// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 or the MIT license // , at your // option. This file may not be copied, modified, or distributed // except according to those terms. /*!************************************************************************** * Spawning & linked failure * * Several data structures are involved in task management to allow properly * propagating failure across linked/supervised tasks. * * (1) The "taskgroup_arc" is an unsafe::exclusive which contains a hashset of * all tasks that are part of the group. Some tasks are 'members', which * means if they fail, they will kill everybody else in the taskgroup. * Other tasks are 'descendants', which means they will not kill tasks * from this group, but can be killed by failing members. * * A new one of these is created each spawn_linked or spawn_supervised. * * (2) The "tcb" is a per-task control structure that tracks a task's spawn * configuration. It contains a reference to its taskgroup_arc, a * reference to its node in the ancestor list (below), a flag for * whether it's part of the 'main'/'root' taskgroup, and an optionally * configured notification port. These are stored in TLS. * * (3) The "ancestor_list" is a cons-style list of unsafe::exclusives which * tracks 'generations' of taskgroups -- a group's ancestors are groups * which (directly or transitively) spawn_supervised-ed them. Each task * is recorded in the 'descendants' of each of its ancestor groups. * * Spawning a supervised task is O(n) in the number of generations still * alive, and exiting (by success or failure) that task is also O(n). * * This diagram depicts the references between these data structures: * * linked_________________________________ * ___/ _________ \___ * / \ | group X | / \ * ( A ) - - - - - - - > | {A,B} {}|< - - -( B ) * \___/ |_________| \___/ * unlinked * | __ (nil) * | //| The following code causes this: * |__ // /\ _________ * / \ // || | group Y | fn taskA() { * ( C )- - - ||- - - > |{C} {D,E}| spawn(taskB); * \___/ / \=====> |_________| spawn_unlinked(taskC); * supervise /gen \ ... * | __ \ 00 / } * | //| \__/ fn taskB() { ... } * |__ // /\ _________ fn taskC() { * / \/ || | group Z | spawn_supervised(taskD); * ( D )- - - ||- - - > | {D} {E} | ... * \___/ / \=====> |_________| } * supervise /gen \ fn taskD() { * | __ \ 01 / spawn_supervised(taskE); * | //| \__/ ... * |__ // _________ } * / \/ | group W | fn taskE() { ... } * ( E )- - - - - - - > | {E} {} | * \___/ |_________| * * "tcb" "taskgroup_arc" * "ancestor_list" * ****************************************************************************/ #[doc(hidden)]; use prelude::*; use cast::transmute; use cast; use cell::Cell; use container::MutableMap; use comm::{Chan, GenericChan}; use hashmap::{HashSet, HashSetConsumeIterator}; use local_data; use task::local_data_priv::{local_get, local_set, OldHandle}; use task::rt::rust_task; use task::rt; use task::{Failure, PlatformThread, SchedOpts, SingleThreaded}; use task::{Success, TaskOpts, TaskResult, ThreadPerTask}; use task::{ExistingScheduler, SchedulerHandle}; use task::unkillable; use to_bytes::IterBytes; use uint; use util; use unstable::sync::Exclusive; use rt::{OldTaskContext, TaskContext, SchedulerContext, GlobalContext, context}; use rt::local::Local; use rt::task::Task; use rt::kill::KillHandle; use rt::sched::Scheduler; use iterator::IteratorUtil; #[cfg(test)] use task::default_task_opts; #[cfg(test)] use comm; #[cfg(test)] use task; // Transitionary. #[deriving(Eq)] enum TaskHandle { OldTask(*rust_task), NewTask(KillHandle), } impl Clone for TaskHandle { fn clone(&self) -> TaskHandle { match *self { OldTask(x) => OldTask(x), NewTask(ref x) => NewTask(x.clone()), } } } impl IterBytes for TaskHandle { fn iter_bytes(&self, lsb0: bool, f: &fn(buf: &[u8]) -> bool) -> bool { match *self { OldTask(ref x) => x.iter_bytes(lsb0, f), NewTask(ref x) => x.iter_bytes(lsb0, f), } } } struct TaskSet(HashSet); impl TaskSet { #[inline] fn new() -> TaskSet { TaskSet(HashSet::new()) } #[inline] fn insert(&mut self, task: TaskHandle) { let didnt_overwrite = (**self).insert(task); assert!(didnt_overwrite); } #[inline] fn remove(&mut self, task: &TaskHandle) { let was_present = (**self).remove(task); assert!(was_present); } #[inline] fn consume(self) -> HashSetConsumeIterator { (*self).consume() } } // One of these per group of linked-failure tasks. struct TaskGroupData { // All tasks which might kill this group. When this is empty, the group // can be "GC"ed (i.e., its link in the ancestor list can be removed). members: TaskSet, // All tasks unidirectionally supervised by (directly or transitively) // tasks in this group. descendants: TaskSet, } type TaskGroupArc = Exclusive>; type TaskGroupInner<'self> = &'self mut Option; // A taskgroup is 'dead' when nothing can cause it to fail; only members can. fn taskgroup_is_dead(tg: &TaskGroupData) -> bool { tg.members.is_empty() } // A list-like structure by which taskgroups keep track of all ancestor groups // which may kill them. Needed for tasks to be able to remove themselves from // ancestor groups upon exit. The list has a node for each "generation", and // ends either at the root taskgroup (which has no ancestors) or at a // taskgroup which was spawned-unlinked. Tasks from intermediate generations // have references to the middle of the list; when intermediate generations // die, their node in the list will be collected at a descendant's spawn-time. struct AncestorNode { // Since the ancestor list is recursive, we end up with references to // exclusives within other exclusives. This is dangerous business (if // circular references arise, deadlock and memory leaks are imminent). // Hence we assert that this counter monotonically decreases as we // approach the tail of the list. generation: uint, // Handle to the tasks in the group of the current generation. parent_group: TaskGroupArc, // Recursive rest of the list. ancestors: AncestorList, } struct AncestorList(Option>); // Accessors for taskgroup arcs and ancestor arcs that wrap the unsafety. #[inline] fn access_group(x: &TaskGroupArc, blk: &fn(TaskGroupInner) -> U) -> U { unsafe { x.with(blk) } } #[inline] fn access_ancestors(x: &Exclusive, blk: &fn(x: &mut AncestorNode) -> U) -> U { unsafe { x.with(blk) } } #[inline] #[cfg(test)] fn check_generation(younger: uint, older: uint) { assert!(younger > older); } #[inline] #[cfg(not(test))] fn check_generation(_younger: uint, _older: uint) { } #[inline] #[cfg(test)] fn incr_generation(ancestors: &AncestorList) -> uint { ancestors.map_default(0, |arc| access_ancestors(arc, |a| a.generation+1)) } #[inline] #[cfg(not(test))] fn incr_generation(_ancestors: &AncestorList) -> uint { 0 } // Iterates over an ancestor list. // (1) Runs forward_blk on each ancestral taskgroup in the list // (2) If forward_blk "break"s, runs optional bail_blk on all ancestral // taskgroups that forward_blk already ran on successfully (Note: bail_blk // is NOT called on the block that forward_blk broke on!). // (3) As a bonus, coalesces away all 'dead' taskgroup nodes in the list. fn each_ancestor(list: &mut AncestorList, bail_blk: &fn(TaskGroupInner), forward_blk: &fn(TaskGroupInner) -> bool) -> bool { // "Kickoff" call - there was no last generation. return !coalesce(list, bail_blk, forward_blk, uint::max_value); // Recursively iterates, and coalesces afterwards if needed. Returns // whether or not unwinding is needed (i.e., !successful iteration). fn coalesce(list: &mut AncestorList, bail_blk: &fn(TaskGroupInner), forward_blk: &fn(TaskGroupInner) -> bool, last_generation: uint) -> bool { let (coalesce_this, early_break) = iterate(list, bail_blk, forward_blk, last_generation); // What should our next ancestor end up being? if coalesce_this.is_some() { // Needed coalesce. Our next ancestor becomes our old // ancestor's next ancestor. ("next = old_next->next;") *list = coalesce_this.unwrap(); } return early_break; } // Returns an optional list-to-coalesce and whether unwinding is needed. // Option: // Whether or not the ancestor taskgroup being iterated over is // dead or not; i.e., it has no more tasks left in it, whether or not // it has descendants. If dead, the caller shall coalesce it away. // bool: // True if the supplied block did 'break', here or in any recursive // calls. If so, must call the unwinder on all previous nodes. fn iterate(ancestors: &mut AncestorList, bail_blk: &fn(TaskGroupInner), forward_blk: &fn(TaskGroupInner) -> bool, last_generation: uint) -> (Option, bool) { // At each step of iteration, three booleans are at play which govern // how the iteration should behave. // 'nobe_is_dead' - Should the list should be coalesced at this point? // Largely unrelated to the other two. // 'need_unwind' - Should we run the bail_blk at this point? (i.e., // do_continue was false not here, but down the line) // 'do_continue' - Did the forward_blk succeed at this point? (i.e., // should we recurse? or should our callers unwind?) let forward_blk = Cell::new(forward_blk); // The map defaults to None, because if ancestors is None, we're at // the end of the list, which doesn't make sense to coalesce. do ancestors.map_default((None,false)) |ancestor_arc| { // NB: Takes a lock! (this ancestor node) do access_ancestors(ancestor_arc) |nobe| { // Argh, but we couldn't give it to coalesce() otherwise. let forward_blk = forward_blk.take(); // Check monotonicity check_generation(last_generation, nobe.generation); /*##########################################################* * Step 1: Look at this ancestor group (call iterator block). *##########################################################*/ let mut nobe_is_dead = false; let do_continue = // NB: Takes a lock! (this ancestor node's parent group) do access_group(&nobe.parent_group) |tg_opt| { // Decide whether this group is dead. Note that the // group being *dead* is disjoint from it *failing*. nobe_is_dead = match *tg_opt { Some(ref tg) => taskgroup_is_dead(tg), None => nobe_is_dead }; // Call iterator block. (If the group is dead, it's // safe to skip it. This will leave our TaskHandle // hanging around in the group even after it's freed, // but that's ok because, by virtue of the group being // dead, nobody will ever kill-all (foreach) over it.) if nobe_is_dead { true } else { forward_blk(tg_opt) } }; /*##########################################################* * Step 2: Recurse on the rest of the list; maybe coalescing. *##########################################################*/ // 'need_unwind' is only set if blk returned true above, *and* // the recursive call early-broke. let mut need_unwind = false; if do_continue { // NB: Takes many locks! (ancestor nodes & parent groups) need_unwind = coalesce(&mut nobe.ancestors, |tg| bail_blk(tg), forward_blk, nobe.generation); } /*##########################################################* * Step 3: Maybe unwind; compute return info for our caller. *##########################################################*/ if need_unwind && !nobe_is_dead { do access_group(&nobe.parent_group) |tg_opt| { bail_blk(tg_opt) } } // Decide whether our caller should unwind. need_unwind = need_unwind || !do_continue; // Tell caller whether or not to coalesce and/or unwind if nobe_is_dead { // Swap the list out here; the caller replaces us with it. let rest = util::replace(&mut nobe.ancestors, AncestorList(None)); (Some(rest), need_unwind) } else { (None, need_unwind) } } } } } // One of these per task. pub struct Taskgroup { // List of tasks with whose fates this one's is intertwined. tasks: TaskGroupArc, // 'none' means the group has failed. // Lists of tasks who will kill us if they fail, but whom we won't kill. ancestors: AncestorList, is_main: bool, notifier: Option, } impl Drop for Taskgroup { // Runs on task exit. fn drop(&self) { unsafe { // FIXME(#4330) Need self by value to get mutability. let this: &mut Taskgroup = transmute(self); // If we are failing, the whole taskgroup needs to die. do RuntimeGlue::with_task_handle_and_failing |me, failing| { if failing { for this.notifier.mut_iter().advance |x| { x.failed = true; } // Take everybody down with us. do access_group(&self.tasks) |tg| { kill_taskgroup(tg, &me, self.is_main); } } else { // Remove ourselves from the group(s). do access_group(&self.tasks) |tg| { leave_taskgroup(tg, &me, true); } } // It doesn't matter whether this happens before or after dealing // with our own taskgroup, so long as both happen before we die. // We remove ourself from every ancestor we can, so no cleanup; no // break. for each_ancestor(&mut this.ancestors, |_| {}) |ancestor_group| { leave_taskgroup(ancestor_group, &me, false); }; } } } } pub fn Taskgroup(tasks: TaskGroupArc, ancestors: AncestorList, is_main: bool, mut notifier: Option) -> Taskgroup { for notifier.mut_iter().advance |x| { x.failed = false; } Taskgroup { tasks: tasks, ancestors: ancestors, is_main: is_main, notifier: notifier } } struct AutoNotify { notify_chan: Chan, failed: bool, } impl Drop for AutoNotify { fn drop(&self) { let result = if self.failed { Failure } else { Success }; self.notify_chan.send(result); } } fn AutoNotify(chan: Chan) -> AutoNotify { AutoNotify { notify_chan: chan, failed: true // Un-set above when taskgroup successfully made. } } fn enlist_in_taskgroup(state: TaskGroupInner, me: TaskHandle, is_member: bool) -> bool { let me = Cell::new(me); // :( // If 'None', the group was failing. Can't enlist. do state.map_mut_default(false) |group| { (if is_member { &mut group.members } else { &mut group.descendants }).insert(me.take()); true } } // NB: Runs in destructor/post-exit context. Can't 'fail'. fn leave_taskgroup(state: TaskGroupInner, me: &TaskHandle, is_member: bool) { let me = Cell::new(me); // :( // If 'None', already failing and we've already gotten a kill signal. do state.map_mut |group| { (if is_member { &mut group.members } else { &mut group.descendants }).remove(me.take()); }; } // NB: Runs in destructor/post-exit context. Can't 'fail'. fn kill_taskgroup(state: TaskGroupInner, me: &TaskHandle, is_main: bool) { unsafe { // NB: We could do the killing iteration outside of the group arc, by // having "let mut newstate" here, swapping inside, and iterating // after. But that would let other exiting tasks fall-through and exit // while we were trying to kill them, causing potential // use-after-free. A task's presence in the arc guarantees it's alive // only while we hold the lock, so if we're failing, all concurrently // exiting tasks must wait for us. To do it differently, we'd have to // use the runtime's task refcounting, but that could leave task // structs around long after their task exited. let newstate = util::replace(state, None); // Might already be None, if Somebody is failing simultaneously. // That's ok; only one task needs to do the dirty work. (Might also // see 'None' if Somebody already failed and we got a kill signal.) if newstate.is_some() { let TaskGroupData { members: members, descendants: descendants } = newstate.unwrap(); for members.consume().advance |sibling| { // Skip self - killing ourself won't do much good. if &sibling != me { RuntimeGlue::kill_task(sibling); } } for descendants.consume().advance |child| { assert!(&child != me); RuntimeGlue::kill_task(child); } // Only one task should ever do this. if is_main { RuntimeGlue::kill_all_tasks(me); } // Do NOT restore state to Some(..)! It stays None to indicate // that the whole taskgroup is failing, to forbid new spawns. } // (note: multiple tasks may reach this point) } } // FIXME (#2912): Work around core-vs-coretest function duplication. Can't use // a proper closure because the #[test]s won't understand. Have to fake it. fn taskgroup_key() -> local_data::Key<@@mut Taskgroup> { unsafe { cast::transmute(-2) } } // Transitionary. struct RuntimeGlue; impl RuntimeGlue { unsafe fn kill_task(task: TaskHandle) { match task { OldTask(ptr) => rt::rust_task_kill_other(ptr), NewTask(handle) => { let mut handle = handle; do handle.kill().map_consume |killed_task| { let killed_task = Cell::new(killed_task); do Local::borrow:: |sched| { sched.enqueue_task(killed_task.take()); } }; } } } unsafe fn kill_all_tasks(task: &TaskHandle) { match *task { OldTask(ptr) => rt::rust_task_kill_all(ptr), NewTask(ref _handle) => rtabort!("unimplemented"), // FIXME(#7544) } } fn with_task_handle_and_failing(blk: &fn(TaskHandle, bool)) { match context() { OldTaskContext => unsafe { let me = rt::rust_get_task(); blk(OldTask(me), rt::rust_task_is_unwinding(me)) }, TaskContext => unsafe { // Can't use safe borrow, because the taskgroup destructor needs to // access the scheduler again to send kill signals to other tasks. let me = Local::unsafe_borrow::(); // FIXME(#7544): Get rid of this clone by passing by-ref. // Will probably have to wait until the old rt is gone. blk(NewTask((*me).death.kill_handle.get_ref().clone()), (*me).unwinder.unwinding) }, SchedulerContext | GlobalContext => rtabort!("task dying in bad context"), } } fn with_my_taskgroup(blk: &fn(&Taskgroup) -> U) -> U { match context() { OldTaskContext => unsafe { let me = rt::rust_get_task(); do local_get(OldHandle(me), taskgroup_key()) |g| { match g { None => { // Main task, doing first spawn ever. Lazily initialise here. let mut members = TaskSet::new(); members.insert(OldTask(me)); let tasks = Exclusive::new(Some(TaskGroupData { members: members, descendants: TaskSet::new(), })); // Main task/group has no ancestors, no notifier, etc. let group = @@mut Taskgroup(tasks, AncestorList(None), true, None); local_set(OldHandle(me), taskgroup_key(), group); blk(&**group) } Some(&group) => blk(&**group) } } }, TaskContext => unsafe { // Can't use safe borrow, because creating new hashmaps for the // tasksets requires an rng, which needs to borrow the sched. let me = Local::unsafe_borrow::(); blk(match (*me).taskgroup { None => { // Main task, doing first spawn ever. Lazily initialize. let mut members = TaskSet::new(); let my_handle = (*me).death.kill_handle.get_ref().clone(); members.insert(NewTask(my_handle)); let tasks = Exclusive::new(Some(TaskGroupData { members: members, descendants: TaskSet::new(), })); let group = Taskgroup(tasks, AncestorList(None), true, None); (*me).taskgroup = Some(group); (*me).taskgroup.get_ref() } Some(ref group) => group, }) }, SchedulerContext | GlobalContext => rtabort!("spawning in bad context"), } } } fn gen_child_taskgroup(linked: bool, supervised: bool) -> (TaskGroupArc, AncestorList, bool) { do RuntimeGlue::with_my_taskgroup |spawner_group| { let ancestors = AncestorList(spawner_group.ancestors.map(|x| x.clone())); if linked { // Child is in the same group as spawner. // Child's ancestors are spawner's ancestors. // Propagate main-ness. (spawner_group.tasks.clone(), ancestors, spawner_group.is_main) } else { // Child is in a separate group from spawner. let g = Exclusive::new(Some(TaskGroupData { members: TaskSet::new(), descendants: TaskSet::new(), })); let a = if supervised { let new_generation = incr_generation(&ancestors); assert!(new_generation < uint::max_value); // Child's ancestors start with the spawner. // Build a new node in the ancestor list. AncestorList(Some(Exclusive::new(AncestorNode { generation: new_generation, parent_group: spawner_group.tasks.clone(), ancestors: ancestors, }))) } else { // Child has no ancestors. AncestorList(None) }; (g, a, false) } } } // Set up membership in taskgroup and descendantship in all ancestor // groups. If any enlistment fails, Some task was already failing, so // don't let the child task run, and undo every successful enlistment. fn enlist_many(child: TaskHandle, child_arc: &TaskGroupArc, ancestors: &mut AncestorList) -> bool { // Join this taskgroup. let mut result = do access_group(child_arc) |child_tg| { enlist_in_taskgroup(child_tg, child.clone(), true) // member }; if result { // Unwinding function in case any ancestral enlisting fails let bail: &fn(TaskGroupInner) = |tg| { leave_taskgroup(tg, &child, false) }; // Attempt to join every ancestor group. result = do each_ancestor(ancestors, bail) |ancestor_tg| { // Enlist as a descendant, not as an actual member. // Descendants don't kill ancestor groups on failure. enlist_in_taskgroup(ancestor_tg, child.clone(), false) }; // If any ancestor group fails, need to exit this group too. if !result { do access_group(child_arc) |child_tg| { leave_taskgroup(child_tg, &child, true); // member } } } result } pub fn spawn_raw(opts: TaskOpts, f: ~fn()) { match context() { OldTaskContext => { spawn_raw_oldsched(opts, f) } TaskContext => { spawn_raw_newsched(opts, f) } SchedulerContext => { fail!("can't spawn from scheduler context") } GlobalContext => { fail!("can't spawn from global context") } } } fn spawn_raw_newsched(mut opts: TaskOpts, f: ~fn()) { let child_data = Cell::new(gen_child_taskgroup(opts.linked, opts.supervised)); let indestructible = opts.indestructible; let child_wrapper: ~fn() = || { // Child task runs this code. let child_data = Cell::new(child_data.take()); // :( let enlist_success = do Local::borrow:: |me| { let (child_tg, ancestors, is_main) = child_data.take(); let mut ancestors = ancestors; // FIXME(#7544): Optimize out the xadd in this clone, somehow. let handle = me.death.kill_handle.get_ref().clone(); // Atomically try to get into all of our taskgroups. if enlist_many(NewTask(handle), &child_tg, &mut ancestors) { // Got in. We can run the provided child body, and can also run // the taskgroup's exit-time-destructor afterward. me.taskgroup = Some(Taskgroup(child_tg, ancestors, is_main, None)); true } else { false } }; // Should be run after the local-borrowed task is returned. if enlist_success { if indestructible { unsafe { do unkillable { f() } } } else { f() } } }; let mut task = unsafe { let sched = Local::unsafe_borrow::(); rtdebug!("unsafe borrowed sched"); if opts.watched { let child_wrapper = Cell::new(child_wrapper); do Local::borrow::() |running_task| { ~running_task.new_child(&mut (*sched).stack_pool, child_wrapper.take()) } } else { // An unwatched task is a new root in the exit-code propagation tree ~Task::new_root(&mut (*sched).stack_pool, child_wrapper) } }; if opts.notify_chan.is_some() { let notify_chan = opts.notify_chan.take_unwrap(); let notify_chan = Cell::new(notify_chan); let on_exit: ~fn(bool) = |success| { notify_chan.take().send( if success { Success } else { Failure } ) }; task.death.on_exit = Some(on_exit); } rtdebug!("spawn about to take scheduler"); let sched = Local::take::(); rtdebug!("took sched in spawn"); sched.schedule_task(task); } fn spawn_raw_oldsched(mut opts: TaskOpts, f: ~fn()) { let (child_tg, ancestors, is_main) = gen_child_taskgroup(opts.linked, opts.supervised); unsafe { let child_data = Cell::new((child_tg, ancestors, f)); // Being killed with the unsafe task/closure pointers would leak them. do unkillable { let (child_tg, ancestors, f) = child_data.take(); // :( // Create child task. let new_task = match opts.sched.mode { DefaultScheduler => rt::new_task(), _ => new_task_in_sched(opts.sched) }; assert!(!new_task.is_null()); // Getting killed after here would leak the task. let child_wrapper = make_child_wrapper(new_task, child_tg, ancestors, is_main, opts.notify_chan.take(), f); let closure = cast::transmute(&child_wrapper); // Getting killed between these two calls would free the child's // closure. (Reordering them wouldn't help - then getting killed // between them would leak.) rt::start_task(new_task, closure); cast::forget(child_wrapper); } } // This function returns a closure-wrapper that we pass to the child task. // (1) It sets up the notification channel. // (2) It attempts to enlist in the child's group and all ancestor groups. // (3a) If any of those fails, it leaves all groups, and does nothing. // (3b) Otherwise it builds a task control structure and puts it in TLS, // (4) ...and runs the provided body function. fn make_child_wrapper(child: *rust_task, child_arc: TaskGroupArc, ancestors: AncestorList, is_main: bool, notify_chan: Option>, f: ~fn()) -> ~fn() { let child_data = Cell::new((notify_chan, child_arc, ancestors)); let result: ~fn() = || { let (notify_chan, child_arc, ancestors) = child_data.take(); // :( let mut ancestors = ancestors; // Child task runs this code. // Even if the below code fails to kick the child off, we must // send Something on the notify channel. let notifier = notify_chan.map_consume(|c| AutoNotify(c)); if enlist_many(OldTask(child), &child_arc, &mut ancestors) { let group = @@mut Taskgroup(child_arc, ancestors, is_main, notifier); unsafe { local_set(OldHandle(child), taskgroup_key(), group); } // Run the child's body. f(); // TLS cleanup code will exit the taskgroup. } // Run the box annihilator. // FIXME #4428: Crashy. // unsafe { cleanup::annihilate(); } }; return result; } fn new_task_in_sched(opts: SchedOpts) -> *rust_task { if opts.foreign_stack_size != None { fail!("foreign_stack_size scheduler option unimplemented"); } let num_threads = match opts.mode { DefaultScheduler | CurrentScheduler | ExistingScheduler(*) | PlatformThread => 0u, /* Won't be used */ SingleThreaded => 1u, ThreadPerTask => { fail!("ThreadPerTask scheduling mode unimplemented") } }; unsafe { let sched_id = match opts.mode { CurrentScheduler => rt::rust_get_sched_id(), ExistingScheduler(SchedulerHandle(id)) => id, PlatformThread => rt::rust_osmain_sched_id(), _ => rt::rust_new_sched(num_threads) }; rt::rust_new_task_in_sched(sched_id) } } } #[test] fn test_spawn_raw_simple() { let (po, ch) = stream(); do spawn_raw(default_task_opts()) { ch.send(()); } po.recv(); } #[test] #[ignore(cfg(windows))] fn test_spawn_raw_unsupervise() { let opts = task::TaskOpts { linked: false, watched: false, notify_chan: None, .. default_task_opts() }; do spawn_raw(opts) { fail!(); } } #[test] #[ignore(cfg(windows))] fn test_spawn_raw_notify_success() { let (notify_po, notify_ch) = comm::stream(); let opts = task::TaskOpts { notify_chan: Some(notify_ch), .. default_task_opts() }; do spawn_raw(opts) { } assert_eq!(notify_po.recv(), Success); } #[test] #[ignore(cfg(windows))] fn test_spawn_raw_notify_failure() { // New bindings for these let (notify_po, notify_ch) = comm::stream(); let opts = task::TaskOpts { linked: false, watched: false, notify_chan: Some(notify_ch), .. default_task_opts() }; do spawn_raw(opts) { fail!(); } assert_eq!(notify_po.recv(), Failure); }