Reintroduce `into_future` in `.await` desugaring
This is a reintroduction of the remaining parts from https://github.com/rust-lang/rust/pull/65244 that have not been relanded yet.
This isn't quite ready to merge yet. The last attempt was reverting due to performance regressions, so we need to make sure this does not introduce those issues again.
Issues #67644, #67982
/cc `@yoshuawuyts`
* Annotate `derive`d spans from the user's code with the appropciate context
* Add `Span::can_be_used_for_suggestion` to query if the underlying span
at the users' code
tidy run
update invalid crate attributes, improve error
update test outputs
de-capitalise error
update tests
Update invalid crate attributes, add help message
Update - generate span without using BytePos
Add correct dependancies
Update - generate suggestion without BytePos
Tidy run
update tests
Generate Suggestion without BytePos
Add all builtin attributes
add err builtin inner attr at top of crate
fix tests
add err builtin inner attr at top of crate
tidy fix
add err builtin inner attr at top of crate
As discovered in #85461, the MSVC linker treats weak symbols slightly
differently than unix-y linkers do. This causes link.exe to fail with
LNK1227 "conflicting weak extern definition" where as other targets are
able to link successfully.
This changes the dead functions from being generated as weak/hidden to
private/default which, as the LLVM reference says:
> Global values with “private” linkage are only directly accessible by
objects in the current module. In particular, linking code into a module
with a private global value may cause the private to be renamed as
necessary to avoid collisions. Because the symbol is private to the
module, all references can be updated. This doesn’t show up in any
symbol table in the object file.
This fixes the conflicting weak symbols but doesn't address the reason
*why* we have conflicting symbols for these dead functions. The test
cases added in this commit contain a minimal repro of the fundamental
issue which is that the logic used to decide what dead code functions
should be codegen'd in the current CGU doesn't take into account that
functions can be duplicated across multiple CGUs (for instance, in the
case of `#[inline(always)]` functions).
Fixing that is likely to be a more complex change (see
https://github.com/rust-lang/rust/issues/85461#issuecomment-985005805).
Fixes#85461
Revert "Auto merge of #91354 - fee1-dead:const_env, r=spastorino"
This reverts commit 18bb8c61a9, reversing
changes made to d9baa36190.
Reverts #91354 in order to address #91489. We would need to place this changes in a more granular way and would also be nice to address the small perf regression that was also introduced.
r? `@oli-obk`
cc `@fee1-dead`
Optimize `rustc_lexer`
The `cursor.first()` method in `rustc_lexer` now calls the `chars.next()` method instead of `chars.nth_char(0)`.
This allows LLVM to optimize the code better. The biggest win is that `eat_while()` is now fully inlined and generates better assembly. This improves the lexer's performance by 35% in a micro-benchmark I made (Lexing all 18MB of code in the compiler directory). But lexing is only a small part of the overall compilation time, so I don't know how significant it is.
Big thanks to criterion and `cargo asm`.
Fix ICE #91268 by checking that the snippet ends with a `)`
Fix#91268
Previously it was assumed that the last character of `snippet` will be a `)`, so using `snippet.len() - 1` as an index should be safe. However as we see in the test, it is possible to enter that branch without a closing `)`, and it will trigger the panic if the last character happens to be multibyte.
The fix is to ensure that the snippet ends with `)`, and skip the suggestion otherwise.
Implement write() method for Box<MaybeUninit<T>>
This adds method similar to `MaybeUninit::write` main difference being
it returns owned `Box`. This can be used to elide copy from stack
safely, however it's not currently tested that the optimization actually
occurs.
Analogous methods are not provided for `Rc` and `Arc` as those need to
handle the possibility of sharing. Some version of them may be added in
the future.
This was discussed in #63291 which this change extends.
Looks like Generator drop shims already have `post_borrowck_cleanup` run
on them. That's a bit surprising, since it means they're getting const-
and maybe borrow-checked? This merits further investigation, but for now
just preserve the status quo.
Rollup of 12 pull requests
Successful merges:
- #89954 (Fix legacy_const_generic doc arguments display)
- #91321 (Handle placeholder regions in NLL type outlive constraints)
- #91329 (Fix incorrect usage of `EvaluatedToOk` when evaluating `TypeOutlives`)
- #91364 (Improve error message for incorrect field accesses through raw pointers)
- #91387 (Clarify and tidy up explanation of E0038)
- #91410 (Move `#![feature(const_precise_live_drops)]` checks earlier in the pipeline)
- #91435 (Improve diagnostic for missing half of binary operator in `if` condition)
- #91444 (disable tests in Miri that take too long)
- #91457 (Add additional test from rust issue number 91068)
- #91460 (Document how `last_os_error` should be used)
- #91464 (Document file path case sensitivity)
- #91466 (Improve the comments in `Symbol::interner`.)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Improve diagnostic for missing half of binary operator in `if` condition
Fixes#91421. I've also changed it so that it doesn't consume the `else` token in the error case, because it will try to consume it again afterwards, leading to this incorrect error message (where the `else` reported as missing is actually there):
```
error: expected one of `.`, `;`, `?`, `else`, or an operator, found `{`
--> src/main.rs:4:12
|
4 | } else { 4 };
| ^ expected one of `.`, `;`, `?`, `else`, or an operator
```
r? `@lcnr`
Move `#![feature(const_precise_live_drops)]` checks earlier in the pipeline
Should mitigate the issues found during MCP on #73255.
Once this is done, we should clean up the queries a bit, since I think `mir_drops_elaborated_and_const_checked` can be merged back into `mir_promoted`.
Fixes#90770.
cc ``@rust-lang/wg-const-eval``
r? ``@nikomatsakis`` (since they reviewed #71824)
Clarify and tidy up explanation of E0038
I ran into E0038 (specifically the `Self:Sized` constraint on object-safety) the other day and it seemed to me that the explanations I found floating around the internet were a bit .. wrong. Like they didn't make sense. And then I went and checked the official explanation here and it didn't make sense either.
As far as I can tell (reading through the history of the RFCs), two totally different aspects of object-safety have got tangled up in much of the writing on the subject:
- Object-safety related to "not even theoretically possible" issues. This includes things like "methods that take or return Self by value", which obviously will never work for an unsized type in a world with fixed-size stack frames (and it'd be an opaque type anyways, which, ugh). This sort of thing was originally decided method-by-method, with non-object-safe methods stripped from objects; but in [RFC 0255](https://rust-lang.github.io/rfcs/0255-object-safety.html) this sort of per-impossible-method reasoning was made into a per-trait safety property (with the escape hatch left in where users could mark methods `where Self:Sized` to have them stripped before the trait's object safety is considered).
- Object-safety related to "totally possible but ergonomically a little awkward" issues. Specifically in a trait with `Trait:Sized`, there's no a priori reason why this constraint makes the trait impossible to make into an object -- imagine it had nothing but harmless `&self`-taking methods. No problem! Who cares if the Trait requires its implementing types to be sized? As far as I can tell reading the history here, in both RFC 0255 and then later in [RFC 0546](https://rust-lang.github.io/rfcs/0546-Self-not-sized-by-default.html) it seems that the motivation for making `Trait:Sized` be non-object-safe has _nothing to do_ with the impossibility of making objects out of such types, and everything to do with enabling "[a trait object SomeTrait to implement the trait SomeTrait](https://rust-lang.github.io/rfcs/0546-Self-not-sized-by-default.html#motivation)". That is, since `dyn Trait` is unsized, if `Trait:Sized` then you can never have the automatic (and reasonable) ergonomic implicit `impl Trait for dyn Trait`. And the authors of that RFC really wanted that automatic implicit implementation of `Trait` for `dyn Trait`. So they just defined `Trait:Sized` as non-object safe -- no `dyn Trait` can ever exist that the compiler can't synthesize such an impl for. Well enough!
However, I noticed in my reading-and-reconstruction that lots of documentation on the internet, including forum and Q&A site answers and (most worrying) the compiler explanation all kinda grasp at something like the first ("not theoretically possible") explanation, and fail to mention the second ("just an ergonomic constraint") explanation. So I figured I'd clean up the docs to clarify, maybe confuse the next person less (unless of course I'm misreading the history here and misunderstanding motives -- please let me know if so!)
While here I also did some cleanups:
- Rewrote the preamble, trying to help the user get a little better oriented (I found the existing preamble a bit scattered).
- Modernized notation (using `dyn Trait`)
- Changed the section headings to all be written with the same logical sense: to all be written as "conditions that violate object safety" rather than a mix of that and the negated form "conditions that must not happen in order to ensure object safety".
I think there's a fair bit more to clean up in this doc -- the later sections get a bit rambly and I suspect there should be a completely separated-out section covering the `where Self:Sized` escape hatch for instructing the compiler to "do the old thing" and strip methods off traits when turning them into objects (it's a bit buried as a digression in the individual sub-error sections). But I did what I had time for now.
Fix incorrect usage of `EvaluatedToOk` when evaluating `TypeOutlives`
A global predicate is not guarnatenteed to outlive all regions.
If the predicate involves late-bound regions, then it may fail
to outlive other regions (e.g. `for<'b> &'b bool: 'static` does not
hold)
We now only produce `EvaluatedToOk` when a global predicate has no
late-bound regions - in that case, the ony region that can be present
in the type is 'static
This adds method similar to `MaybeUninit::write` main difference being
it returns owned `Box`. This can be used to elide copy from stack
safely, however it's not currently tested that the optimization actually
occurs.
Analogous methods are not provided for `Rc` and `Arc` as those need to
handle the possibility of sharing. Some version of them may be added in
the future.
This was discussed in #63291 which this change extends.
Issue 90702 fix: Stop treating some crate loading failures as fatal errors
Surface mulitple `extern crate` resolution errors at a time.
This is achieved by creating a dummy crate, instead of aborting directly after the resolution error. The `ExternCrateError` has been added to allow propagating the resolution error from `rustc_metadata` crate to the `rustc_resolve` with a minimal public surface. The `import_extern_crate` function is a block that was factored out from `build_reduced_graph_for_item` for better organization. The only added functionality made to it where the added error handling in the `process_extern_crate` call. The remaining bits in this function are the same as before.
Resolves#90702
r? `@petrochenkov`