), .. }) => {
|
|
let operand_ty = asm
|
|
.operands
|
|
.iter()
|
|
.filter_map(|(op, _op_sp)| match op {
|
|
hir::InlineAsmOperand::Const { anon_const }
|
|
if anon_const.hir_id == id =>
|
|
{
|
|
// Inline assembly constants must be integers.
|
|
Some(fcx.next_int_var())
|
|
}
|
|
hir::InlineAsmOperand::SymFn { anon_const }
|
|
if anon_const.hir_id == id =>
|
|
{
|
|
Some(fcx.next_ty_var(TypeVariableOrigin {
|
|
kind: TypeVariableOriginKind::MiscVariable,
|
|
span,
|
|
}))
|
|
}
|
|
_ => None,
|
|
})
|
|
.next();
|
|
operand_ty.unwrap_or_else(fallback)
|
|
}
|
|
_ => fallback(),
|
|
},
|
|
_ => fallback(),
|
|
});
|
|
|
|
let expected_type = fcx.normalize_associated_types_in(body.value.span, expected_type);
|
|
fcx.require_type_is_sized(expected_type, body.value.span, traits::ConstSized);
|
|
|
|
// Gather locals in statics (because of block expressions).
|
|
GatherLocalsVisitor::new(&fcx).visit_body(body);
|
|
|
|
fcx.check_expr_coercable_to_type(&body.value, expected_type, None);
|
|
|
|
fcx.write_ty(id, expected_type);
|
|
|
|
fcx
|
|
};
|
|
|
|
let fallback_has_occurred = fcx.type_inference_fallback();
|
|
|
|
// Even though coercion casts provide type hints, we check casts after fallback for
|
|
// backwards compatibility. This makes fallback a stronger type hint than a cast coercion.
|
|
fcx.check_casts();
|
|
fcx.select_obligations_where_possible(fallback_has_occurred, |_| {});
|
|
|
|
// Closure and generator analysis may run after fallback
|
|
// because they don't constrain other type variables.
|
|
// Closure analysis only runs on closures. Therefore they only need to fulfill non-const predicates (as of now)
|
|
let prev_constness = fcx.param_env.constness();
|
|
fcx.param_env = fcx.param_env.without_const();
|
|
fcx.closure_analyze(body);
|
|
fcx.param_env = fcx.param_env.with_constness(prev_constness);
|
|
assert!(fcx.deferred_call_resolutions.borrow().is_empty());
|
|
// Before the generator analysis, temporary scopes shall be marked to provide more
|
|
// precise information on types to be captured.
|
|
fcx.resolve_rvalue_scopes(def_id.to_def_id());
|
|
fcx.resolve_generator_interiors(def_id.to_def_id());
|
|
|
|
for (ty, span, code) in fcx.deferred_sized_obligations.borrow_mut().drain(..) {
|
|
let ty = fcx.normalize_ty(span, ty);
|
|
fcx.require_type_is_sized(ty, span, code);
|
|
}
|
|
|
|
fcx.select_all_obligations_or_error();
|
|
|
|
if !fcx.infcx.is_tainted_by_errors() {
|
|
fcx.check_transmutes();
|
|
}
|
|
|
|
fcx.check_asms();
|
|
|
|
fcx.infcx.skip_region_resolution();
|
|
|
|
fcx.resolve_type_vars_in_body(body)
|
|
});
|
|
|
|
// Consistency check our TypeckResults instance can hold all ItemLocalIds
|
|
// it will need to hold.
|
|
assert_eq!(typeck_results.hir_owner, id.owner);
|
|
|
|
typeck_results
|
|
}
|
|
|
|
/// When `check_fn` is invoked on a generator (i.e., a body that
|
|
/// includes yield), it returns back some information about the yield
|
|
/// points.
|
|
struct GeneratorTypes<'tcx> {
|
|
/// Type of generator argument / values returned by `yield`.
|
|
resume_ty: Ty<'tcx>,
|
|
|
|
/// Type of value that is yielded.
|
|
yield_ty: Ty<'tcx>,
|
|
|
|
/// Types that are captured (see `GeneratorInterior` for more).
|
|
interior: Ty<'tcx>,
|
|
|
|
/// Indicates if the generator is movable or static (immovable).
|
|
movability: hir::Movability,
|
|
}
|
|
|
|
/// Given a `DefId` for an opaque type in return position, find its parent item's return
|
|
/// expressions.
|
|
fn get_owner_return_paths<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
def_id: LocalDefId,
|
|
) -> Option<(LocalDefId, ReturnsVisitor<'tcx>)> {
|
|
let hir_id = tcx.hir().local_def_id_to_hir_id(def_id);
|
|
let parent_id = tcx.hir().get_parent_item(hir_id).def_id;
|
|
tcx.hir().find_by_def_id(parent_id).and_then(|node| node.body_id()).map(|body_id| {
|
|
let body = tcx.hir().body(body_id);
|
|
let mut visitor = ReturnsVisitor::default();
|
|
visitor.visit_body(body);
|
|
(parent_id, visitor)
|
|
})
|
|
}
|
|
|
|
// Forbid defining intrinsics in Rust code,
|
|
// as they must always be defined by the compiler.
|
|
fn fn_maybe_err(tcx: TyCtxt<'_>, sp: Span, abi: Abi) {
|
|
if let Abi::RustIntrinsic | Abi::PlatformIntrinsic = abi {
|
|
tcx.sess.span_err(sp, "intrinsic must be in `extern \"rust-intrinsic\" { ... }` block");
|
|
}
|
|
}
|
|
|
|
fn maybe_check_static_with_link_section(tcx: TyCtxt<'_>, id: LocalDefId) {
|
|
// Only restricted on wasm target for now
|
|
if !tcx.sess.target.is_like_wasm {
|
|
return;
|
|
}
|
|
|
|
// If `#[link_section]` is missing, then nothing to verify
|
|
let attrs = tcx.codegen_fn_attrs(id);
|
|
if attrs.link_section.is_none() {
|
|
return;
|
|
}
|
|
|
|
// For the wasm32 target statics with `#[link_section]` are placed into custom
|
|
// sections of the final output file, but this isn't link custom sections of
|
|
// other executable formats. Namely we can only embed a list of bytes,
|
|
// nothing with provenance (pointers to anything else). If any provenance
|
|
// show up, reject it here.
|
|
// `#[link_section]` may contain arbitrary, or even undefined bytes, but it is
|
|
// the consumer's responsibility to ensure all bytes that have been read
|
|
// have defined values.
|
|
if let Ok(alloc) = tcx.eval_static_initializer(id.to_def_id())
|
|
&& alloc.inner().provenance().len() != 0
|
|
{
|
|
let msg = "statics with a custom `#[link_section]` must be a \
|
|
simple list of bytes on the wasm target with no \
|
|
extra levels of indirection such as references";
|
|
tcx.sess.span_err(tcx.def_span(id), msg);
|
|
}
|
|
}
|
|
|
|
fn report_forbidden_specialization(
|
|
tcx: TyCtxt<'_>,
|
|
impl_item: &hir::ImplItemRef,
|
|
parent_impl: DefId,
|
|
) {
|
|
let mut err = struct_span_err!(
|
|
tcx.sess,
|
|
impl_item.span,
|
|
E0520,
|
|
"`{}` specializes an item from a parent `impl`, but \
|
|
that item is not marked `default`",
|
|
impl_item.ident
|
|
);
|
|
err.span_label(impl_item.span, format!("cannot specialize default item `{}`", impl_item.ident));
|
|
|
|
match tcx.span_of_impl(parent_impl) {
|
|
Ok(span) => {
|
|
err.span_label(span, "parent `impl` is here");
|
|
err.note(&format!(
|
|
"to specialize, `{}` in the parent `impl` must be marked `default`",
|
|
impl_item.ident
|
|
));
|
|
}
|
|
Err(cname) => {
|
|
err.note(&format!("parent implementation is in crate `{cname}`"));
|
|
}
|
|
}
|
|
|
|
err.emit();
|
|
}
|
|
|
|
fn missing_items_err(
|
|
tcx: TyCtxt<'_>,
|
|
impl_span: Span,
|
|
missing_items: &[&ty::AssocItem],
|
|
full_impl_span: Span,
|
|
) {
|
|
let missing_items_msg = missing_items
|
|
.iter()
|
|
.map(|trait_item| trait_item.name.to_string())
|
|
.collect::<Vec<_>>()
|
|
.join("`, `");
|
|
|
|
let mut err = struct_span_err!(
|
|
tcx.sess,
|
|
impl_span,
|
|
E0046,
|
|
"not all trait items implemented, missing: `{missing_items_msg}`",
|
|
);
|
|
err.span_label(impl_span, format!("missing `{missing_items_msg}` in implementation"));
|
|
|
|
// `Span` before impl block closing brace.
|
|
let hi = full_impl_span.hi() - BytePos(1);
|
|
// Point at the place right before the closing brace of the relevant `impl` to suggest
|
|
// adding the associated item at the end of its body.
|
|
let sugg_sp = full_impl_span.with_lo(hi).with_hi(hi);
|
|
// Obtain the level of indentation ending in `sugg_sp`.
|
|
let padding =
|
|
tcx.sess.source_map().indentation_before(sugg_sp).unwrap_or_else(|| String::new());
|
|
|
|
for trait_item in missing_items {
|
|
let snippet = suggestion_signature(trait_item, tcx);
|
|
let code = format!("{}{}\n{}", padding, snippet, padding);
|
|
let msg = format!("implement the missing item: `{snippet}`");
|
|
let appl = Applicability::HasPlaceholders;
|
|
if let Some(span) = tcx.hir().span_if_local(trait_item.def_id) {
|
|
err.span_label(span, format!("`{}` from trait", trait_item.name));
|
|
err.tool_only_span_suggestion(sugg_sp, &msg, code, appl);
|
|
} else {
|
|
err.span_suggestion_hidden(sugg_sp, &msg, code, appl);
|
|
}
|
|
}
|
|
err.emit();
|
|
}
|
|
|
|
fn missing_items_must_implement_one_of_err(
|
|
tcx: TyCtxt<'_>,
|
|
impl_span: Span,
|
|
missing_items: &[Ident],
|
|
annotation_span: Option<Span>,
|
|
) {
|
|
let missing_items_msg =
|
|
missing_items.iter().map(Ident::to_string).collect::<Vec<_>>().join("`, `");
|
|
|
|
let mut err = struct_span_err!(
|
|
tcx.sess,
|
|
impl_span,
|
|
E0046,
|
|
"not all trait items implemented, missing one of: `{missing_items_msg}`",
|
|
);
|
|
err.span_label(impl_span, format!("missing one of `{missing_items_msg}` in implementation"));
|
|
|
|
if let Some(annotation_span) = annotation_span {
|
|
err.span_note(annotation_span, "required because of this annotation");
|
|
}
|
|
|
|
err.emit();
|
|
}
|
|
|
|
fn default_body_is_unstable(
|
|
tcx: TyCtxt<'_>,
|
|
impl_span: Span,
|
|
item_did: DefId,
|
|
feature: Symbol,
|
|
reason: Option<Symbol>,
|
|
issue: Option<NonZeroU32>,
|
|
) {
|
|
let missing_item_name = &tcx.associated_item(item_did).name;
|
|
let use_of_unstable_library_feature_note = match reason {
|
|
Some(r) => format!("use of unstable library feature '{feature}': {r}"),
|
|
None => format!("use of unstable library feature '{feature}'"),
|
|
};
|
|
|
|
let mut err = struct_span_err!(
|
|
tcx.sess,
|
|
impl_span,
|
|
E0046,
|
|
"not all trait items implemented, missing: `{missing_item_name}`",
|
|
);
|
|
err.note(format!("default implementation of `{missing_item_name}` is unstable"));
|
|
err.note(use_of_unstable_library_feature_note);
|
|
rustc_session::parse::add_feature_diagnostics_for_issue(
|
|
&mut err,
|
|
&tcx.sess.parse_sess,
|
|
feature,
|
|
rustc_feature::GateIssue::Library(issue),
|
|
);
|
|
err.emit();
|
|
}
|
|
|
|
/// Re-sugar `ty::GenericPredicates` in a way suitable to be used in structured suggestions.
|
|
fn bounds_from_generic_predicates<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
predicates: ty::GenericPredicates<'tcx>,
|
|
) -> (String, String) {
|
|
let mut types: FxHashMap<Ty<'tcx>, Vec<DefId>> = FxHashMap::default();
|
|
let mut projections = vec![];
|
|
for (predicate, _) in predicates.predicates {
|
|
debug!("predicate {:?}", predicate);
|
|
let bound_predicate = predicate.kind();
|
|
match bound_predicate.skip_binder() {
|
|
ty::PredicateKind::Trait(trait_predicate) => {
|
|
let entry = types.entry(trait_predicate.self_ty()).or_default();
|
|
let def_id = trait_predicate.def_id();
|
|
if Some(def_id) != tcx.lang_items().sized_trait() {
|
|
// Type params are `Sized` by default, do not add that restriction to the list
|
|
// if it is a positive requirement.
|
|
entry.push(trait_predicate.def_id());
|
|
}
|
|
}
|
|
ty::PredicateKind::Projection(projection_pred) => {
|
|
projections.push(bound_predicate.rebind(projection_pred));
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
let generics = if types.is_empty() {
|
|
"".to_string()
|
|
} else {
|
|
format!(
|
|
"<{}>",
|
|
types
|
|
.keys()
|
|
.filter_map(|t| match t.kind() {
|
|
ty::Param(_) => Some(t.to_string()),
|
|
// Avoid suggesting the following:
|
|
// fn foo<T, <T as Trait>::Bar>(_: T) where T: Trait, <T as Trait>::Bar: Other {}
|
|
_ => None,
|
|
})
|
|
.collect::<Vec<_>>()
|
|
.join(", ")
|
|
)
|
|
};
|
|
let mut where_clauses = vec![];
|
|
for (ty, bounds) in types {
|
|
where_clauses
|
|
.extend(bounds.into_iter().map(|bound| format!("{}: {}", ty, tcx.def_path_str(bound))));
|
|
}
|
|
for projection in &projections {
|
|
let p = projection.skip_binder();
|
|
// FIXME: this is not currently supported syntax, we should be looking at the `types` and
|
|
// insert the associated types where they correspond, but for now let's be "lazy" and
|
|
// propose this instead of the following valid resugaring:
|
|
// `T: Trait, Trait::Assoc = K` → `T: Trait<Assoc = K>`
|
|
where_clauses.push(format!(
|
|
"{} = {}",
|
|
tcx.def_path_str(p.projection_ty.item_def_id),
|
|
p.term,
|
|
));
|
|
}
|
|
let where_clauses = if where_clauses.is_empty() {
|
|
String::new()
|
|
} else {
|
|
format!(" where {}", where_clauses.join(", "))
|
|
};
|
|
(generics, where_clauses)
|
|
}
|
|
|
|
/// Return placeholder code for the given function.
|
|
fn fn_sig_suggestion<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
sig: ty::FnSig<'tcx>,
|
|
ident: Ident,
|
|
predicates: ty::GenericPredicates<'tcx>,
|
|
assoc: &ty::AssocItem,
|
|
) -> String {
|
|
let args = sig
|
|
.inputs()
|
|
.iter()
|
|
.enumerate()
|
|
.map(|(i, ty)| {
|
|
Some(match ty.kind() {
|
|
ty::Param(_) if assoc.fn_has_self_parameter && i == 0 => "self".to_string(),
|
|
ty::Ref(reg, ref_ty, mutability) if i == 0 => {
|
|
let reg = format!("{reg} ");
|
|
let reg = match ®[..] {
|
|
"'_ " | " " => "",
|
|
reg => reg,
|
|
};
|
|
if assoc.fn_has_self_parameter {
|
|
match ref_ty.kind() {
|
|
ty::Param(param) if param.name == kw::SelfUpper => {
|
|
format!("&{}{}self", reg, mutability.prefix_str())
|
|
}
|
|
|
|
_ => format!("self: {ty}"),
|
|
}
|
|
} else {
|
|
format!("_: {ty}")
|
|
}
|
|
}
|
|
_ => {
|
|
if assoc.fn_has_self_parameter && i == 0 {
|
|
format!("self: {ty}")
|
|
} else {
|
|
format!("_: {ty}")
|
|
}
|
|
}
|
|
})
|
|
})
|
|
.chain(std::iter::once(if sig.c_variadic { Some("...".to_string()) } else { None }))
|
|
.flatten()
|
|
.collect::<Vec<String>>()
|
|
.join(", ");
|
|
let output = sig.output();
|
|
let output = if !output.is_unit() { format!(" -> {output}") } else { String::new() };
|
|
|
|
let unsafety = sig.unsafety.prefix_str();
|
|
let (generics, where_clauses) = bounds_from_generic_predicates(tcx, predicates);
|
|
|
|
// FIXME: this is not entirely correct, as the lifetimes from borrowed params will
|
|
// not be present in the `fn` definition, not will we account for renamed
|
|
// lifetimes between the `impl` and the `trait`, but this should be good enough to
|
|
// fill in a significant portion of the missing code, and other subsequent
|
|
// suggestions can help the user fix the code.
|
|
format!("{unsafety}fn {ident}{generics}({args}){output}{where_clauses} {{ todo!() }}")
|
|
}
|
|
|
|
/// Return placeholder code for the given associated item.
|
|
/// Similar to `ty::AssocItem::suggestion`, but appropriate for use as the code snippet of a
|
|
/// structured suggestion.
|
|
fn suggestion_signature(assoc: &ty::AssocItem, tcx: TyCtxt<'_>) -> String {
|
|
match assoc.kind {
|
|
ty::AssocKind::Fn => {
|
|
// We skip the binder here because the binder would deanonymize all
|
|
// late-bound regions, and we don't want method signatures to show up
|
|
// `as for<'r> fn(&'r MyType)`. Pretty-printing handles late-bound
|
|
// regions just fine, showing `fn(&MyType)`.
|
|
fn_sig_suggestion(
|
|
tcx,
|
|
tcx.fn_sig(assoc.def_id).skip_binder(),
|
|
assoc.ident(tcx),
|
|
tcx.predicates_of(assoc.def_id),
|
|
assoc,
|
|
)
|
|
}
|
|
ty::AssocKind::Type => format!("type {} = Type;", assoc.name),
|
|
ty::AssocKind::Const => {
|
|
let ty = tcx.type_of(assoc.def_id);
|
|
let val = expr::ty_kind_suggestion(ty).unwrap_or("value");
|
|
format!("const {}: {} = {};", assoc.name, ty, val)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Emit an error when encountering two or more variants in a transparent enum.
|
|
fn bad_variant_count<'tcx>(tcx: TyCtxt<'tcx>, adt: ty::AdtDef<'tcx>, sp: Span, did: DefId) {
|
|
let variant_spans: Vec<_> = adt
|
|
.variants()
|
|
.iter()
|
|
.map(|variant| tcx.hir().span_if_local(variant.def_id).unwrap())
|
|
.collect();
|
|
let msg = format!("needs exactly one variant, but has {}", adt.variants().len(),);
|
|
let mut err = struct_span_err!(tcx.sess, sp, E0731, "transparent enum {msg}");
|
|
err.span_label(sp, &msg);
|
|
if let [start @ .., end] = &*variant_spans {
|
|
for variant_span in start {
|
|
err.span_label(*variant_span, "");
|
|
}
|
|
err.span_label(*end, &format!("too many variants in `{}`", tcx.def_path_str(did)));
|
|
}
|
|
err.emit();
|
|
}
|
|
|
|
/// Emit an error when encountering two or more non-zero-sized fields in a transparent
|
|
/// enum.
|
|
fn bad_non_zero_sized_fields<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
adt: ty::AdtDef<'tcx>,
|
|
field_count: usize,
|
|
field_spans: impl Iterator<Item = Span>,
|
|
sp: Span,
|
|
) {
|
|
let msg = format!("needs at most one non-zero-sized field, but has {field_count}");
|
|
let mut err = struct_span_err!(
|
|
tcx.sess,
|
|
sp,
|
|
E0690,
|
|
"{}transparent {} {}",
|
|
if adt.is_enum() { "the variant of a " } else { "" },
|
|
adt.descr(),
|
|
msg,
|
|
);
|
|
err.span_label(sp, &msg);
|
|
for sp in field_spans {
|
|
err.span_label(sp, "this field is non-zero-sized");
|
|
}
|
|
err.emit();
|
|
}
|
|
|
|
fn report_unexpected_variant_res(tcx: TyCtxt<'_>, res: Res, qpath: &hir::QPath<'_>, span: Span) {
|
|
struct_span_err!(
|
|
tcx.sess,
|
|
span,
|
|
E0533,
|
|
"expected unit struct, unit variant or constant, found {} `{}`",
|
|
res.descr(),
|
|
rustc_hir_pretty::qpath_to_string(qpath),
|
|
)
|
|
.emit();
|
|
}
|
|
|
|
/// Controls whether the arguments are tupled. This is used for the call
|
|
/// operator.
|
|
///
|
|
/// Tupling means that all call-side arguments are packed into a tuple and
|
|
/// passed as a single parameter. For example, if tupling is enabled, this
|
|
/// function:
|
|
/// ```
|
|
/// fn f(x: (isize, isize)) {}
|
|
/// ```
|
|
/// Can be called as:
|
|
/// ```ignore UNSOLVED (can this be done in user code?)
|
|
/// # fn f(x: (isize, isize)) {}
|
|
/// f(1, 2);
|
|
/// ```
|
|
/// Instead of:
|
|
/// ```
|
|
/// # fn f(x: (isize, isize)) {}
|
|
/// f((1, 2));
|
|
/// ```
|
|
#[derive(Clone, Eq, PartialEq)]
|
|
enum TupleArgumentsFlag {
|
|
DontTupleArguments,
|
|
TupleArguments,
|
|
}
|
|
|
|
fn typeck_item_bodies(tcx: TyCtxt<'_>, (): ()) {
|
|
tcx.hir().par_body_owners(|body_owner_def_id| tcx.ensure().typeck(body_owner_def_id));
|
|
}
|
|
|
|
fn fatally_break_rust(sess: &Session) {
|
|
let handler = sess.diagnostic();
|
|
handler.span_bug_no_panic(
|
|
MultiSpan::new(),
|
|
"It looks like you're trying to break rust; would you like some ICE?",
|
|
);
|
|
handler.note_without_error("the compiler expectedly panicked. this is a feature.");
|
|
handler.note_without_error(
|
|
"we would appreciate a joke overview: \
|
|
https://github.com/rust-lang/rust/issues/43162#issuecomment-320764675",
|
|
);
|
|
handler.note_without_error(&format!(
|
|
"rustc {} running on {}",
|
|
option_env!("CFG_VERSION").unwrap_or("unknown_version"),
|
|
config::host_triple(),
|
|
));
|
|
}
|
|
|
|
fn potentially_plural_count(count: usize, word: &str) -> String {
|
|
format!("{} {}{}", count, word, pluralize!(count))
|
|
}
|
|
|
|
fn has_expected_num_generic_args<'tcx>(
|
|
tcx: TyCtxt<'tcx>,
|
|
trait_did: Option<DefId>,
|
|
expected: usize,
|
|
) -> bool {
|
|
trait_did.map_or(true, |trait_did| {
|
|
let generics = tcx.generics_of(trait_did);
|
|
generics.count() == expected + if generics.has_self { 1 } else { 0 }
|
|
})
|
|
}
|