//! See docs in `build/expr/mod.rs`. use rustc_index::vec::Idx; use crate::build::expr::category::{Category, RvalueFunc}; use crate::build::{BlockAnd, BlockAndExtension, Builder}; use crate::thir::*; use rustc_middle::middle::region; use rustc_middle::mir::AssertKind; use rustc_middle::mir::*; use rustc_middle::ty::{self, Ty, UpvarSubsts}; use rustc_span::Span; impl<'a, 'tcx> Builder<'a, 'tcx> { /// Returns an rvalue suitable for use until the end of the current /// scope expression. /// /// The operand returned from this function will *not be valid* after /// an ExprKind::Scope is passed, so please do *not* return it from /// functions to avoid bad miscompiles. crate fn as_local_rvalue(&mut self, block: BasicBlock, expr: M) -> BlockAnd> where M: Mirror<'tcx, Output = Expr<'tcx>>, { let local_scope = self.local_scope(); self.as_rvalue(block, local_scope, expr) } /// Compile `expr`, yielding an rvalue. fn as_rvalue( &mut self, block: BasicBlock, scope: Option, expr: M, ) -> BlockAnd> where M: Mirror<'tcx, Output = Expr<'tcx>>, { let expr = self.hir.mirror(expr); self.expr_as_rvalue(block, scope, expr) } fn expr_as_rvalue( &mut self, mut block: BasicBlock, scope: Option, expr: Expr<'tcx>, ) -> BlockAnd> { debug!("expr_as_rvalue(block={:?}, scope={:?}, expr={:?})", block, scope, expr); let this = self; let expr_span = expr.span; let source_info = this.source_info(expr_span); match expr.kind { ExprKind::ThreadLocalRef(did) => block.and(Rvalue::ThreadLocalRef(did)), ExprKind::Scope { region_scope, lint_level, value } => { let region_scope = (region_scope, source_info); this.in_scope(region_scope, lint_level, |this| this.as_rvalue(block, scope, value)) } ExprKind::Repeat { value, count } => { let value_operand = unpack!(block = this.as_operand(block, scope, value)); block.and(Rvalue::Repeat(value_operand, count)) } ExprKind::Binary { op, lhs, rhs } => { let lhs = unpack!(block = this.as_operand(block, scope, lhs)); let rhs = unpack!(block = this.as_operand(block, scope, rhs)); this.build_binary_op(block, op, expr_span, expr.ty, lhs, rhs) } ExprKind::Unary { op, arg } => { let arg = unpack!(block = this.as_operand(block, scope, arg)); // Check for -MIN on signed integers if this.hir.check_overflow() && op == UnOp::Neg && expr.ty.is_signed() { let bool_ty = this.hir.bool_ty(); let minval = this.minval_literal(expr_span, expr.ty); let is_min = this.temp(bool_ty, expr_span); this.cfg.push_assign( block, source_info, is_min, Rvalue::BinaryOp(BinOp::Eq, arg.to_copy(), minval), ); block = this.assert( block, Operand::Move(is_min), false, AssertKind::OverflowNeg(arg.to_copy()), expr_span, ); } block.and(Rvalue::UnaryOp(op, arg)) } ExprKind::Box { value } => { let value = this.hir.mirror(value); // The `Box` temporary created here is not a part of the HIR, // and therefore is not considered during generator OIBIT // determination. See the comment about `box` at `yield_in_scope`. let result = this.local_decls.push(LocalDecl::new(expr.ty, expr_span).internal()); this.cfg.push( block, Statement { source_info, kind: StatementKind::StorageLive(result) }, ); if let Some(scope) = scope { // schedule a shallow free of that memory, lest we unwind: this.schedule_drop_storage_and_value(expr_span, scope, result); } // malloc some memory of suitable type (thus far, uninitialized): let box_ = Rvalue::NullaryOp(NullOp::Box, value.ty); this.cfg.push_assign(block, source_info, Place::from(result), box_); // initialize the box contents: unpack!( block = this.into(this.hir.tcx().mk_place_deref(Place::from(result)), block, value) ); block.and(Rvalue::Use(Operand::Move(Place::from(result)))) } ExprKind::Cast { source } => { let source = unpack!(block = this.as_operand(block, scope, source)); block.and(Rvalue::Cast(CastKind::Misc, source, expr.ty)) } ExprKind::Pointer { cast, source } => { let source = unpack!(block = this.as_operand(block, scope, source)); block.and(Rvalue::Cast(CastKind::Pointer(cast), source, expr.ty)) } ExprKind::Array { fields } => { // (*) We would (maybe) be closer to codegen if we // handled this and other aggregate cases via // `into()`, not `as_rvalue` -- in that case, instead // of generating // // let tmp1 = ...1; // let tmp2 = ...2; // dest = Rvalue::Aggregate(Foo, [tmp1, tmp2]) // // we could just generate // // dest.f = ...1; // dest.g = ...2; // // The problem is that then we would need to: // // (a) have a more complex mechanism for handling // partial cleanup; // (b) distinguish the case where the type `Foo` has a // destructor, in which case creating an instance // as a whole "arms" the destructor, and you can't // write individual fields; and, // (c) handle the case where the type Foo has no // fields. We don't want `let x: ();` to compile // to the same MIR as `let x = ();`. // first process the set of fields let el_ty = expr.ty.sequence_element_type(this.hir.tcx()); let fields: Vec<_> = fields .into_iter() .map(|f| unpack!(block = this.as_operand(block, scope, f))) .collect(); block.and(Rvalue::Aggregate(box AggregateKind::Array(el_ty), fields)) } ExprKind::Tuple { fields } => { // see (*) above // first process the set of fields let fields: Vec<_> = fields .into_iter() .map(|f| unpack!(block = this.as_operand(block, scope, f))) .collect(); block.and(Rvalue::Aggregate(box AggregateKind::Tuple, fields)) } ExprKind::Closure { closure_id, substs, upvars, movability } => { // see (*) above let operands: Vec<_> = upvars .into_iter() .map(|upvar| { let upvar = this.hir.mirror(upvar); match Category::of(&upvar.kind) { // Use as_place to avoid creating a temporary when // moving a variable into a closure, so that // borrowck knows which variables to mark as being // used as mut. This is OK here because the upvar // expressions have no side effects and act on // disjoint places. // This occurs when capturing by copy/move, while // by reference captures use as_operand Some(Category::Place) => { let place = unpack!(block = this.as_place(block, upvar)); this.consume_by_copy_or_move(place) } _ => { // Turn mutable borrow captures into unique // borrow captures when capturing an immutable // variable. This is sound because the mutation // that caused the capture will cause an error. match upvar.kind { ExprKind::Borrow { borrow_kind: BorrowKind::Mut { allow_two_phase_borrow: false }, arg, } => unpack!( block = this.limit_capture_mutability( upvar.span, upvar.ty, scope, block, arg, ) ), _ => unpack!(block = this.as_operand(block, scope, upvar)), } } } }) .collect(); let result = match substs { UpvarSubsts::Generator(substs) => { // We implicitly set the discriminant to 0. See // librustc_mir/transform/deaggregator.rs for details. let movability = movability.unwrap(); box AggregateKind::Generator(closure_id, substs, movability) } UpvarSubsts::Closure(substs) => box AggregateKind::Closure(closure_id, substs), }; block.and(Rvalue::Aggregate(result, operands)) } ExprKind::Assign { .. } | ExprKind::AssignOp { .. } => { block = unpack!(this.stmt_expr(block, expr, None)); block.and(Rvalue::Use(Operand::Constant(box Constant { span: expr_span, user_ty: None, literal: ty::Const::zero_sized(this.hir.tcx(), this.hir.tcx().types.unit), }))) } ExprKind::Yield { .. } | ExprKind::Literal { .. } | ExprKind::ConstBlock { .. } | ExprKind::StaticRef { .. } | ExprKind::Block { .. } | ExprKind::Match { .. } | ExprKind::NeverToAny { .. } | ExprKind::Use { .. } | ExprKind::Borrow { .. } | ExprKind::AddressOf { .. } | ExprKind::Adt { .. } | ExprKind::Loop { .. } | ExprKind::LogicalOp { .. } | ExprKind::Call { .. } | ExprKind::Field { .. } | ExprKind::Deref { .. } | ExprKind::Index { .. } | ExprKind::VarRef { .. } | ExprKind::SelfRef | ExprKind::Break { .. } | ExprKind::Continue { .. } | ExprKind::Return { .. } | ExprKind::InlineAsm { .. } | ExprKind::LlvmInlineAsm { .. } | ExprKind::PlaceTypeAscription { .. } | ExprKind::ValueTypeAscription { .. } => { // these do not have corresponding `Rvalue` variants, // so make an operand and then return that debug_assert!(!matches!(Category::of(&expr.kind), Some(Category::Rvalue(RvalueFunc::AsRvalue)))); let operand = unpack!(block = this.as_operand(block, scope, expr)); block.and(Rvalue::Use(operand)) } } } crate fn build_binary_op( &mut self, mut block: BasicBlock, op: BinOp, span: Span, ty: Ty<'tcx>, lhs: Operand<'tcx>, rhs: Operand<'tcx>, ) -> BlockAnd> { let source_info = self.source_info(span); let bool_ty = self.hir.bool_ty(); if self.hir.check_overflow() && op.is_checkable() && ty.is_integral() { let result_tup = self.hir.tcx().intern_tup(&[ty, bool_ty]); let result_value = self.temp(result_tup, span); self.cfg.push_assign( block, source_info, result_value, Rvalue::CheckedBinaryOp(op, lhs.to_copy(), rhs.to_copy()), ); let val_fld = Field::new(0); let of_fld = Field::new(1); let tcx = self.hir.tcx(); let val = tcx.mk_place_field(result_value, val_fld, ty); let of = tcx.mk_place_field(result_value, of_fld, bool_ty); let err = AssertKind::Overflow(op, lhs, rhs); block = self.assert(block, Operand::Move(of), false, err, span); block.and(Rvalue::Use(Operand::Move(val))) } else { if ty.is_integral() && (op == BinOp::Div || op == BinOp::Rem) { // Checking division and remainder is more complex, since we 1. always check // and 2. there are two possible failure cases, divide-by-zero and overflow. let zero_err = if op == BinOp::Div { AssertKind::DivisionByZero(lhs.to_copy()) } else { AssertKind::RemainderByZero(lhs.to_copy()) }; let overflow_err = AssertKind::Overflow(op, lhs.to_copy(), rhs.to_copy()); // Check for / 0 let is_zero = self.temp(bool_ty, span); let zero = self.zero_literal(span, ty); self.cfg.push_assign( block, source_info, is_zero, Rvalue::BinaryOp(BinOp::Eq, rhs.to_copy(), zero), ); block = self.assert(block, Operand::Move(is_zero), false, zero_err, span); // We only need to check for the overflow in one case: // MIN / -1, and only for signed values. if ty.is_signed() { let neg_1 = self.neg_1_literal(span, ty); let min = self.minval_literal(span, ty); let is_neg_1 = self.temp(bool_ty, span); let is_min = self.temp(bool_ty, span); let of = self.temp(bool_ty, span); // this does (rhs == -1) & (lhs == MIN). It could short-circuit instead self.cfg.push_assign( block, source_info, is_neg_1, Rvalue::BinaryOp(BinOp::Eq, rhs.to_copy(), neg_1), ); self.cfg.push_assign( block, source_info, is_min, Rvalue::BinaryOp(BinOp::Eq, lhs.to_copy(), min), ); let is_neg_1 = Operand::Move(is_neg_1); let is_min = Operand::Move(is_min); self.cfg.push_assign( block, source_info, of, Rvalue::BinaryOp(BinOp::BitAnd, is_neg_1, is_min), ); block = self.assert(block, Operand::Move(of), false, overflow_err, span); } } block.and(Rvalue::BinaryOp(op, lhs, rhs)) } } fn limit_capture_mutability( &mut self, upvar_span: Span, upvar_ty: Ty<'tcx>, temp_lifetime: Option, mut block: BasicBlock, arg: ExprRef<'tcx>, ) -> BlockAnd> { let this = self; let source_info = this.source_info(upvar_span); let temp = this.local_decls.push(LocalDecl::new(upvar_ty, upvar_span)); this.cfg.push(block, Statement { source_info, kind: StatementKind::StorageLive(temp) }); let arg_place = unpack!(block = this.as_place(block, arg)); let mutability = match arg_place.as_ref() { PlaceRef { local, projection: &[] } => this.local_decls[local].mutability, PlaceRef { local, projection: &[ProjectionElem::Deref] } => { debug_assert!( this.local_decls[local].is_ref_for_guard(), "Unexpected capture place", ); this.local_decls[local].mutability } PlaceRef { local, projection: &[ref proj_base @ .., ProjectionElem::Field(upvar_index, _)], } | PlaceRef { local, projection: &[ref proj_base @ .., ProjectionElem::Field(upvar_index, _), ProjectionElem::Deref], } => { let place = PlaceRef { local, projection: proj_base }; // Not projected from the implicit `self` in a closure. debug_assert!( match place.local_or_deref_local() { Some(local) => local == Local::new(1), None => false, }, "Unexpected capture place" ); // Not in a closure debug_assert!( this.upvar_mutbls.len() > upvar_index.index(), "Unexpected capture place" ); this.upvar_mutbls[upvar_index.index()] } _ => bug!("Unexpected capture place"), }; let borrow_kind = match mutability { Mutability::Not => BorrowKind::Unique, Mutability::Mut => BorrowKind::Mut { allow_two_phase_borrow: false }, }; this.cfg.push_assign( block, source_info, Place::from(temp), Rvalue::Ref(this.hir.tcx().lifetimes.re_erased, borrow_kind, arg_place), ); // In constants, temp_lifetime is None. We should not need to drop // anything because no values with a destructor can be created in // a constant at this time, even if the type may need dropping. if let Some(temp_lifetime) = temp_lifetime { this.schedule_drop_storage_and_value(upvar_span, temp_lifetime, temp); } block.and(Operand::Move(Place::from(temp))) } // Helper to get a `-1` value of the appropriate type fn neg_1_literal(&mut self, span: Span, ty: Ty<'tcx>) -> Operand<'tcx> { let param_ty = ty::ParamEnv::empty().and(ty); let bits = self.hir.tcx().layout_of(param_ty).unwrap().size.bits(); let n = (!0u128) >> (128 - bits); let literal = ty::Const::from_bits(self.hir.tcx(), n, param_ty); self.literal_operand(span, literal) } // Helper to get the minimum value of the appropriate type fn minval_literal(&mut self, span: Span, ty: Ty<'tcx>) -> Operand<'tcx> { assert!(ty.is_signed()); let param_ty = ty::ParamEnv::empty().and(ty); let bits = self.hir.tcx().layout_of(param_ty).unwrap().size.bits(); let n = 1 << (bits - 1); let literal = ty::Const::from_bits(self.hir.tcx(), n, param_ty); self.literal_operand(span, literal) } }