use crate::dep_graph::{DepNodeIndex, SerializedDepNodeIndex}; use crate::mir::interpret::{AllocDecodingSession, AllocDecodingState}; use crate::mir::{self, interpret}; use crate::ty::codec::{OpaqueEncoder, RefDecodable, TyDecoder, TyEncoder}; use crate::ty::context::TyCtxt; use crate::ty::{self, Ty}; use rustc_data_structures::fingerprint::{Fingerprint, FingerprintDecoder, FingerprintEncoder}; use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet}; use rustc_data_structures::sync::{HashMapExt, Lock, Lrc, OnceCell}; use rustc_data_structures::thin_vec::ThinVec; use rustc_errors::Diagnostic; use rustc_hir::def_id::{CrateNum, DefId, DefIndex, LocalDefId, LOCAL_CRATE}; use rustc_hir::definitions::DefPathHash; use rustc_hir::definitions::Definitions; use rustc_index::vec::{Idx, IndexVec}; use rustc_serialize::{opaque, Decodable, Decoder, Encodable, Encoder}; use rustc_session::{CrateDisambiguator, Session}; use rustc_span::hygiene::{ ExpnDataDecodeMode, ExpnDataEncodeMode, ExpnId, HygieneDecodeContext, HygieneEncodeContext, SyntaxContext, SyntaxContextData, }; use rustc_span::source_map::{SourceMap, StableSourceFileId}; use rustc_span::CachingSourceMapView; use rustc_span::{BytePos, ExpnData, SourceFile, Span, DUMMY_SP}; use std::collections::hash_map::Entry; use std::iter::FromIterator; use std::mem; const TAG_FILE_FOOTER: u128 = 0xC0FFEE_C0FFEE_C0FFEE_C0FFEE_C0FFEE; const TAG_VALID_SPAN: u8 = 0; const TAG_INVALID_SPAN: u8 = 1; const TAG_SYNTAX_CONTEXT: u8 = 0; const TAG_EXPN_DATA: u8 = 1; /// Provides an interface to incremental compilation data cached from the /// previous compilation session. This data will eventually include the results /// of a few selected queries (like `typeck` and `mir_optimized`) and /// any diagnostics that have been emitted during a query. pub struct OnDiskCache<'sess> { // The complete cache data in serialized form. serialized_data: Vec, // Collects all `Diagnostic`s emitted during the current compilation // session. current_diagnostics: Lock>>, prev_cnums: Vec<(u32, String, CrateDisambiguator)>, cnum_map: OnceCell>>, source_map: &'sess SourceMap, file_index_to_stable_id: FxHashMap, // Caches that are populated lazily during decoding. file_index_to_file: Lock>>, // A map from dep-node to the position of the cached query result in // `serialized_data`. query_result_index: FxHashMap, // A map from dep-node to the position of any associated diagnostics in // `serialized_data`. prev_diagnostics_index: FxHashMap, alloc_decoding_state: AllocDecodingState, // A map from syntax context ids to the position of their associated // `SyntaxContextData`. We use a `u32` instead of a `SyntaxContext` // to represent the fact that we are storing *encoded* ids. When we decode // a `SyntaxContext`, a new id will be allocated from the global `HygieneData`, // which will almost certainly be different than the serialized id. syntax_contexts: FxHashMap, // A map from the `DefPathHash` of an `ExpnId` to the position // of their associated `ExpnData`. Ideally, we would store a `DefId`, // but we need to decode this before we've constructed a `TyCtxt` (which // makes it difficult to decode a `DefId`). // Note that these `DefPathHashes` correspond to both local and foreign // `ExpnData` (e.g `ExpnData.krate` may not be `LOCAL_CRATE`). Alternatively, // we could look up the `ExpnData` from the metadata of foreign crates, // but it seemed easier to have `OnDiskCache` be independent of the `CStore`. expn_data: FxHashMap, // Additional information used when decoding hygiene data. hygiene_context: HygieneDecodeContext, // Maps `DefPathHash`es to their `RawDefId`s from the *previous* // compilation session. This is used as an initial 'guess' when // we try to map a `DefPathHash` to its `DefId` in the current compilation // session. foreign_def_path_hashes: FxHashMap, // The *next* compilation sessison's `foreign_def_path_hashes` - at // the end of our current compilation session, this will get written // out to the `foreign_def_path_hashes` field of the `Footer`, which // will become `foreign_def_path_hashes` of the next compilation session. // This stores any `DefPathHash` that we may need to map to a `DefId` // during the next compilation session. latest_foreign_def_path_hashes: Lock>, // Maps `DefPathHashes` to their corresponding `LocalDefId`s for all // local items in the current compilation session. This is only populated // when we are in incremental mode and have loaded a pre-existing cache // from disk, since this map is only used when deserializing a `DefPathHash` // from the incremental cache. local_def_path_hash_to_def_id: FxHashMap, // Caches all lookups of `DefPathHashes`, both for local and foreign // definitions. A definition from the previous compilation session // may no longer exist in the current compilation session, so // we use `Option` so that we can cache a lookup failure. def_path_hash_to_def_id_cache: Lock>>, } // This type is used only for serialization and deserialization. #[derive(Encodable, Decodable)] struct Footer { file_index_to_stable_id: FxHashMap, prev_cnums: Vec<(u32, String, CrateDisambiguator)>, query_result_index: EncodedQueryResultIndex, diagnostics_index: EncodedQueryResultIndex, // The location of all allocations. interpret_alloc_index: Vec, // See `OnDiskCache.syntax_contexts` syntax_contexts: FxHashMap, // See `OnDiskCache.expn_data` expn_data: FxHashMap, foreign_def_path_hashes: FxHashMap, } type EncodedQueryResultIndex = Vec<(SerializedDepNodeIndex, AbsoluteBytePos)>; type EncodedDiagnosticsIndex = Vec<(SerializedDepNodeIndex, AbsoluteBytePos)>; type EncodedDiagnostics = Vec; #[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, Encodable, Decodable)] struct SourceFileIndex(u32); #[derive(Copy, Clone, Debug, Hash, Eq, PartialEq, Encodable, Decodable)] struct AbsoluteBytePos(u32); impl AbsoluteBytePos { fn new(pos: usize) -> AbsoluteBytePos { debug_assert!(pos <= u32::MAX as usize); AbsoluteBytePos(pos as u32) } fn to_usize(self) -> usize { self.0 as usize } } /// Represents a potentially invalid `DefId`. This is used during incremental /// compilation to represent a `DefId` from the *previous* compilation session, /// which may no longer be valid. This is used to help map a `DefPathHash` /// to a `DefId` in the current compilation session. #[derive(Encodable, Decodable, Copy, Clone, Debug)] crate struct RawDefId { // We deliberately do not use `CrateNum` and `DefIndex` // here, since a crate/index from the previous compilation // session may no longer exist. pub krate: u32, pub index: u32, } fn make_local_def_path_hash_map(definitions: &Definitions) -> FxHashMap { FxHashMap::from_iter( definitions .def_path_table() .all_def_path_hashes_and_def_ids(LOCAL_CRATE) .map(|(hash, def_id)| (hash, def_id.as_local().unwrap())), ) } impl<'sess> OnDiskCache<'sess> { /// Creates a new `OnDiskCache` instance from the serialized data in `data`. pub fn new( sess: &'sess Session, data: Vec, start_pos: usize, definitions: &Definitions, ) -> Self { debug_assert!(sess.opts.incremental.is_some()); // Wrap in a scope so we can borrow `data`. let footer: Footer = { let mut decoder = opaque::Decoder::new(&data[..], start_pos); // Decode the *position* of the footer, which can be found in the // last 8 bytes of the file. decoder.set_position(data.len() - IntEncodedWithFixedSize::ENCODED_SIZE); let footer_pos = IntEncodedWithFixedSize::decode(&mut decoder) .expect("error while trying to decode footer position") .0 as usize; // Decode the file footer, which contains all the lookup tables, etc. decoder.set_position(footer_pos); decode_tagged(&mut decoder, TAG_FILE_FOOTER) .expect("error while trying to decode footer position") }; Self { serialized_data: data, file_index_to_stable_id: footer.file_index_to_stable_id, file_index_to_file: Default::default(), prev_cnums: footer.prev_cnums, cnum_map: OnceCell::new(), source_map: sess.source_map(), current_diagnostics: Default::default(), query_result_index: footer.query_result_index.into_iter().collect(), prev_diagnostics_index: footer.diagnostics_index.into_iter().collect(), alloc_decoding_state: AllocDecodingState::new(footer.interpret_alloc_index), syntax_contexts: footer.syntax_contexts, expn_data: footer.expn_data, hygiene_context: Default::default(), foreign_def_path_hashes: footer.foreign_def_path_hashes, latest_foreign_def_path_hashes: Default::default(), local_def_path_hash_to_def_id: make_local_def_path_hash_map(definitions), def_path_hash_to_def_id_cache: Default::default(), } } pub fn new_empty(source_map: &'sess SourceMap) -> Self { Self { serialized_data: Vec::new(), file_index_to_stable_id: Default::default(), file_index_to_file: Default::default(), prev_cnums: vec![], cnum_map: OnceCell::new(), source_map, current_diagnostics: Default::default(), query_result_index: Default::default(), prev_diagnostics_index: Default::default(), alloc_decoding_state: AllocDecodingState::new(Vec::new()), syntax_contexts: FxHashMap::default(), expn_data: FxHashMap::default(), hygiene_context: Default::default(), foreign_def_path_hashes: Default::default(), latest_foreign_def_path_hashes: Default::default(), local_def_path_hash_to_def_id: Default::default(), def_path_hash_to_def_id_cache: Default::default(), } } pub fn serialize<'tcx, E>(&self, tcx: TyCtxt<'tcx>, encoder: &mut E) -> Result<(), E::Error> where E: OpaqueEncoder, { // Serializing the `DepGraph` should not modify it. tcx.dep_graph.with_ignore(|| { // Allocate `SourceFileIndex`es. let (file_to_file_index, file_index_to_stable_id) = { let files = tcx.sess.source_map().files(); let mut file_to_file_index = FxHashMap::with_capacity_and_hasher(files.len(), Default::default()); let mut file_index_to_stable_id = FxHashMap::with_capacity_and_hasher(files.len(), Default::default()); for (index, file) in files.iter().enumerate() { let index = SourceFileIndex(index as u32); let file_ptr: *const SourceFile = &**file as *const _; file_to_file_index.insert(file_ptr, index); file_index_to_stable_id.insert(index, StableSourceFileId::new(&file)); } (file_to_file_index, file_index_to_stable_id) }; // Load everything into memory so we can write it out to the on-disk // cache. The vast majority of cacheable query results should already // be in memory, so this should be a cheap operation. // Do this *before* we clone 'latest_foreign_def_path_hashes', since // loading existing queries may cause us to create new DepNodes, which // may in turn end up invoking `store_foreign_def_id_hash` tcx.dep_graph.exec_cache_promotions(tcx); let latest_foreign_def_path_hashes = self.latest_foreign_def_path_hashes.lock().clone(); let hygiene_encode_context = HygieneEncodeContext::default(); let mut encoder = CacheEncoder { tcx, encoder, type_shorthands: Default::default(), predicate_shorthands: Default::default(), interpret_allocs: Default::default(), source_map: CachingSourceMapView::new(tcx.sess.source_map()), file_to_file_index, hygiene_context: &hygiene_encode_context, latest_foreign_def_path_hashes, }; // Encode query results. let mut query_result_index = EncodedQueryResultIndex::new(); tcx.sess.time("encode_query_results", || { let enc = &mut encoder; let qri = &mut query_result_index; macro_rules! encode_queries { ($($query:ident,)*) => { $( encode_query_results::, _>( tcx, enc, qri )?; )* } } rustc_cached_queries!(encode_queries!); Ok(()) })?; // Encode diagnostics. let diagnostics_index: EncodedDiagnosticsIndex = self .current_diagnostics .borrow() .iter() .map(|(dep_node_index, diagnostics)| { let pos = AbsoluteBytePos::new(encoder.position()); // Let's make sure we get the expected type here. let diagnostics: &EncodedDiagnostics = diagnostics; let dep_node_index = SerializedDepNodeIndex::new(dep_node_index.index()); encoder.encode_tagged(dep_node_index, diagnostics)?; Ok((dep_node_index, pos)) }) .collect::>()?; let interpret_alloc_index = { let mut interpret_alloc_index = Vec::new(); let mut n = 0; loop { let new_n = encoder.interpret_allocs.len(); // If we have found new IDs, serialize those too. if n == new_n { // Otherwise, abort. break; } interpret_alloc_index.reserve(new_n - n); for idx in n..new_n { let id = encoder.interpret_allocs[idx]; let pos = encoder.position() as u32; interpret_alloc_index.push(pos); interpret::specialized_encode_alloc_id(&mut encoder, tcx, id)?; } n = new_n; } interpret_alloc_index }; let sorted_cnums = sorted_cnums_including_local_crate(tcx); let prev_cnums: Vec<_> = sorted_cnums .iter() .map(|&cnum| { let crate_name = tcx.original_crate_name(cnum).to_string(); let crate_disambiguator = tcx.crate_disambiguator(cnum); (cnum.as_u32(), crate_name, crate_disambiguator) }) .collect(); let mut syntax_contexts = FxHashMap::default(); let mut expn_ids = FxHashMap::default(); // Encode all hygiene data (`SyntaxContextData` and `ExpnData`) from the current // session. hygiene_encode_context.encode( &mut encoder, |encoder, index, ctxt_data| { let pos = AbsoluteBytePos::new(encoder.position()); encoder.encode_tagged(TAG_SYNTAX_CONTEXT, ctxt_data)?; syntax_contexts.insert(index, pos); Ok(()) }, |encoder, index, expn_data| { let pos = AbsoluteBytePos::new(encoder.position()); encoder.encode_tagged(TAG_EXPN_DATA, expn_data)?; expn_ids.insert(index, pos); Ok(()) }, )?; let foreign_def_path_hashes = std::mem::take(&mut encoder.latest_foreign_def_path_hashes); // `Encode the file footer. let footer_pos = encoder.position() as u64; encoder.encode_tagged( TAG_FILE_FOOTER, &Footer { file_index_to_stable_id, prev_cnums, query_result_index, diagnostics_index, interpret_alloc_index, syntax_contexts, expn_data: expn_ids, foreign_def_path_hashes, }, )?; // Encode the position of the footer as the last 8 bytes of the // file so we know where to look for it. IntEncodedWithFixedSize(footer_pos).encode(encoder.encoder.opaque())?; // DO NOT WRITE ANYTHING TO THE ENCODER AFTER THIS POINT! The address // of the footer must be the last thing in the data stream. return Ok(()); fn sorted_cnums_including_local_crate(tcx: TyCtxt<'_>) -> Vec { let mut cnums = vec![LOCAL_CRATE]; cnums.extend_from_slice(&tcx.crates()[..]); cnums.sort_unstable(); // Just to be sure... cnums.dedup(); cnums } }) } /// Loads a diagnostic emitted during the previous compilation session. pub fn load_diagnostics( &self, tcx: TyCtxt<'_>, dep_node_index: SerializedDepNodeIndex, ) -> Vec { let diagnostics: Option = self.load_indexed(tcx, dep_node_index, &self.prev_diagnostics_index, "diagnostics"); diagnostics.unwrap_or_default() } /// Stores a diagnostic emitted during the current compilation session. /// Anything stored like this will be available via `load_diagnostics` in /// the next compilation session. #[inline(never)] #[cold] pub fn store_diagnostics( &self, dep_node_index: DepNodeIndex, diagnostics: ThinVec, ) { let mut current_diagnostics = self.current_diagnostics.borrow_mut(); let prev = current_diagnostics.insert(dep_node_index, diagnostics.into()); debug_assert!(prev.is_none()); } fn get_raw_def_id(&self, hash: &DefPathHash) -> Option { self.foreign_def_path_hashes.get(hash).copied() } fn try_remap_cnum(&self, tcx: TyCtxt<'_>, cnum: u32) -> Option { let cnum_map = self.cnum_map.get_or_init(|| Self::compute_cnum_map(tcx, &self.prev_cnums[..])); debug!("try_remap_cnum({}): cnum_map={:?}", cnum, cnum_map); cnum_map[CrateNum::from_u32(cnum)] } pub(crate) fn store_foreign_def_id_hash(&self, def_id: DefId, hash: DefPathHash) { // We may overwrite an existing entry, but it will have the same value, // so it's fine self.latest_foreign_def_path_hashes .lock() .insert(hash, RawDefId { krate: def_id.krate.as_u32(), index: def_id.index.as_u32() }); } /// If the given `hash` still exists in the current compilation, /// calls `store_foreign_def_id` with its current `DefId`. /// /// Normally, `store_foreign_def_id_hash` can be called directly by /// the dependency graph when we construct a `DepNode`. However, /// when we re-use a deserialized `DepNode` from the previous compilation /// session, we only have the `DefPathHash` available. This method is used /// to that any `DepNode` that we re-use has a `DefPathHash` -> `RawId` written /// out for usage in the next compilation session. pub fn register_reused_dep_path_hash(&self, tcx: TyCtxt<'tcx>, hash: DefPathHash) { // We can't simply copy the `RawDefId` from `foreign_def_path_hashes` to // `latest_foreign_def_path_hashes`, since the `RawDefId` might have // changed in the current compilation session (e.g. we've added/removed crates, // or added/removed definitions before/after the target definition). if let Some(def_id) = self.def_path_hash_to_def_id(tcx, hash) { self.store_foreign_def_id_hash(def_id, hash); } } /// Returns the cached query result if there is something in the cache for /// the given `SerializedDepNodeIndex`; otherwise returns `None`. crate fn try_load_query_result<'tcx, T>( &self, tcx: TyCtxt<'tcx>, dep_node_index: SerializedDepNodeIndex, ) -> Option where T: for<'a> Decodable>, { self.load_indexed(tcx, dep_node_index, &self.query_result_index, "query result") } /// Stores a diagnostic emitted during computation of an anonymous query. /// Since many anonymous queries can share the same `DepNode`, we aggregate /// them -- as opposed to regular queries where we assume that there is a /// 1:1 relationship between query-key and `DepNode`. #[inline(never)] #[cold] pub fn store_diagnostics_for_anon_node( &self, dep_node_index: DepNodeIndex, diagnostics: ThinVec, ) { let mut current_diagnostics = self.current_diagnostics.borrow_mut(); let x = current_diagnostics.entry(dep_node_index).or_insert(Vec::new()); x.extend(Into::>::into(diagnostics)); } fn load_indexed<'tcx, T>( &self, tcx: TyCtxt<'tcx>, dep_node_index: SerializedDepNodeIndex, index: &FxHashMap, debug_tag: &'static str, ) -> Option where T: for<'a> Decodable>, { let pos = index.get(&dep_node_index).cloned()?; self.with_decoder(tcx, pos, |decoder| match decode_tagged(decoder, dep_node_index) { Ok(v) => Some(v), Err(e) => bug!("could not decode cached {}: {}", debug_tag, e), }) } fn with_decoder<'a, 'tcx, T, F: FnOnce(&mut CacheDecoder<'sess, 'tcx>) -> T>( &'sess self, tcx: TyCtxt<'tcx>, pos: AbsoluteBytePos, f: F, ) -> T where T: Decodable>, { let cnum_map = self.cnum_map.get_or_init(|| Self::compute_cnum_map(tcx, &self.prev_cnums[..])); let mut decoder = CacheDecoder { tcx, opaque: opaque::Decoder::new(&self.serialized_data[..], pos.to_usize()), source_map: self.source_map, cnum_map, file_index_to_file: &self.file_index_to_file, file_index_to_stable_id: &self.file_index_to_stable_id, alloc_decoding_session: self.alloc_decoding_state.new_decoding_session(), syntax_contexts: &self.syntax_contexts, expn_data: &self.expn_data, hygiene_context: &self.hygiene_context, }; f(&mut decoder) } // This function builds mapping from previous-session-`CrateNum` to // current-session-`CrateNum`. There might be `CrateNum`s from the previous // `Session` that don't occur in the current one. For these, the mapping // maps to None. fn compute_cnum_map( tcx: TyCtxt<'_>, prev_cnums: &[(u32, String, CrateDisambiguator)], ) -> IndexVec> { tcx.dep_graph.with_ignore(|| { let current_cnums = tcx .all_crate_nums(LOCAL_CRATE) .iter() .map(|&cnum| { let crate_name = tcx.original_crate_name(cnum).to_string(); let crate_disambiguator = tcx.crate_disambiguator(cnum); ((crate_name, crate_disambiguator), cnum) }) .collect::>(); let map_size = prev_cnums.iter().map(|&(cnum, ..)| cnum).max().unwrap_or(0) + 1; let mut map = IndexVec::from_elem_n(None, map_size as usize); for &(prev_cnum, ref crate_name, crate_disambiguator) in prev_cnums { let key = (crate_name.clone(), crate_disambiguator); map[CrateNum::from_u32(prev_cnum)] = current_cnums.get(&key).cloned(); } map[LOCAL_CRATE] = Some(LOCAL_CRATE); map }) } /// Converts a `DefPathHash` to its corresponding `DefId` in the current compilation /// session, if it still exists. This is used during incremental compilation to /// turn a deserialized `DefPathHash` into its current `DefId`. pub(crate) fn def_path_hash_to_def_id( &self, tcx: TyCtxt<'tcx>, hash: DefPathHash, ) -> Option { let mut cache = self.def_path_hash_to_def_id_cache.lock(); match cache.entry(hash) { Entry::Occupied(e) => *e.get(), Entry::Vacant(e) => { debug!("def_path_hash_to_def_id({:?})", hash); // Check if the `DefPathHash` corresponds to a definition in the current // crate if let Some(def_id) = self.local_def_path_hash_to_def_id.get(&hash).cloned() { let def_id = def_id.to_def_id(); e.insert(Some(def_id)); return Some(def_id); } // This `raw_def_id` represents the `DefId` of this `DefPathHash` in // the *previous* compliation session. The `DefPathHash` includes the // owning crate, so if the corresponding definition still exists in the // current compilation session, the crate is guaranteed to be the same // (otherwise, we would compute a different `DefPathHash`). let raw_def_id = self.get_raw_def_id(&hash)?; debug!("def_path_hash_to_def_id({:?}): raw_def_id = {:?}", hash, raw_def_id); // If the owning crate no longer exists, the corresponding definition definitely // no longer exists. let krate = self.try_remap_cnum(tcx, raw_def_id.krate)?; debug!("def_path_hash_to_def_id({:?}): krate = {:?}", hash, krate); // If our `DefPathHash` corresponded to a definition in the local crate, // we should have either found it in `local_def_path_hash_to_def_id`, or // never attempted to load it in the first place. Any query result or `DepNode` // that references a local `DefId` should depend on some HIR-related `DepNode`. // If a local definition is removed/modified such that its old `DefPathHash` // no longer has a corresponding definition, that HIR-related `DepNode` should // end up red. This should prevent us from ever calling // `tcx.def_path_hash_to_def_id`, since we'll end up recomputing any // queries involved. debug_assert_ne!(krate, LOCAL_CRATE); // Try to find a definition in the current session, using the previous `DefIndex` // as an initial guess. let opt_def_id = tcx.cstore.def_path_hash_to_def_id(krate, raw_def_id.index, hash); debug!("def_path_to_def_id({:?}): opt_def_id = {:?}", hash, opt_def_id); e.insert(opt_def_id); opt_def_id } } } } //- DECODING ------------------------------------------------------------------- /// A decoder that can read from the incr. comp. cache. It is similar to the one /// we use for crate metadata decoding in that it can rebase spans and eventually /// will also handle things that contain `Ty` instances. crate struct CacheDecoder<'a, 'tcx> { tcx: TyCtxt<'tcx>, opaque: opaque::Decoder<'a>, source_map: &'a SourceMap, cnum_map: &'a IndexVec>, file_index_to_file: &'a Lock>>, file_index_to_stable_id: &'a FxHashMap, alloc_decoding_session: AllocDecodingSession<'a>, syntax_contexts: &'a FxHashMap, expn_data: &'a FxHashMap, hygiene_context: &'a HygieneDecodeContext, } impl<'a, 'tcx> CacheDecoder<'a, 'tcx> { fn file_index_to_file(&self, index: SourceFileIndex) -> Lrc { let CacheDecoder { ref file_index_to_file, ref file_index_to_stable_id, ref source_map, .. } = *self; file_index_to_file .borrow_mut() .entry(index) .or_insert_with(|| { let stable_id = file_index_to_stable_id[&index]; source_map .source_file_by_stable_id(stable_id) .expect("failed to lookup `SourceFile` in new context") }) .clone() } } trait DecoderWithPosition: Decoder { fn position(&self) -> usize; } impl<'a> DecoderWithPosition for opaque::Decoder<'a> { fn position(&self) -> usize { self.position() } } impl<'a, 'tcx> DecoderWithPosition for CacheDecoder<'a, 'tcx> { fn position(&self) -> usize { self.opaque.position() } } // Decodes something that was encoded with `encode_tagged()` and verify that the // tag matches and the correct amount of bytes was read. fn decode_tagged(decoder: &mut D, expected_tag: T) -> Result where T: Decodable + Eq + std::fmt::Debug, V: Decodable, D: DecoderWithPosition, { let start_pos = decoder.position(); let actual_tag = T::decode(decoder)?; assert_eq!(actual_tag, expected_tag); let value = V::decode(decoder)?; let end_pos = decoder.position(); let expected_len: u64 = Decodable::decode(decoder)?; assert_eq!((end_pos - start_pos) as u64, expected_len); Ok(value) } impl<'a, 'tcx> TyDecoder<'tcx> for CacheDecoder<'a, 'tcx> { const CLEAR_CROSS_CRATE: bool = false; #[inline] fn tcx(&self) -> TyCtxt<'tcx> { self.tcx } #[inline] fn position(&self) -> usize { self.opaque.position() } #[inline] fn peek_byte(&self) -> u8 { self.opaque.data[self.opaque.position()] } fn cached_ty_for_shorthand( &mut self, shorthand: usize, or_insert_with: F, ) -> Result, Self::Error> where F: FnOnce(&mut Self) -> Result, Self::Error>, { let tcx = self.tcx(); let cache_key = ty::CReaderCacheKey { cnum: CrateNum::ReservedForIncrCompCache, pos: shorthand }; if let Some(&ty) = tcx.ty_rcache.borrow().get(&cache_key) { return Ok(ty); } let ty = or_insert_with(self)?; // This may overwrite the entry, but it should overwrite with the same value. tcx.ty_rcache.borrow_mut().insert_same(cache_key, ty); Ok(ty) } fn with_position(&mut self, pos: usize, f: F) -> R where F: FnOnce(&mut Self) -> R, { debug_assert!(pos < self.opaque.data.len()); let new_opaque = opaque::Decoder::new(self.opaque.data, pos); let old_opaque = mem::replace(&mut self.opaque, new_opaque); let r = f(self); self.opaque = old_opaque; r } fn map_encoded_cnum_to_current(&self, cnum: CrateNum) -> CrateNum { self.cnum_map[cnum].unwrap_or_else(|| bug!("could not find new `CrateNum` for {:?}", cnum)) } fn decode_alloc_id(&mut self) -> Result { let alloc_decoding_session = self.alloc_decoding_session; alloc_decoding_session.decode_alloc_id(self) } } crate::implement_ty_decoder!(CacheDecoder<'a, 'tcx>); impl<'a, 'tcx> Decodable> for SyntaxContext { fn decode(decoder: &mut CacheDecoder<'a, 'tcx>) -> Result { let syntax_contexts = decoder.syntax_contexts; rustc_span::hygiene::decode_syntax_context(decoder, decoder.hygiene_context, |this, id| { // This closure is invoked if we haven't already decoded the data for the `SyntaxContext` we are deserializing. // We look up the position of the associated `SyntaxData` and decode it. let pos = syntax_contexts.get(&id).unwrap(); this.with_position(pos.to_usize(), |decoder| { let data: SyntaxContextData = decode_tagged(decoder, TAG_SYNTAX_CONTEXT)?; Ok(data) }) }) } } impl<'a, 'tcx> Decodable> for ExpnId { fn decode(decoder: &mut CacheDecoder<'a, 'tcx>) -> Result { let expn_data = decoder.expn_data; rustc_span::hygiene::decode_expn_id( decoder, ExpnDataDecodeMode::incr_comp(decoder.hygiene_context), |this, index| { // This closure is invoked if we haven't already decoded the data for the `ExpnId` we are deserializing. // We look up the position of the associated `ExpnData` and decode it. let pos = expn_data .get(&index) .unwrap_or_else(|| panic!("Bad index {:?} (map {:?})", index, expn_data)); this.with_position(pos.to_usize(), |decoder| { let data: ExpnData = decode_tagged(decoder, TAG_EXPN_DATA)?; Ok(data) }) }, ) } } impl<'a, 'tcx> Decodable> for Span { fn decode(decoder: &mut CacheDecoder<'a, 'tcx>) -> Result { let tag: u8 = Decodable::decode(decoder)?; if tag == TAG_INVALID_SPAN { return Ok(DUMMY_SP); } else { debug_assert_eq!(tag, TAG_VALID_SPAN); } let file_lo_index = SourceFileIndex::decode(decoder)?; let line_lo = usize::decode(decoder)?; let col_lo = BytePos::decode(decoder)?; let len = BytePos::decode(decoder)?; let ctxt = SyntaxContext::decode(decoder)?; let file_lo = decoder.file_index_to_file(file_lo_index); let lo = file_lo.lines[line_lo - 1] + col_lo; let hi = lo + len; Ok(Span::new(lo, hi, ctxt)) } } impl<'a, 'tcx> Decodable> for CrateNum { fn decode(d: &mut CacheDecoder<'a, 'tcx>) -> Result { let cnum = CrateNum::from_u32(u32::decode(d)?); Ok(d.map_encoded_cnum_to_current(cnum)) } } // This impl makes sure that we get a runtime error when we try decode a // `DefIndex` that is not contained in a `DefId`. Such a case would be problematic // because we would not know how to transform the `DefIndex` to the current // context. impl<'a, 'tcx> Decodable> for DefIndex { fn decode(d: &mut CacheDecoder<'a, 'tcx>) -> Result { Err(d.error("trying to decode `DefIndex` outside the context of a `DefId`")) } } // Both the `CrateNum` and the `DefIndex` of a `DefId` can change in between two // compilation sessions. We use the `DefPathHash`, which is stable across // sessions, to map the old `DefId` to the new one. impl<'a, 'tcx> Decodable> for DefId { fn decode(d: &mut CacheDecoder<'a, 'tcx>) -> Result { // Load the `DefPathHash` which is was we encoded the `DefId` as. let def_path_hash = DefPathHash::decode(d)?; // Using the `DefPathHash`, we can lookup the new `DefId`. // Subtle: We only encode a `DefId` as part of a query result. // If we get to this point, then all of the query inputs were green, // which means that the definition with this hash is guaranteed to // still exist in the current compilation session. Ok(d.tcx() .queries .on_disk_cache .as_ref() .unwrap() .def_path_hash_to_def_id(d.tcx(), def_path_hash) .unwrap()) } } impl<'a, 'tcx> FingerprintDecoder for CacheDecoder<'a, 'tcx> { fn decode_fingerprint(&mut self) -> Result { Fingerprint::decode_opaque(&mut self.opaque) } } impl<'a, 'tcx> Decodable> for &'tcx FxHashSet { fn decode(d: &mut CacheDecoder<'a, 'tcx>) -> Result { RefDecodable::decode(d) } } impl<'a, 'tcx> Decodable> for &'tcx IndexVec> { fn decode(d: &mut CacheDecoder<'a, 'tcx>) -> Result { RefDecodable::decode(d) } } impl<'a, 'tcx> Decodable> for &'tcx [mir::abstract_const::Node<'tcx>] { fn decode(d: &mut CacheDecoder<'a, 'tcx>) -> Result { RefDecodable::decode(d) } } impl<'a, 'tcx> Decodable> for &'tcx [(ty::Predicate<'tcx>, Span)] { fn decode(d: &mut CacheDecoder<'a, 'tcx>) -> Result { RefDecodable::decode(d) } } impl<'a, 'tcx> Decodable> for &'tcx [rustc_ast::InlineAsmTemplatePiece] { fn decode(d: &mut CacheDecoder<'a, 'tcx>) -> Result { RefDecodable::decode(d) } } impl<'a, 'tcx> Decodable> for &'tcx [Span] { fn decode(d: &mut CacheDecoder<'a, 'tcx>) -> Result { RefDecodable::decode(d) } } //- ENCODING ------------------------------------------------------------------- /// An encoder that can write the incr. comp. cache. struct CacheEncoder<'a, 'tcx, E: OpaqueEncoder> { tcx: TyCtxt<'tcx>, encoder: &'a mut E, type_shorthands: FxHashMap, usize>, predicate_shorthands: FxHashMap, usize>, interpret_allocs: FxIndexSet, source_map: CachingSourceMapView<'tcx>, file_to_file_index: FxHashMap<*const SourceFile, SourceFileIndex>, hygiene_context: &'a HygieneEncodeContext, latest_foreign_def_path_hashes: FxHashMap, } impl<'a, 'tcx, E> CacheEncoder<'a, 'tcx, E> where E: 'a + OpaqueEncoder, { fn source_file_index(&mut self, source_file: Lrc) -> SourceFileIndex { self.file_to_file_index[&(&*source_file as *const SourceFile)] } /// Encode something with additional information that allows to do some /// sanity checks when decoding the data again. This method will first /// encode the specified tag, then the given value, then the number of /// bytes taken up by tag and value. On decoding, we can then verify that /// we get the expected tag and read the expected number of bytes. fn encode_tagged, V: Encodable>( &mut self, tag: T, value: &V, ) -> Result<(), E::Error> { let start_pos = self.position(); tag.encode(self)?; value.encode(self)?; let end_pos = self.position(); ((end_pos - start_pos) as u64).encode(self) } } impl<'a, 'tcx> FingerprintEncoder for CacheEncoder<'a, 'tcx, rustc_serialize::opaque::Encoder> { fn encode_fingerprint(&mut self, f: &Fingerprint) -> opaque::EncodeResult { f.encode_opaque(self.encoder) } } impl<'a, 'tcx, E> Encodable> for SyntaxContext where E: 'a + OpaqueEncoder, { fn encode(&self, s: &mut CacheEncoder<'a, 'tcx, E>) -> Result<(), E::Error> { rustc_span::hygiene::raw_encode_syntax_context(*self, s.hygiene_context, s) } } impl<'a, 'tcx, E> Encodable> for ExpnId where E: 'a + OpaqueEncoder, { fn encode(&self, s: &mut CacheEncoder<'a, 'tcx, E>) -> Result<(), E::Error> { rustc_span::hygiene::raw_encode_expn_id( *self, s.hygiene_context, ExpnDataEncodeMode::IncrComp, s, ) } } impl<'a, 'tcx, E> Encodable> for Span where E: 'a + OpaqueEncoder, { fn encode(&self, s: &mut CacheEncoder<'a, 'tcx, E>) -> Result<(), E::Error> { if *self == DUMMY_SP { return TAG_INVALID_SPAN.encode(s); } let span_data = self.data(); let (file_lo, line_lo, col_lo) = match s.source_map.byte_pos_to_line_and_col(span_data.lo) { Some(pos) => pos, None => return TAG_INVALID_SPAN.encode(s), }; if !file_lo.contains(span_data.hi) { return TAG_INVALID_SPAN.encode(s); } let len = span_data.hi - span_data.lo; let source_file_index = s.source_file_index(file_lo); TAG_VALID_SPAN.encode(s)?; source_file_index.encode(s)?; line_lo.encode(s)?; col_lo.encode(s)?; len.encode(s)?; span_data.ctxt.encode(s) } } impl<'a, 'tcx, E> TyEncoder<'tcx> for CacheEncoder<'a, 'tcx, E> where E: 'a + OpaqueEncoder, { const CLEAR_CROSS_CRATE: bool = false; fn position(&self) -> usize { self.encoder.encoder_position() } fn type_shorthands(&mut self) -> &mut FxHashMap, usize> { &mut self.type_shorthands } fn predicate_shorthands(&mut self) -> &mut FxHashMap, usize> { &mut self.predicate_shorthands } fn encode_alloc_id(&mut self, alloc_id: &interpret::AllocId) -> Result<(), Self::Error> { let (index, _) = self.interpret_allocs.insert_full(*alloc_id); index.encode(self) } } impl<'a, 'tcx, E> Encodable> for DefId where E: 'a + OpaqueEncoder, { fn encode(&self, s: &mut CacheEncoder<'a, 'tcx, E>) -> Result<(), E::Error> { let def_path_hash = s.tcx.def_path_hash(*self); // Store additional information when we encode a foreign `DefId`, // so that we can map its `DefPathHash` back to a `DefId` in the next // compilation session. if !self.is_local() { s.latest_foreign_def_path_hashes.insert( def_path_hash, RawDefId { krate: self.krate.as_u32(), index: self.index.as_u32() }, ); } def_path_hash.encode(s) } } impl<'a, 'tcx, E> Encodable> for DefIndex where E: 'a + OpaqueEncoder, { fn encode(&self, _: &mut CacheEncoder<'a, 'tcx, E>) -> Result<(), E::Error> { bug!("encoding `DefIndex` without context"); } } macro_rules! encoder_methods { ($($name:ident($ty:ty);)*) => { #[inline] $(fn $name(&mut self, value: $ty) -> Result<(), Self::Error> { self.encoder.$name(value) })* } } impl<'a, 'tcx, E> Encoder for CacheEncoder<'a, 'tcx, E> where E: 'a + OpaqueEncoder, { type Error = E::Error; #[inline] fn emit_unit(&mut self) -> Result<(), Self::Error> { Ok(()) } encoder_methods! { emit_usize(usize); emit_u128(u128); emit_u64(u64); emit_u32(u32); emit_u16(u16); emit_u8(u8); emit_isize(isize); emit_i128(i128); emit_i64(i64); emit_i32(i32); emit_i16(i16); emit_i8(i8); emit_bool(bool); emit_f64(f64); emit_f32(f32); emit_char(char); emit_str(&str); } } // An integer that will always encode to 8 bytes. struct IntEncodedWithFixedSize(u64); impl IntEncodedWithFixedSize { pub const ENCODED_SIZE: usize = 8; } impl Encodable for IntEncodedWithFixedSize { fn encode(&self, e: &mut opaque::Encoder) -> Result<(), !> { let start_pos = e.position(); for i in 0..IntEncodedWithFixedSize::ENCODED_SIZE { ((self.0 >> (i * 8)) as u8).encode(e)?; } let end_pos = e.position(); assert_eq!((end_pos - start_pos), IntEncodedWithFixedSize::ENCODED_SIZE); Ok(()) } } impl<'a> Decodable> for IntEncodedWithFixedSize { fn decode(decoder: &mut opaque::Decoder<'a>) -> Result { let mut value: u64 = 0; let start_pos = decoder.position(); for i in 0..IntEncodedWithFixedSize::ENCODED_SIZE { let byte: u8 = Decodable::decode(decoder)?; value |= (byte as u64) << (i * 8); } let end_pos = decoder.position(); assert_eq!((end_pos - start_pos), IntEncodedWithFixedSize::ENCODED_SIZE); Ok(IntEncodedWithFixedSize(value)) } } fn encode_query_results<'a, 'tcx, Q, E>( tcx: TyCtxt<'tcx>, encoder: &mut CacheEncoder<'a, 'tcx, E>, query_result_index: &mut EncodedQueryResultIndex, ) -> Result<(), E::Error> where Q: super::QueryDescription> + super::QueryAccessors>, Q::Value: Encodable>, E: 'a + OpaqueEncoder, { let _timer = tcx .sess .prof .extra_verbose_generic_activity("encode_query_results_for", std::any::type_name::()); let state = Q::query_state(tcx); assert!(state.all_inactive()); state.iter_results(|results| { for (key, value, dep_node) in results { if Q::cache_on_disk(tcx, &key, Some(value)) { let dep_node = SerializedDepNodeIndex::new(dep_node.index()); // Record position of the cache entry. query_result_index .push((dep_node, AbsoluteBytePos::new(encoder.encoder.opaque().position()))); // Encode the type check tables with the `SerializedDepNodeIndex` // as tag. encoder.encode_tagged(dep_node, value)?; } } Ok(()) }) }