Add asm goto support to `asm!`
Tracking issue: #119364
This PR implements asm-goto support, using the syntax described in "future possibilities" section of [RFC2873](https://rust-lang.github.io/rfcs/2873-inline-asm.html#asm-goto).
Currently I have only implemented the `label` part, not the `fallthrough` part (i.e. fallthrough is implicit). This doesn't reduce the expressive though, since you can use label-break to get arbitrary control flow or simply set a value and rely on jump threading optimisation to get the desired control flow. I can add that later if deemed necessary.
r? ``@Amanieu``
cc ``@ojeda``
It seems that LLVM 17 doesn't fully optimize out unwrap_unchecked.
We can just loosen the check lines to account for this, since we don't
really care about the exact instructions, we just want to make sure that
inttoptr/ptrtoint aren't used for Box.
This commit is extracted from #122036 and adds a new directive to the
`compiletest` test runner, `//@ needs-threads`. This is intended to
capture the need that a target must implement threading to execute a
specific test, typically one that uses `std::thread`. This is primarily
done for WebAssembly targets which currently do not have threads by
default. This enables transitioning a lot of `//@ ignore-wasm*`-style
ignores into a more self-documenting `//@ needs-threads` directive.
Additionally the `wasm32-wasi-preview1-threads` target, for example,
does actually have threads, but isn't tested in CI at this time. This
change enables running these tests for that target, but not other wasm
targets.
For the former, it's fine for `inbounds` offsets to be one-past-the-end,
so it's okay even if the ZST is the last field in the layout:
> The base pointer has an in bounds address of an allocated object,
> which means that it points into an allocated object, or to its end.
https://llvm.org/docs/LangRef.html#getelementptr-instruction
For the latter, even DST fields must always be inside the layout
(or to its end for ZSTs), so using inbounds is also fine there.
Adds initial support for DataFlowSanitizer to the Rust compiler. It
currently supports `-Zsanitizer-dataflow-abilist`. Additional options
for it can be passed to LLVM command line argument processor via LLVM
arguments using `llvm-args` codegen option (e.g.,
`-Cllvm-args=-dfsan-combine-pointer-labels-on-load=false`).
rename 'try' intrinsic to 'catch_unwind'
The intrinsic has nothing to do with `try` blocks, and corresponds to the stable `catch_unwind` function, so this makes a lot more sense IMO.
Also rename Miri's special function while we are at it, to reflect the level of abstraction it works on: it's an unwinding mechanism, on which Rust implements panics.
Allow tests to specify a `//@ filecheck-flags:` header
This allows individual codegen/assembly/mir-opt tests to pass extra flags to the LLVM `filecheck` tool as needed.
---
The original motivation was noticing that `tests/run-make/instrument-coverage` was very close to being an ordinary codegen test, except that it needs some extra logic to set up platform-specific variables to be passed into filecheck.
I then saw the comment in `verify_with_filecheck` indicating that a `filecheck-flags` header might be useful for other purposes as well.
This test was already very close to being an ordinary codegen test, except that
it needed some extra logic to set a few variables based on (target) platform
characteristics.
Now that we have support for `//@ filecheck-flags:`, we can instead set those
variables using the normal test revisions mechanism.
This makes room for migrating over `tests/run-make/instrument-coverage`,
without increasing the number of top-level items in the codegen test directory.
Add "algebraic" fast-math intrinsics, based on fast-math ops that cannot return poison
Setting all of LLVM's fast-math flags makes our fast-math intrinsics very dangerous, because some inputs are UB. This set of flags permits common algebraic transformations, but according to the [LangRef](https://llvm.org/docs/LangRef.html#fastmath), only the flags `nnan` (no nans) and `ninf` (no infs) can produce poison.
And this uses the algebraic float ops to fix https://github.com/rust-lang/rust/issues/120720
cc `@orlp`
Implement intrinsics with fallback bodies
fixes#93145 (though we can port many more intrinsics)
cc #63585
The way this works is that the backend logic for generating custom code for intrinsics has been made fallible. The only failure path is "this intrinsic is unknown". The `Instance` (that was `InstanceDef::Intrinsic`) then gets converted to `InstanceDef::Item`, which represents the fallback body. A regular function call to that body is then codegenned. This is currently implemented for
* codegen_ssa (so llvm and gcc)
* codegen_cranelift
other backends will need to adjust, but they can just keep doing what they were doing if they prefer (though adding new intrinsics to the compiler will then require them to implement them, instead of getting the fallback body).
cc `@scottmcm` `@WaffleLapkin`
### todo
* [ ] miri support
* [x] default intrinsic name to name of function instead of requiring it to be specified in attribute
* [x] make sure that the bodies are always available (must be collected for metadata)
This test started failing on LLVM 18 after change
61118ffd04. As far as I can tell, it's
just good fortune that LLVM is able to sniff out the new noalias here,
and it's correct.