This commit adds new methods that combine sequences of existing
formatting methods.
- `Formatter::debug_{tuple,struct}_field[12345]_finish`, equivalent to a
`Formatter::debug_{tuple,struct}` + N x `Debug{Tuple,Struct}::field` +
`Debug{Tuple,Struct}::finish` call sequence.
- `Formatter::debug_{tuple,struct}_fields_finish` is similar, but can
handle any number of fields by using arrays.
These new methods are all marked as `doc(hidden)` and unstable. They are
intended for the compiler's own use.
Special-casing up to 5 fields gives significantly better performance
results than always using arrays (as was tried in #95637).
The commit also changes the `Debug` deriving code to use these new methods. For
example, where the old `Debug` code for a struct with two fields would be like
this:
```
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
match *self {
Self {
f1: ref __self_0_0,
f2: ref __self_0_1,
} => {
let debug_trait_builder = &mut ::core::fmt::Formatter::debug_struct(f, "S2");
let _ = ::core::fmt::DebugStruct::field(debug_trait_builder, "f1", &&(*__self_0_0));
let _ = ::core::fmt::DebugStruct::field(debug_trait_builder, "f2", &&(*__self_0_1));
::core::fmt::DebugStruct::finish(debug_trait_builder)
}
}
}
```
the new code is like this:
```
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
match *self {
Self {
f1: ref __self_0_0,
f2: ref __self_0_1,
} => ::core::fmt::Formatter::debug_struct_field2_finish(
f,
"S2",
"f1",
&&(*__self_0_0),
"f2",
&&(*__self_0_1),
),
}
}
```
This shrinks the code produced for `Debug` instances
considerably, reducing compile times and binary sizes.
Co-authored-by: Scott McMurray <scottmcm@users.noreply.github.com>
clarify how Rust atomics correspond to C++ atomics
``@cbeuw`` noted in https://github.com/rust-lang/miri/pull/1963 that the correspondence between C++ atomics and Rust atomics is not quite as obvious as one might think, since in Rust I can use `get_mut` to treat previously non-atomic data as atomic. However, I think using C++20 `atomic_ref`, we can establish a suitable relation between the two -- or do you see problems with that ``@cbeuw?`` (I recall you said there was some issue, but it was deep inside that PR and Github makes it impossible to find...)
Cc ``@thomcc;`` not sure whom else to ping for atomic memory model things.
Rollup of 4 pull requests
Successful merges:
- #98235 (Drop magic value 3 from code)
- #98267 (Don't omit comma when suggesting wildcard arm after macro expr)
- #98276 (Mention formatting macros when encountering `ArgumentV1` method in const)
- #98296 (Add a link to the unstable book page on Generator doc comment)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
It's inconvenient to sort a slice or Vec of floats, compared to sorting
integers. To simplify numeric code, add a convenience method to `[f32]`
and `[f64]` to sort them using `sort_unstable_by` with `total_cmp`.
Add a link to the unstable book page on Generator doc comment
This makes it easier to jump into the Generator section on the unstable book.
Signed-off-by: Yuki Okushi <jtitor@2k36.org>
Mention formatting macros when encountering `ArgumentV1` method in const
Also open to just closing this if it's overkill. There are a lot of other distracting error messages around, so maybe it's not worth fixing just this one.
Fixes#93665
Fix the generator example for `pin!()`
The previous generator example is not actually self-referential, since the reference is created after the yield.
CC #93178 (tracking issue)
Add `core::mem::copy` to complement `core::mem::drop`.
This is useful for combinators. I didn't add `clone` since you can already
use `Clone::clone` in its place; copy has no such corresponding function.
Stabilize checked slice->str conversion functions
This PR stabilizes the following APIs as `const` functions in Rust 1.63:
```rust
// core::str
pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error>;
impl Utf8Error {
pub const fn valid_up_to(&self) -> usize;
pub const fn error_len(&self) -> Option<usize>;
}
```
Note that the `from_utf8_mut` function is not stabilized as unique references (`&mut _`) are [unstable in const context].
FCP: https://github.com/rust-lang/rust/issues/91006#issuecomment-1134593095
[unstable in const context]: https://github.com/rust-lang/rust/issues/57349
once cell renamings
This PR does the renamings proposed in https://github.com/rust-lang/rust/issues/74465#issuecomment-1153703128
- Move/rename `lazy::{OnceCell, Lazy}` to `cell::{OnceCell, LazyCell}`
- Move/rename `lazy::{SyncOnceCell, SyncLazy}` to `sync::{OnceLock, LazyLock}`
(I used `Lazy...` instead of `...Lazy` as it seems to be more consistent, easier to pronounce, etc)
```@rustbot``` label +T-libs-api -T-libs
Make `std::mem::needs_drop` accept `?Sized`
This change attempts to make `needs_drop` work with types like `[u8]` and `str`.
This enables code in types like `Arc<T>` that was not possible before, such as https://github.com/rust-lang/rust/pull/97676.
Inline `const_eval_select`
To avoid circular link time dependency between core and compiler
builtins when building with `-Zshare-generics`.
r? ```@Amanieu```
In cases where the nth element is not unique within the slice, it is not
correct to say that the values in the returned triplet include ones for
"all elements" less/greater than that at the given index: indeed one (or
more) such values would then laso contain values equal to that at the
given index.
The text proposed here clarifies exactly what is returned, but in so
doing it is also documenting an implementation detail that previously
wasn't detailed: namely that the return slices are slices into the
reordered slice. I don't think this can be contentious, because the
lifetimes of those returned slices are bound to that of the original
(now reordered) slice—so there really isn't any other reasonable
implementation that could have this behaviour; but nevertheless it's
probably best if @rust-lang/libs-api give it a nod?
Fixes#97982
r? m-ou-se
@rustbot label +A-docs C-bug +T-libs-api
line 1352, change `self` to `*self`, other to `*other`
The current code will not results bug, but it difficult to understand. These code result to call &f32::partial_cmp(), and the performance will be lower than the changed code. I'm not sure why the current code don't use (*self) (*other), if you have some idea, please let me know.