impl `From<&[T; N]>` for `Cow<[T]>`
Implement `From<&[T; N]>` for `Cow<[T]>` to simplify its usage in the following example.
```rust
fn foo(data: impl Into<Cow<'static, [&'static str]>>) { /* ... */ }
fn main() {
foo(vec!["hello", "world"]);
foo(&["hello", "world"]); // Error: the trait `From<&[&str; 2]>` is not implemented for `Cow<'static, [&'static str]>`
foo(&["hello", "world"] as &[_]); // Explicit convertion into a slice is required
}
```
Remove special-case handling of `vec.split_off(0)`
#76682 added special handling to `Vec::split_off` for the case where `at == 0`. Instead of copying the vector's contents into a freshly-allocated vector and returning it, the special-case code steals the old vector's allocation, and replaces it with a new (empty) buffer with the same capacity.
That eliminates the need to copy the existing elements, but comes at a surprising cost, as seen in #119913. The returned vector's capacity is no longer determined by the size of its contents (as would be expected for a freshly-allocated vector), and instead uses the full capacity of the old vector.
In cases where the capacity is large but the size is small, that results in a much larger capacity than would be expected from reading the documentation of `split_off`. This is especially bad when `split_off` is called in a loop (to recycle a buffer), and the returned vectors have a wide variety of lengths.
I believe it's better to remove the special-case code, and treat `at == 0` just like any other value:
- The current documentation states that `split_off` returns a “newly allocated vector”, which is not actually true in the current implementation when `at == 0`.
- If the value of `at` could be non-zero at runtime, then the caller has already agreed to the cost of a full memcpy of the taken elements in the general case. Avoiding that copy would be nice if it were close to free, but the different handling of capacity means that it is not.
- If the caller specifically wants to avoid copying in the case where `at == 0`, they can easily implement that behaviour themselves using `mem::replace`.
Fixes#119913.
Use `assert_unchecked` instead of `assume` intrinsic in the standard library
Now that a public wrapper for the `assume` intrinsic exists, we can use it in the standard library.
CC #119131
Document some alternatives to `Vec::split_off`
One of the discussion points that came up in #119917 is that some people use `Vec::split_off` in cases where they probably shouldn't, because the alternatives (like `mem::take`) are hard to discover.
This PR adds some suggestions to the documentation of `split_off` that should point people towards alternatives that might be more appropriate for their use-case.
I've deliberately tried to keep these changes as simple and uncontroversial as possible, so that they don't depend on how the team decides to handle the concerns raised in #119917. That's why I haven't touched the existing documentation for `split_off`, and haven't added links to `split_off` to the documentation of other methods.
fix: Drop guard was deallocating with the incorrect size
InPlaceDstBufDrop holds onto the allocation before the shrinking happens which means it must deallocate the destination elements but the source allocation.
Thanks `@cuviper` for spotting this.
Remove alignment-changing in-place collect
This removes the alignment-changing in-place collect optimization introduced in #110353
Currently stable users can't benefit from the optimization because GlobaAlloc doesn't support alignment-changing realloc and neither do most posix allocators. So in practice it has a negative impact on performance.
Explanation from https://github.com/rust-lang/rust/issues/120091#issuecomment-1899071681:
> > You mention that in case of alignment mismatch -- when the new alignment is less than the old -- the implementation calls `mremap`.
>
> I was trying to note that this isn't really the case in practice, due to the semantics of Rust's allocator APIs. The only use of the allocator within the `in_place_collect` implementation itself is [a call to `Allocator::shrink()`](db7125f008/library/alloc/src/vec/in_place_collect.rs (L299-L303)), which per its documentation [allows decreasing the required alignment](https://doc.rust-lang.org/1.75.0/core/alloc/trait.Allocator.html). However, in stable Rust, the only available `Allocator` is [`Global`](https://doc.rust-lang.org/1.75.0/alloc/alloc/struct.Global.html), which delegates to the registered `GlobalAlloc`. Since `GlobalAlloc::realloc()` [cannot change the required alignment](https://doc.rust-lang.org/1.75.0/core/alloc/trait.GlobalAlloc.html#method.realloc), the implementation of [`<Global as Allocator>::shrink()`](db7125f008/library/alloc/src/alloc.rs (L280-L321)) must fall back to creating a brand-new allocation, `memcpy`ing the data into it, and freeing the old allocation, whenever the alignment doesn't remain exactly the same.
>
> Therefore, the underlying allocator, provided by libc or some other source, has no opportunity to internally `mremap()` the data when the alignment is changed, since it has no way of knowing that the allocation is the same.
InPlaceDstBufDrop holds onto the allocation before the shrinking happens
which means it must deallocate the destination elements but the source
allocation.
Currently stable users can't benefit from this because GlobaAlloc doesn't support
alignment-changing realloc and neither do most posix allocators.
So in practice it always results in an extra memcpy.
Split `Vec::dedup_by` into 2 cycles
First cycle runs until we found 2 same elements, second runs after if there any found in the first one. This allows to avoid any memory writes until we found an item which we want to remove.
This leads to significant performance gains if all `Vec` items are kept: -40% on my benchmark with unique integers.
Results of benchmarks before implementation (including new benchmark where nothing needs to be removed):
* vec::bench_dedup_all_100 74.00ns/iter +/- 13.00ns
* vec::bench_dedup_all_1000 572.00ns/iter +/- 272.00ns
* vec::bench_dedup_all_100000 64.42µs/iter +/- 19.47µs
* __vec::bench_dedup_none_100 67.00ns/iter +/- 17.00ns__
* __vec::bench_dedup_none_1000 662.00ns/iter +/- 86.00ns__
* __vec::bench_dedup_none_10000 9.16µs/iter +/- 2.71µs__
* __vec::bench_dedup_none_100000 91.25µs/iter +/- 1.82µs__
* vec::bench_dedup_random_100 105.00ns/iter +/- 11.00ns
* vec::bench_dedup_random_1000 781.00ns/iter +/- 10.00ns
* vec::bench_dedup_random_10000 9.00µs/iter +/- 5.62µs
* vec::bench_dedup_random_100000 449.81µs/iter +/- 74.99µs
* vec::bench_dedup_slice_truncate_100 105.00ns/iter +/- 16.00ns
* vec::bench_dedup_slice_truncate_1000 2.65µs/iter +/- 481.00ns
* vec::bench_dedup_slice_truncate_10000 18.33µs/iter +/- 5.23µs
* vec::bench_dedup_slice_truncate_100000 501.12µs/iter +/- 46.97µs
Results after implementation:
* vec::bench_dedup_all_100 75.00ns/iter +/- 9.00ns
* vec::bench_dedup_all_1000 494.00ns/iter +/- 117.00ns
* vec::bench_dedup_all_100000 58.13µs/iter +/- 8.78µs
* __vec::bench_dedup_none_100 52.00ns/iter +/- 22.00ns__
* __vec::bench_dedup_none_1000 417.00ns/iter +/- 116.00ns__
* __vec::bench_dedup_none_10000 4.11µs/iter +/- 546.00ns__
* __vec::bench_dedup_none_100000 40.47µs/iter +/- 5.36µs__
* vec::bench_dedup_random_100 77.00ns/iter +/- 15.00ns
* vec::bench_dedup_random_1000 681.00ns/iter +/- 86.00ns
* vec::bench_dedup_random_10000 11.66µs/iter +/- 2.22µs
* vec::bench_dedup_random_100000 469.35µs/iter +/- 20.53µs
* vec::bench_dedup_slice_truncate_100 100.00ns/iter +/- 5.00ns
* vec::bench_dedup_slice_truncate_1000 2.55µs/iter +/- 224.00ns
* vec::bench_dedup_slice_truncate_10000 18.95µs/iter +/- 2.59µs
* vec::bench_dedup_slice_truncate_100000 492.85µs/iter +/- 72.84µs
Resolves#77772
P.S. Note that this is same PR as #92104 I just missed review then forgot about it.
Also, I cannot reopen that pull request so I am creating a new one.
I responded to remaining questions directly by adding commentaries to my code.
Expand in-place iteration specialization to Flatten, FlatMap and ArrayChunks
This enables the following cases to collect in-place:
```rust
let v = vec![[0u8; 4]; 1024]
let v: Vec<_> = v.into_iter().flatten().collect();
let v: Vec<Option<NonZeroUsize>> = vec![NonZeroUsize::new(0); 1024];
let v: Vec<_> = v.into_iter().flatten().collect();
let v = vec![u8; 4096];
let v: Vec<_> = v.into_iter().array_chunks::<4>().collect();
```
Especially the nicheful-option-flattening should be useful in real code.
While a better approach would be to implement it for all ZSTs
which are `Copy` and have trivial `Clone`,
the last property cannot be detected for now.
Signed-off-by: Petr Portnov <me@progrm-jarvis.ru>
Implement `From<{&,&mut} [T; N]>` for `Vec<T>` where `T: Clone`
Currently, if `T` implements `Clone`, we can create a `Vec<T>` from an `&[T]` or an `&mut [T]`, can we also support creating a `Vec<T>` from an `&[T; N]` or an `&mut [T; N]`? Also, do I need to add `#[inline]` to the implementation?
ACP: rust-lang/libs-team#220. [Accepted]
Closes#100880.
Make useless_ptr_null_checks smarter about some std functions
This teaches the `useless_ptr_null_checks` lint that some std functions can't ever return null pointers, because they need to point to valid data, get references as input, etc.
This is achieved by introducing an `#[rustc_never_returns_null_ptr]` attribute and adding it to these std functions (gated behind bootstrap `cfg_attr`).
Later on, the attribute could maybe be used to tell LLVM that the returned pointer is never null. I don't expect much impact of that though, as the functions are pretty shallow and usually the input data is already never null.
Follow-up of PR #113657Fixes#114442