Improve the diagnostics for unused generic parameters
* Don't emit two errors (namely E0091 *and* E0392) for unused type parameters on *lazy* type aliases
* Fix the diagnostic help message of E0392 for *lazy* type aliases: Don't talk about the “fields” of lazy type aliases (use the term “body” instead) and don't suggest `PhantomData` for them, it doesn't make much sense
* Consolidate the diagnostics for E0091 (unused type parameters in type aliases) and E0392 (unused generic parameters due to bivariance) and make it translatable
* Still keep the error codes distinct (for now)
* Naturally leads to better diagnostics for E0091
r? ```@oli-obk``` (to ballast your review load :P) or compiler
Error codes are integers, but `String` is used everywhere to represent
them. Gross!
This commit introduces `ErrCode`, an integral newtype for error codes,
replacing `String`. It also introduces a constant for every error code,
e.g. `E0123`, and removes the `error_code!` macro. The constants are
imported wherever used with `use rustc_errors::codes::*`.
With the old code, we have three different ways to specify an error code
at a use point:
```
error_code!(E0123) // macro call
struct_span_code_err!(dcx, span, E0123, "msg"); // bare ident arg to macro call
\#[diag(name, code = "E0123")] // string
struct Diag;
```
With the new code, they all use the `E0123` constant.
```
E0123 // constant
struct_span_code_err!(dcx, span, E0123, "msg"); // constant
\#[diag(name, code = E0123)] // constant
struct Diag;
```
The commit also changes the structure of the error code definitions:
- `rustc_error_codes` now just defines a higher-order macro listing the
used error codes and nothing else.
- Because that's now the only thing in the `rustc_error_codes` crate, I
moved it into the `lib.rs` file and removed the `error_codes.rs` file.
- `rustc_errors` uses that macro to define everything, e.g. the error
code constants and the `DIAGNOSTIC_TABLES`. This is in its new
`codes.rs` file.
We have several methods indicating the presence of errors, lint errors,
and delayed bugs. I find it frustrating that it's very unclear which one
you should use in any particular spot. This commit attempts to instill a
basic principle of "use the least general one possible", because that
reflects reality in practice -- `has_errors` is the least general one
and has by far the most uses (esp. via `abort_if_errors`).
Specifics:
- Add some comments giving some usage guidelines.
- Prefer `has_errors` to comparing `err_count` to zero.
- Remove `has_errors_or_span_delayed_bugs` because it's a weird one: in
the cases where we need to count delayed bugs, we should really be
counting lint errors as well.
- Rename `is_compilation_going_to_fail` as
`has_errors_or_lint_errors_or_span_delayed_bugs`, for consistency with
`has_errors` and `has_errors_or_lint_errors`.
- Change a few other `has_errors_or_lint_errors` calls to `has_errors`,
as per the "least general" principle.
This didn't turn out to be as neat as I hoped when I started, but I
think it's still an improvement.
Don't forget that the lifetime on hir types is `'tcx`
This PR just tracks the `'tcx` lifetime to wherever the original objects actually have that lifetime. This code is needed for https://github.com/rust-lang/rust/pull/107606 (now #120131) so that `ast_ty_to_ty` can invoke `lit_to_const` on an argument passed to it. Currently the argument is `&hir::Ty<'_>`, but after this PR it is `&'tcx hir::Ty<'tcx>`.
In #119606 I added them and used a `_mv` suffix, but that wasn't great.
A `with_` prefix has three different existing uses.
- Constructors, e.g. `Vec::with_capacity`.
- Wrappers that provide an environment to execute some code, e.g.
`with_session_globals`.
- Consuming chaining methods, e.g. `Span::with_{lo,hi,ctxt}`.
The third case is exactly what we want, so this commit changes
`DiagnosticBuilder::foo_mv` to `DiagnosticBuilder::with_foo`.
Thanks to @compiler-errors for the suggestion.
Because it takes an error code after the span. This avoids the confusing
overlap with the `DiagCtxt::struct_span_err` method, which doesn't take
an error code.
This works for most of its call sites. This is nice, because `emit` very
much makes sense as a consuming operation -- indeed,
`DiagnosticBuilderState` exists to ensure no diagnostic is emitted
twice, but it uses runtime checks.
For the small number of call sites where a consuming emit doesn't work,
the commit adds `DiagnosticBuilder::emit_without_consuming`. (This will
be removed in subsequent commits.)
Likewise, `emit_unless` becomes consuming. And `delay_as_bug` becomes
consuming, while `delay_as_bug_without_consuming` is added (which will
also be removed in subsequent commits.)
All this requires significant changes to `DiagnosticBuilder`'s chaining
methods. Currently `DiagnosticBuilder` method chaining uses a
non-consuming `&mut self -> &mut Self` style, which allows chaining to
be used when the chain ends in `emit()`, like so:
```
struct_err(msg).span(span).emit();
```
But it doesn't work when producing a `DiagnosticBuilder` value,
requiring this:
```
let mut err = self.struct_err(msg);
err.span(span);
err
```
This style of chaining won't work with consuming `emit` though. For
that, we need to use to a `self -> Self` style. That also would allow
`DiagnosticBuilder` production to be chained, e.g.:
```
self.struct_err(msg).span(span)
```
However, removing the `&mut self -> &mut Self` style would require that
individual modifications of a `DiagnosticBuilder` go from this:
```
err.span(span);
```
to this:
```
err = err.span(span);
```
There are *many* such places. I have a high tolerance for tedious
refactorings, but even I gave up after a long time trying to convert
them all.
Instead, this commit has it both ways: the existing `&mut self -> Self`
chaining methods are kept, and new `self -> Self` chaining methods are
added, all of which have a `_mv` suffix (short for "move"). Changes to
the existing `forward!` macro lets this happen with very little
additional boilerplate code. I chose to add the suffix to the new
chaining methods rather than the existing ones, because the number of
changes required is much smaller that way.
This doubled chainging is a bit clumsy, but I think it is worthwhile
because it allows a *lot* of good things to subsequently happen. In this
commit, there are many `mut` qualifiers removed in places where
diagnostics are emitted without being modified. In subsequent commits:
- chaining can be used more, making the code more concise;
- more use of chaining also permits the removal of redundant diagnostic
APIs like `struct_err_with_code`, which can be replaced easily with
`struct_err` + `code_mv`;
- `emit_without_diagnostic` can be removed, which simplifies a lot of
machinery, removing the need for `DiagnosticBuilderState`.
`IntoDiagnostic` defaults to `ErrorGuaranteed`, because errors are the
most common diagnostic level. It makes sense to do likewise for the
closely-related (and much more widely used) `DiagnosticBuilder` type,
letting us write `DiagnosticBuilder<'a, ErrorGuaranteed>` as just
`DiagnosticBuilder<'a>`. This cuts over 200 lines of code due to many
multi-line things becoming single line things.
Renamings:
- find -> opt_hir_node
- get -> hir_node
- find_by_def_id -> opt_hir_node_by_def_id
- get_by_def_id -> hir_node_by_def_id
Fix rebase changes using removed methods
Use `tcx.hir_node_by_def_id()` whenever possible in compiler
Fix clippy errors
Fix compiler
Apply suggestions from code review
Co-authored-by: Vadim Petrochenkov <vadim.petrochenkov@gmail.com>
Add FIXME for `tcx.hir()` returned type about its removal
Simplify with with `tcx.hir_node_by_def_id`
In `report_fullfillment_errors` push back `T: Sized`, `T: WellFormed`
and coercion errors to the end of the list. The pre-existing
deduplication logic eliminates redundant errors better that way, keeping
the resulting output with fewer errors than before, while also having
more detail.
a small wf and clause cleanup
- remove `Clause::from_projection_clause`, instead use `ToPredicate`
- change `predicate_obligations` to directly take a `Clause`
- remove some unnecessary `&`
- use clause in `min_specialization` checks where easily applicable
This happens because variances are constructed from ty generics,
and ty generics are always constructed with lifetimes first.
See compiler/rustc_hir_analysis/src/collect/generics_of.rs:248-269
Fixes#83556