use rustc_attr_data_structures::InstructionSetAttr; use rustc_data_structures::fx::{FxHashMap, FxHashSet, FxIndexSet}; use rustc_data_structures::unord::{UnordMap, UnordSet}; use rustc_errors::Applicability; use rustc_hir as hir; use rustc_hir::def::DefKind; use rustc_hir::def_id::{DefId, LOCAL_CRATE, LocalDefId}; use rustc_middle::middle::codegen_fn_attrs::TargetFeature; use rustc_middle::query::Providers; use rustc_middle::ty::TyCtxt; use rustc_session::Session; use rustc_session::lint::builtin::AARCH64_SOFTFLOAT_NEON; use rustc_session::parse::feature_err; use rustc_span::{Span, Symbol, sym}; use rustc_target::target_features::{ self, RUSTC_SPECIAL_FEATURES, RUSTC_SPECIFIC_FEATURES, Stability, }; use smallvec::SmallVec; use crate::errors; /// Compute the enabled target features from the `#[target_feature]` function attribute. /// Enabled target features are added to `target_features`. pub(crate) fn from_target_feature_attr( tcx: TyCtxt<'_>, did: LocalDefId, attr: &hir::Attribute, rust_target_features: &UnordMap, target_features: &mut Vec, ) { let Some(list) = attr.meta_item_list() else { return }; let bad_item = |span| { let msg = "malformed `target_feature` attribute input"; let code = "enable = \"..\""; tcx.dcx() .struct_span_err(span, msg) .with_span_suggestion(span, "must be of the form", code, Applicability::HasPlaceholders) .emit(); }; let rust_features = tcx.features(); let abi_feature_constraints = tcx.sess.target.abi_required_features(); for item in list { // Only `enable = ...` is accepted in the meta-item list. if !item.has_name(sym::enable) { bad_item(item.span()); continue; } // Must be of the form `enable = "..."` (a string). let Some(value) = item.value_str() else { bad_item(item.span()); continue; }; // We allow comma separation to enable multiple features. for feature in value.as_str().split(',') { let Some(stability) = rust_target_features.get(feature) else { let msg = format!("the feature named `{feature}` is not valid for this target"); let mut err = tcx.dcx().struct_span_err(item.span(), msg); err.span_label(item.span(), format!("`{feature}` is not valid for this target")); if let Some(stripped) = feature.strip_prefix('+') { let valid = rust_target_features.contains_key(stripped); if valid { err.help("consider removing the leading `+` in the feature name"); } } err.emit(); continue; }; // Only allow target features whose feature gates have been enabled // and which are permitted to be toggled. if let Err(reason) = stability.toggle_allowed() { tcx.dcx().emit_err(errors::ForbiddenTargetFeatureAttr { span: item.span(), feature, reason, }); } else if let Some(nightly_feature) = stability.requires_nightly() && !rust_features.enabled(nightly_feature) { feature_err( &tcx.sess, nightly_feature, item.span(), format!("the target feature `{feature}` is currently unstable"), ) .emit(); } else { // Add this and the implied features. let feature_sym = Symbol::intern(feature); for &name in tcx.implied_target_features(feature_sym) { // But ensure the ABI does not forbid enabling this. // Here we do assume that the backend doesn't add even more implied features // we don't know about, at least no features that would have ABI effects! // We skip this logic in rustdoc, where we want to allow all target features of // all targets, so we can't check their ABI compatibility and anyway we are not // generating code so "it's fine". if !tcx.sess.opts.actually_rustdoc { if abi_feature_constraints.incompatible.contains(&name.as_str()) { // For "neon" specifically, we emit an FCW instead of a hard error. // See . if tcx.sess.target.arch == "aarch64" && name.as_str() == "neon" { tcx.emit_node_span_lint( AARCH64_SOFTFLOAT_NEON, tcx.local_def_id_to_hir_id(did), item.span(), errors::Aarch64SoftfloatNeon, ); } else { tcx.dcx().emit_err(errors::ForbiddenTargetFeatureAttr { span: item.span(), feature: name.as_str(), reason: "this feature is incompatible with the target ABI", }); } } } target_features.push(TargetFeature { name, implied: name != feature_sym }) } } } } } /// Computes the set of target features used in a function for the purposes of /// inline assembly. fn asm_target_features(tcx: TyCtxt<'_>, did: DefId) -> &FxIndexSet { let mut target_features = tcx.sess.unstable_target_features.clone(); if tcx.def_kind(did).has_codegen_attrs() { let attrs = tcx.codegen_fn_attrs(did); target_features.extend(attrs.target_features.iter().map(|feature| feature.name)); match attrs.instruction_set { None => {} Some(InstructionSetAttr::ArmA32) => { // FIXME(#120456) - is `swap_remove` correct? target_features.swap_remove(&sym::thumb_mode); } Some(InstructionSetAttr::ArmT32) => { target_features.insert(sym::thumb_mode); } } } tcx.arena.alloc(target_features) } /// Checks the function annotated with `#[target_feature]` is not a safe /// trait method implementation, reporting an error if it is. pub(crate) fn check_target_feature_trait_unsafe(tcx: TyCtxt<'_>, id: LocalDefId, attr_span: Span) { if let DefKind::AssocFn = tcx.def_kind(id) { let parent_id = tcx.local_parent(id); if let DefKind::Trait | DefKind::Impl { of_trait: true } = tcx.def_kind(parent_id) { tcx.dcx().emit_err(errors::TargetFeatureSafeTrait { span: attr_span, def: tcx.def_span(id), }); } } } /// Utility function for a codegen backend to compute `cfg(target_feature)`, or more specifically, /// to populate `sess.unstable_target_features` and `sess.target_features` (these are the first and /// 2nd component of the return value, respectively). /// /// `target_feature_flag` is the value of `-Ctarget-feature` (giving the caller a chance to override it). /// `target_base_has_feature` should check whether the given feature (a Rust feature name!) is enabled /// in the "base" target machine, i.e., without applying `-Ctarget-feature`. /// /// We do not have to worry about RUSTC_SPECIFIC_FEATURES here, those are handled elsewhere. pub fn cfg_target_feature( sess: &Session, target_feature_flag: &str, mut is_feature_enabled: impl FnMut(&str) -> bool, ) -> (Vec, Vec) { // Compute which of the known target features are enabled in the 'base' target machine. We only // consider "supported" features; "forbidden" features are not reflected in `cfg` as of now. let mut features: FxHashSet = sess .target .rust_target_features() .iter() .filter(|(feature, _, _)| { // Skip checking special features, those are not known to the backend. if RUSTC_SPECIAL_FEATURES.contains(feature) { return true; } is_feature_enabled(feature) }) .map(|(feature, _, _)| Symbol::intern(feature)) .collect(); // Add enabled and remove disabled features. for (enabled, feature) in target_feature_flag.split(',').filter_map(|s| match s.chars().next() { Some('+') => Some((true, Symbol::intern(&s[1..]))), Some('-') => Some((false, Symbol::intern(&s[1..]))), _ => None, }) { if enabled { // Also add all transitively implied features. // We don't care about the order in `features` since the only thing we use it for is the // `features.contains` below. #[allow(rustc::potential_query_instability)] features.extend( sess.target .implied_target_features(feature.as_str()) .iter() .map(|s| Symbol::intern(s)), ); } else { // Remove transitively reverse-implied features. // We don't care about the order in `features` since the only thing we use it for is the // `features.contains` below. #[allow(rustc::potential_query_instability)] features.retain(|f| { if sess.target.implied_target_features(f.as_str()).contains(&feature.as_str()) { // If `f` if implies `feature`, then `!feature` implies `!f`, so we have to // remove `f`. (This is the standard logical contraposition principle.) false } else { // We can keep `f`. true } }); } } // Filter enabled features based on feature gates. let f = |allow_unstable| { sess.target .rust_target_features() .iter() .filter_map(|(feature, gate, _)| { // The `allow_unstable` set is used by rustc internally to determine which target // features are truly available, so we want to return even perma-unstable // "forbidden" features. if allow_unstable || (gate.in_cfg() && (sess.is_nightly_build() || gate.requires_nightly().is_none())) { Some(Symbol::intern(feature)) } else { None } }) .filter(|feature| features.contains(&feature)) .collect() }; (f(true), f(false)) } /// Given a map from target_features to whether they are enabled or disabled, ensure only valid /// combinations are allowed. pub fn check_tied_features( sess: &Session, features: &FxHashMap<&str, bool>, ) -> Option<&'static [&'static str]> { if !features.is_empty() { for tied in sess.target.tied_target_features() { // Tied features must be set to the same value, or not set at all let mut tied_iter = tied.iter(); let enabled = features.get(tied_iter.next().unwrap()); if tied_iter.any(|f| enabled != features.get(f)) { return Some(tied); } } } None } /// Translates the `-Ctarget-feature` flag into a backend target feature list. /// /// `to_backend_features` converts a Rust feature name into a list of backend feature names; this is /// used for diagnostic purposes only. /// /// `extend_backend_features` extends the set of backend features (assumed to be in mutable state /// accessible by that closure) to enable/disable the given Rust feature name. pub fn flag_to_backend_features<'a, const N: usize>( sess: &'a Session, diagnostics: bool, to_backend_features: impl Fn(&'a str) -> SmallVec<[&'a str; N]>, mut extend_backend_features: impl FnMut(&'a str, /* enable */ bool), ) { let known_features = sess.target.rust_target_features(); // Compute implied features let mut rust_features = vec![]; for feature in sess.opts.cg.target_feature.split(',') { if let Some(feature) = feature.strip_prefix('+') { rust_features.extend( UnordSet::from(sess.target.implied_target_features(feature)) .to_sorted_stable_ord() .iter() .map(|&&s| (true, s)), ) } else if let Some(feature) = feature.strip_prefix('-') { // FIXME: Why do we not remove implied features on "-" here? // We do the equivalent above in `target_config`. // See . rust_features.push((false, feature)); } else if !feature.is_empty() { if diagnostics { sess.dcx().emit_warn(errors::UnknownCTargetFeaturePrefix { feature }); } } } // Remove features that are meant for rustc, not the backend. rust_features.retain(|(_, feature)| { // Retain if it is not a rustc feature !RUSTC_SPECIFIC_FEATURES.contains(feature) }); // Check feature validity. if diagnostics { let mut featsmap = FxHashMap::default(); for &(enable, feature) in &rust_features { let feature_state = known_features.iter().find(|&&(v, _, _)| v == feature); match feature_state { None => { // This is definitely not a valid Rust feature name. Maybe it is a backend feature name? // If so, give a better error message. let rust_feature = known_features.iter().find_map(|&(rust_feature, _, _)| { let backend_features = to_backend_features(rust_feature); if backend_features.contains(&feature) && !backend_features.contains(&rust_feature) { Some(rust_feature) } else { None } }); let unknown_feature = if let Some(rust_feature) = rust_feature { errors::UnknownCTargetFeature { feature, rust_feature: errors::PossibleFeature::Some { rust_feature }, } } else { errors::UnknownCTargetFeature { feature, rust_feature: errors::PossibleFeature::None, } }; sess.dcx().emit_warn(unknown_feature); } Some((_, stability, _)) => { if let Err(reason) = stability.toggle_allowed() { sess.dcx().emit_warn(errors::ForbiddenCTargetFeature { feature, enabled: if enable { "enabled" } else { "disabled" }, reason, }); } else if stability.requires_nightly().is_some() { // An unstable feature. Warn about using it. It makes little sense // to hard-error here since we just warn about fully unknown // features above. sess.dcx().emit_warn(errors::UnstableCTargetFeature { feature }); } } } // FIXME(nagisa): figure out how to not allocate a full hashset here. featsmap.insert(feature, enable); } if let Some(f) = check_tied_features(sess, &featsmap) { sess.dcx().emit_err(errors::TargetFeatureDisableOrEnable { features: f, span: None, missing_features: None, }); } } // Add this to the backend features. for (enable, feature) in rust_features { extend_backend_features(feature, enable); } } /// Computes the backend target features to be added to account for retpoline flags. /// Used by both LLVM and GCC since their target features are, conveniently, the same. pub fn retpoline_features_by_flags(sess: &Session, features: &mut Vec) { // -Zretpoline without -Zretpoline-external-thunk enables // retpoline-indirect-branches and retpoline-indirect-calls target features let unstable_opts = &sess.opts.unstable_opts; if unstable_opts.retpoline && !unstable_opts.retpoline_external_thunk { features.push("+retpoline-indirect-branches".into()); features.push("+retpoline-indirect-calls".into()); } // -Zretpoline-external-thunk (maybe, with -Zretpoline too) enables // retpoline-external-thunk, retpoline-indirect-branches and // retpoline-indirect-calls target features if unstable_opts.retpoline_external_thunk { features.push("+retpoline-external-thunk".into()); features.push("+retpoline-indirect-branches".into()); features.push("+retpoline-indirect-calls".into()); } } pub(crate) fn provide(providers: &mut Providers) { *providers = Providers { rust_target_features: |tcx, cnum| { assert_eq!(cnum, LOCAL_CRATE); if tcx.sess.opts.actually_rustdoc { // HACK: rustdoc would like to pretend that we have all the target features, so we // have to merge all the lists into one. To ensure an unstable target never prevents // a stable one from working, we merge the stability info of all instances of the // same target feature name, with the "most stable" taking precedence. And then we // hope that this doesn't cause issues anywhere else in the compiler... let mut result: UnordMap = Default::default(); for (name, stability) in rustc_target::target_features::all_rust_features() { use std::collections::hash_map::Entry; match result.entry(name.to_owned()) { Entry::Vacant(vacant_entry) => { vacant_entry.insert(stability); } Entry::Occupied(mut occupied_entry) => { // Merge the two stabilities, "more stable" taking precedence. match (occupied_entry.get(), stability) { (Stability::Stable, _) | ( Stability::Unstable { .. }, Stability::Unstable { .. } | Stability::Forbidden { .. }, ) | (Stability::Forbidden { .. }, Stability::Forbidden { .. }) => { // The stability in the entry is at least as good as the new one, just keep it. } _ => { // Overwrite stabilite. occupied_entry.insert(stability); } } } } } result } else { tcx.sess .target .rust_target_features() .iter() .map(|(a, b, _)| (a.to_string(), *b)) .collect() } }, implied_target_features: |tcx, feature: Symbol| { let feature = feature.as_str(); UnordSet::from(tcx.sess.target.implied_target_features(feature)) .into_sorted_stable_ord() .into_iter() .map(|s| Symbol::intern(s)) .collect() }, asm_target_features, ..*providers } }