Don't project specializable RPITIT projection
This effective rejects specialization + RPITIT/AFIT (usages of `impl Trait` in traits) because the implementation is significantly complicated over making regular "default" trait method bodies work.
I have another PR that experimentally fixes all this, but the code may not be worth investing in.
(This is a large commit. The changes to
`compiler/rustc_middle/src/ty/context.rs` are the most important ones.)
The current naming scheme is a mess, with a mix of `_intern_`, `intern_`
and `mk_` prefixes, with little consistency. In particular, in many
cases it's easy to use an iterator interner when a (preferable) slice
interner is available.
The guiding principles of the new naming system:
- No `_intern_` prefixes.
- The `intern_` prefix is for internal operations.
- The `mk_` prefix is for external operations.
- For cases where there is a slice interner and an iterator interner,
the former is `mk_foo` and the latter is `mk_foo_from_iter`.
Also, `slice_interners!` and `direct_interners!` can now be `pub` or
non-`pub`, which helps enforce the internal/external operations
division.
It's not perfect, but I think it's a clear improvement.
The following lists show everything that was renamed.
slice_interners
- const_list
- mk_const_list -> mk_const_list_from_iter
- intern_const_list -> mk_const_list
- substs
- mk_substs -> mk_substs_from_iter
- intern_substs -> mk_substs
- check_substs -> check_and_mk_substs (this is a weird one)
- canonical_var_infos
- intern_canonical_var_infos -> mk_canonical_var_infos
- poly_existential_predicates
- mk_poly_existential_predicates -> mk_poly_existential_predicates_from_iter
- intern_poly_existential_predicates -> mk_poly_existential_predicates
- _intern_poly_existential_predicates -> intern_poly_existential_predicates
- predicates
- mk_predicates -> mk_predicates_from_iter
- intern_predicates -> mk_predicates
- _intern_predicates -> intern_predicates
- projs
- intern_projs -> mk_projs
- place_elems
- mk_place_elems -> mk_place_elems_from_iter
- intern_place_elems -> mk_place_elems
- bound_variable_kinds
- mk_bound_variable_kinds -> mk_bound_variable_kinds_from_iter
- intern_bound_variable_kinds -> mk_bound_variable_kinds
direct_interners
- region
- intern_region (unchanged)
- const
- mk_const_internal -> intern_const
- const_allocation
- intern_const_alloc -> mk_const_alloc
- layout
- intern_layout -> mk_layout
- adt_def
- intern_adt_def -> mk_adt_def_from_data (unusual case, hard to avoid)
- alloc_adt_def(!) -> mk_adt_def
- external_constraints
- intern_external_constraints -> mk_external_constraints
Other
- type_list
- mk_type_list -> mk_type_list_from_iter
- intern_type_list -> mk_type_list
- tup
- mk_tup -> mk_tup_from_iter
- intern_tup -> mk_tup
Use `tcx.ty_error_with_guaranteed` in more places, rename variants
1. Use `ty_error_with_guaranteed` more so we don't delay so many span bugs
2. Rename `ty_error_with_guaranteed` to `ty_error`, `ty_error` to `ty_error_misc`. This is to incentivize using the former over the latter in cases where we already are witness to a `ErrorGuaranteed` token.
Second commit is just name replacement, so the first commit can be reviewed on its own with more scrutiny.
Use associated type bounds in some places in the compiler
Use associated type bounds for some nested `impl Trait<Assoc = impl Trait2>` cases. I'm generally keen to introduce new lang features that are more mature into the compiler, but maybe let's see what others think?
Side-note: I was surprised that the only use-cases of nested impl trait in the compiler are just iterator related?!
Use DefKind to give more item kind information during BindingObligation note
The current label says "required by a bound in this". When I see that label, my immediate impression is "this... **what**?". It feels like it was cut short.
Alternative to this would be saying "in this item", but adding the item kind is strictly more informational and adds very little overhead to the existing error presentation.
Fix RPITITs in default trait methods (by assuming projection predicates in param-env)
Instead of having special projection logic that allows us to turn `ProjectionTy(RPITIT, [Self#0, ...])` into `OpaqueTy(RPITIT, [Self#0, ...])`, we can instead augment the param-env of default trait method bodies to assume these as projection predicates. This should allow us to only project where we're allowed to!
In order to make this work without introducing a bunch of cycle errors, we additionally tweak the `OpaqueTypeExpander` used by `ParamEnv::with_reveal_all_normalized` to not normalize the right-hand side of projection predicates. This should be fine, because if we use the projection predicate to normalize some other projection type, we'll continue to normalize the opaque that it gets projected to.
This also makes it possible to support default trait methods with RPITITs in an associated-type based RPITIT lowering strategy without too much extra effort.
Fixes#107002
Alternative to #108142
This function has this line twice:
```
let bound_vars = tcx.intern_bound_variable_kinds(&bound_vars);
```
The second occurrence is effectively a no-op, because the first
occurrence interned any that needed it.
There are several `mk_foo`/`intern_foo` pairs, where the former takes an
iterator and the latter takes a slice. (This naming convention is bad,
but that's a fix for another PR.)
This commit changes several `mk_foo` occurrences into `intern_foo`,
avoiding the need for some `.iter()`/`.into_iter()` calls. Affected
cases:
- mk_type_list
- mk_tup
- mk_substs
- mk_const_list
Switch to `EarlyBinder` for `type_of` query
Part of the work to finish #105779 and implement https://github.com/rust-lang/types-team/issues/78.
Several queries `X` have a `bound_X` variant that wraps the output in `EarlyBinder`. This adds `EarlyBinder` to the return type of the `type_of` query and removes `bound_type_of`.
r? `@lcnr`
Do not ICE on unmet trait alias impl bounds
Fixes#108132
I've also added some documentation to the `impl_def_id` field of `DerivedObligationCause` to try and minimise the risk of such errors in future.
r? `@compiler-errors`
Implement partial support for non-lifetime binders
This implements support for non-lifetime binders. It's pretty useless currently, but I wanted to put this up so the implementation can be discussed.
Specifically, this piggybacks off of the late-bound lifetime collection code in `rustc_hir_typeck::collect::lifetimes`. This seems like a necessary step given the fact we don't resolve late-bound regions until this point, and binders are sometimes merged.
Q: I'm not sure if I should go along this route, or try to modify the earlier nameres code to compute the right bound var indices for type and const binders eagerly... If so, I'll need to rename all these queries to something more appropriate (I've done this for `resolve_lifetime::Region` -> `resolve_lifetime::ResolvedArg`)
cc rust-lang/types-team#81
r? `@ghost`
Rollup of 7 pull requests
Successful merges:
- #106347 (More accurate spans for arg removal suggestion)
- #108057 (Prevent some attributes from being merged with others on reexports)
- #108090 (`if $c:expr { Some($r:expr) } else { None }` =>> `$c.then(|| $r)`)
- #108092 (note issue for feature(packed_bundled_libs))
- #108099 (use chars instead of strings where applicable)
- #108115 (Do not ICE on unmet trait alias bounds)
- #108125 (Add new people to the compiletest review rotation)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Optimize `mk_region`
PR #107869 avoiding some interning under `mk_ty` by special-casing `Ty` variants with simple (integer) bodies. This PR does something similar for regions.
r? `@compiler-errors`
Use `target` instead of `machine` for mir interpreter integer handling.
The naming of `machine` only makes sense from a mir interpreter internals perspective, but outside users talk about the `target` platform. As per https://github.com/rust-lang/rust/pull/108029#issuecomment-1429791015
r? `@RalfJung`