//! A private parser implementation of IPv4, IPv6, and socket addresses. //! //! This module is "publicly exported" through the `FromStr` implementations //! below. use crate::error::Error; use crate::fmt; use crate::net::{IpAddr, Ipv4Addr, Ipv6Addr, SocketAddr, SocketAddrV4, SocketAddrV6}; use crate::str::FromStr; struct Parser<'a> { // parsing as ASCII, so can use byte array state: &'a [u8], } impl<'a> Parser<'a> { fn new(input: &'a str) -> Parser<'a> { Parser { state: input.as_bytes() } } fn is_eof(&self) -> bool { self.state.is_empty() } /// Run a parser, and restore the pre-parse state if it fails fn read_atomically(&mut self, inner: F) -> Option where F: FnOnce(&mut Parser<'_>) -> Option, { let state = self.state; let result = inner(self); if result.is_none() { self.state = state; } result } /// Run a parser, but fail if the entire input wasn't consumed. /// Doesn't run atomically. fn read_till_eof(&mut self, inner: F) -> Option where F: FnOnce(&mut Parser<'_>) -> Option, { inner(self).filter(|_| self.is_eof()) } /// Same as read_till_eof, but returns a Result on failure fn parse_with(&mut self, inner: F) -> Result where F: FnOnce(&mut Parser<'_>) -> Option, { self.read_till_eof(inner).ok_or(AddrParseError(())) } /// Read the next character from the input fn read_char(&mut self) -> Option { self.state.split_first().map(|(&b, tail)| { self.state = tail; b as char }) } /// Read the next character from the input if it matches the target fn read_given_char(&mut self, target: char) -> Option { self.read_atomically(|p| p.read_char().filter(|&c| c == target)) } /// Helper for reading separators in an indexed loop. Reads the separator /// character iff index > 0, then runs the parser. When used in a loop, /// the separator character will only be read on index > 0 (see /// read_ipv4_addr for an example) fn read_separator(&mut self, sep: char, index: usize, inner: F) -> Option where F: FnOnce(&mut Parser<'_>) -> Option, { self.read_atomically(move |p| { if index > 0 { let _ = p.read_given_char(sep)?; } inner(p) }) } // Read a single digit in the given radix. For instance, 0-9 in radix 10; // 0-9A-F in radix 16. fn read_digit(&mut self, radix: u32) -> Option { self.read_atomically(move |p| p.read_char()?.to_digit(radix)) } // Read a number off the front of the input in the given radix, stopping // at the first non-digit character or eof. Fails if the number has more // digits than max_digits, or the value is >= upto, or if there is no number. fn read_number(&mut self, radix: u32, max_digits: u32, upto: u32) -> Option { self.read_atomically(move |p| { let mut result = 0; let mut digit_count = 0; while let Some(digit) = p.read_digit(radix) { result = (result * radix) + digit; digit_count += 1; if digit_count > max_digits || result >= upto { return None; } } if digit_count == 0 { None } else { Some(result) } }) } /// Read an IPv4 address fn read_ipv4_addr(&mut self) -> Option { self.read_atomically(|p| { let mut groups = [0; 4]; for (i, slot) in groups.iter_mut().enumerate() { *slot = p.read_separator('.', i, |p| p.read_number(10, 3, 0x100))? as u8; } Some(groups.into()) }) } /// Read an IPV6 Address fn read_ipv6_addr(&mut self) -> Option { /// Read a chunk of an ipv6 address into `groups`. Returns the number /// of groups read, along with a bool indicating if an embedded /// trailing ipv4 address was read. Specifically, read a series of /// colon-separated ipv6 groups (0x0000 - 0xFFFF), with an optional /// trailing embedded ipv4 address. fn read_groups(p: &mut Parser<'_>, groups: &mut [u16]) -> (usize, bool) { let limit = groups.len(); for (i, slot) in groups.iter_mut().enumerate() { // Try to read a trailing embedded ipv4 address. There must be // at least two groups left. if i < limit - 1 { let ipv4 = p.read_separator(':', i, |p| p.read_ipv4_addr()); if let Some(v4_addr) = ipv4 { let octets = v4_addr.octets(); groups[i + 0] = ((octets[0] as u16) << 8) | (octets[1] as u16); groups[i + 1] = ((octets[2] as u16) << 8) | (octets[3] as u16); return (i + 2, true); } } let group = p.read_separator(':', i, |p| p.read_number(16, 4, 0x10000)); match group { Some(g) => *slot = g as u16, None => return (i, false), } } (groups.len(), false) } self.read_atomically(|p| { // Read the front part of the address; either the whole thing, or up // to the first :: let mut head = [0; 8]; let (head_size, head_ipv4) = read_groups(p, &mut head); if head_size == 8 { return Some(head.into()); } // IPv4 part is not allowed before `::` if head_ipv4 { return None; } // read `::` if previous code parsed less than 8 groups // `::` indicates one or more groups of 16 bits of zeros let _ = p.read_given_char(':')?; let _ = p.read_given_char(':')?; // Read the back part of the address. The :: must contain at least one // set of zeroes, so our max length is 7. let mut tail = [0; 7]; let limit = 8 - (head_size + 1); let (tail_size, _) = read_groups(p, &mut tail[..limit]); // Concat the head and tail of the IP address head[(8 - tail_size)..8].copy_from_slice(&tail[..tail_size]); Some(head.into()) }) } /// Read an IP Address, either IPV4 or IPV6. fn read_ip_addr(&mut self) -> Option { self.read_ipv4_addr().map(IpAddr::V4).or_else(move || self.read_ipv6_addr().map(IpAddr::V6)) } /// Read a : followed by a port in base 10 fn read_port(&mut self) -> Option { self.read_atomically(|p| { let _ = p.read_given_char(':')?; let port = p.read_number(10, 5, 0x10000)?; Some(port as u16) }) } /// Read an IPV4 address with a port fn read_socket_addr_v4(&mut self) -> Option { self.read_atomically(|p| { let ip = p.read_ipv4_addr()?; let port = p.read_port()?; Some(SocketAddrV4::new(ip, port)) }) } /// Read an IPV6 address with a port fn read_socket_addr_v6(&mut self) -> Option { self.read_atomically(|p| { let _ = p.read_given_char('[')?; let ip = p.read_ipv6_addr()?; let _ = p.read_given_char(']')?; let port = p.read_port()?; Some(SocketAddrV6::new(ip, port, 0, 0)) }) } /// Read an IP address with a port fn read_socket_addr(&mut self) -> Option { self.read_socket_addr_v4() .map(SocketAddr::V4) .or_else(|| self.read_socket_addr_v6().map(SocketAddr::V6)) } } #[stable(feature = "ip_addr", since = "1.7.0")] impl FromStr for IpAddr { type Err = AddrParseError; fn from_str(s: &str) -> Result { Parser::new(s).parse_with(|p| p.read_ip_addr()) } } #[stable(feature = "rust1", since = "1.0.0")] impl FromStr for Ipv4Addr { type Err = AddrParseError; fn from_str(s: &str) -> Result { Parser::new(s).parse_with(|p| p.read_ipv4_addr()) } } #[stable(feature = "rust1", since = "1.0.0")] impl FromStr for Ipv6Addr { type Err = AddrParseError; fn from_str(s: &str) -> Result { Parser::new(s).parse_with(|p| p.read_ipv6_addr()) } } #[stable(feature = "socket_addr_from_str", since = "1.5.0")] impl FromStr for SocketAddrV4 { type Err = AddrParseError; fn from_str(s: &str) -> Result { Parser::new(s).parse_with(|p| p.read_socket_addr_v4()) } } #[stable(feature = "socket_addr_from_str", since = "1.5.0")] impl FromStr for SocketAddrV6 { type Err = AddrParseError; fn from_str(s: &str) -> Result { Parser::new(s).parse_with(|p| p.read_socket_addr_v6()) } } #[stable(feature = "rust1", since = "1.0.0")] impl FromStr for SocketAddr { type Err = AddrParseError; fn from_str(s: &str) -> Result { Parser::new(s).parse_with(|p| p.read_socket_addr()) } } /// An error which can be returned when parsing an IP address or a socket address. /// /// This error is used as the error type for the [`FromStr`] implementation for /// [`IpAddr`], [`Ipv4Addr`], [`Ipv6Addr`], [`SocketAddr`], [`SocketAddrV4`], and /// [`SocketAddrV6`]. /// /// # Potential causes /// /// `AddrParseError` may be thrown because the provided string does not parse as the given type, /// often because it includes information only handled by a different address type. /// /// ```should_panic /// use std::net::IpAddr; /// let _foo: IpAddr = "127.0.0.1:8080".parse().expect("Cannot handle the socket port"); /// ``` /// /// [`IpAddr`] doesn't handle the port. Use [`SocketAddr`] instead. /// /// ``` /// use std::net::SocketAddr; /// /// // No problem, the `panic!` message has disappeared. /// let _foo: SocketAddr = "127.0.0.1:8080".parse().expect("unreachable panic"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[derive(Debug, Clone, PartialEq, Eq)] pub struct AddrParseError(()); #[stable(feature = "addr_parse_error_error", since = "1.4.0")] impl fmt::Display for AddrParseError { #[allow(deprecated, deprecated_in_future)] fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt.write_str(self.description()) } } #[stable(feature = "addr_parse_error_error", since = "1.4.0")] impl Error for AddrParseError { #[allow(deprecated)] fn description(&self) -> &str { "invalid IP address syntax" } } #[cfg(test)] mod tests { // FIXME: These tests are all excellent candidates for AFL fuzz testing use crate::net::{IpAddr, Ipv4Addr, Ipv6Addr, SocketAddr, SocketAddrV4, SocketAddrV6}; use crate::str::FromStr; const PORT: u16 = 8080; const IPV4: Ipv4Addr = Ipv4Addr::new(192, 168, 0, 1); const IPV4_STR: &str = "192.168.0.1"; const IPV4_STR_PORT: &str = "192.168.0.1:8080"; const IPV6: Ipv6Addr = Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0xc0a8, 0x1); const IPV6_STR_FULL: &str = "2001:db8:0:0:0:0:c0a8:1"; const IPV6_STR_COMPRESS: &str = "2001:db8::c0a8:1"; const IPV6_STR_V4: &str = "2001:db8::192.168.0.1"; const IPV6_STR_PORT: &str = "[2001:db8::c0a8:1]:8080"; #[test] fn parse_ipv4() { let result: Ipv4Addr = IPV4_STR.parse().unwrap(); assert_eq!(result, IPV4); assert!(Ipv4Addr::from_str(IPV4_STR_PORT).is_err()); assert!(Ipv4Addr::from_str(IPV6_STR_FULL).is_err()); assert!(Ipv4Addr::from_str(IPV6_STR_COMPRESS).is_err()); assert!(Ipv4Addr::from_str(IPV6_STR_V4).is_err()); assert!(Ipv4Addr::from_str(IPV6_STR_PORT).is_err()); } #[test] fn parse_ipv6() { let result: Ipv6Addr = IPV6_STR_FULL.parse().unwrap(); assert_eq!(result, IPV6); let result: Ipv6Addr = IPV6_STR_COMPRESS.parse().unwrap(); assert_eq!(result, IPV6); let result: Ipv6Addr = IPV6_STR_V4.parse().unwrap(); assert_eq!(result, IPV6); assert!(Ipv6Addr::from_str(IPV4_STR).is_err()); assert!(Ipv6Addr::from_str(IPV4_STR_PORT).is_err()); assert!(Ipv6Addr::from_str(IPV6_STR_PORT).is_err()); } #[test] fn parse_ip() { let result: IpAddr = IPV4_STR.parse().unwrap(); assert_eq!(result, IpAddr::from(IPV4)); let result: IpAddr = IPV6_STR_FULL.parse().unwrap(); assert_eq!(result, IpAddr::from(IPV6)); let result: IpAddr = IPV6_STR_COMPRESS.parse().unwrap(); assert_eq!(result, IpAddr::from(IPV6)); let result: IpAddr = IPV6_STR_V4.parse().unwrap(); assert_eq!(result, IpAddr::from(IPV6)); assert!(IpAddr::from_str(IPV4_STR_PORT).is_err()); assert!(IpAddr::from_str(IPV6_STR_PORT).is_err()); } #[test] fn parse_socket_v4() { let result: SocketAddrV4 = IPV4_STR_PORT.parse().unwrap(); assert_eq!(result, SocketAddrV4::new(IPV4, PORT)); assert!(SocketAddrV4::from_str(IPV4_STR).is_err()); assert!(SocketAddrV4::from_str(IPV6_STR_FULL).is_err()); assert!(SocketAddrV4::from_str(IPV6_STR_COMPRESS).is_err()); assert!(SocketAddrV4::from_str(IPV6_STR_V4).is_err()); assert!(SocketAddrV4::from_str(IPV6_STR_PORT).is_err()); } #[test] fn parse_socket_v6() { let result: SocketAddrV6 = IPV6_STR_PORT.parse().unwrap(); assert_eq!(result, SocketAddrV6::new(IPV6, PORT, 0, 0)); assert!(SocketAddrV6::from_str(IPV4_STR).is_err()); assert!(SocketAddrV6::from_str(IPV4_STR_PORT).is_err()); assert!(SocketAddrV6::from_str(IPV6_STR_FULL).is_err()); assert!(SocketAddrV6::from_str(IPV6_STR_COMPRESS).is_err()); assert!(SocketAddrV6::from_str(IPV6_STR_V4).is_err()); } #[test] fn parse_socket() { let result: SocketAddr = IPV4_STR_PORT.parse().unwrap(); assert_eq!(result, SocketAddr::from((IPV4, PORT))); let result: SocketAddr = IPV6_STR_PORT.parse().unwrap(); assert_eq!(result, SocketAddr::from((IPV6, PORT))); assert!(SocketAddr::from_str(IPV4_STR).is_err()); assert!(SocketAddr::from_str(IPV6_STR_FULL).is_err()); assert!(SocketAddr::from_str(IPV6_STR_COMPRESS).is_err()); assert!(SocketAddr::from_str(IPV6_STR_V4).is_err()); } #[test] fn ipv6_corner_cases() { let result: Ipv6Addr = "1::".parse().unwrap(); assert_eq!(result, Ipv6Addr::new(1, 0, 0, 0, 0, 0, 0, 0)); let result: Ipv6Addr = "1:1::".parse().unwrap(); assert_eq!(result, Ipv6Addr::new(1, 1, 0, 0, 0, 0, 0, 0)); let result: Ipv6Addr = "::1".parse().unwrap(); assert_eq!(result, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1)); let result: Ipv6Addr = "::1:1".parse().unwrap(); assert_eq!(result, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 1, 1)); let result: Ipv6Addr = "::".parse().unwrap(); assert_eq!(result, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)); let result: Ipv6Addr = "::192.168.0.1".parse().unwrap(); assert_eq!(result, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0xc0a8, 0x1)); let result: Ipv6Addr = "::1:192.168.0.1".parse().unwrap(); assert_eq!(result, Ipv6Addr::new(0, 0, 0, 0, 0, 1, 0xc0a8, 0x1)); let result: Ipv6Addr = "1:1:1:1:1:1:192.168.0.1".parse().unwrap(); assert_eq!(result, Ipv6Addr::new(1, 1, 1, 1, 1, 1, 0xc0a8, 0x1)); } // Things that might not seem like failures but are #[test] fn ipv6_corner_failures() { // No IP address before the :: assert!(Ipv6Addr::from_str("1:192.168.0.1::").is_err()); // :: must have at least 1 set of zeroes assert!(Ipv6Addr::from_str("1:1:1:1::1:1:1:1").is_err()); // Need brackets for a port assert!(SocketAddrV6::from_str("1:1:1:1:1:1:1:1:8080").is_err()); } }