To accurately reflect that RPITIT assoc items don't have a name. This
avoids the use of `kw::Empty` to mean "no name", which is error prone.
Helps with #137978.
`hir::AssocItem` currently has a boolean `fn_has_self_parameter` field,
which is misplaced, because it's only relevant for associated fns, not
for associated consts or types. This commit moves it (and renames it) to
the `AssocKind::Fn` variant, where it belongs.
This requires introducing a new C-style enum, `AssocTag`, which is like
`AssocKind` but without the fields. This is because `AssocKind` values
are passed to various functions like `find_by_ident_and_kind` to
indicate what kind of associated item should be searched for, and having
to specify `has_self` isn't relevant there.
New methods:
- Predicates `AssocItem::is_fn` and `AssocItem::is_method`.
- `AssocItem::as_tag` which converts `AssocItem::kind` to `AssocTag`.
Removed `find_by_name_and_kinds`, which is unused.
`AssocItem::descr` can now distinguish between methods and associated
functions, which slightly improves some error messages.
`hir::Item` has an `ident` field.
- It's always non-empty for these item kinds: `ExternCrate`, `Static`,
`Const`, `Fn`, `Macro`, `Mod`, `TyAlias`, `Enum`, `Struct`, `Union`,
Trait`, TraitAalis`.
- It's always empty for these item kinds: `ForeignMod`, `GlobalAsm`,
`Impl`.
- For `Use`, it is non-empty for `UseKind::Single` and empty for
`UseKind::{Glob,ListStem}`.
All of this is quite non-obvious; the only documentation is a single
comment saying "The name might be a dummy name in case of anonymous
items". Some sites that handle items check for an empty ident, some
don't. This is a very C-like way of doing things, but this is Rust, we
have sum types, we can do this properly and never forget to check for
the exceptional case and never YOLO possibly empty identifiers (or
possibly dummy spans) around and hope that things will work out.
The commit is large but it's mostly obvious plumbing work. Some notable
things.
- A similar transformation makes sense for `ast::Item`, but this is
already a big change. That can be done later.
- Lots of assertions are added to item lowering to ensure that
identifiers are empty/non-empty as expected. These will be removable
when `ast::Item` is done later.
- `ItemKind::Use` doesn't get an `Ident`, but `UseKind::Single` does.
- `lower_use_tree` is significantly simpler. No more confusing `&mut
Ident` to deal with.
- `ItemKind::ident` is a new method, it returns an `Option<Ident>`. It's
used with `unwrap` in a few places; sometimes it's hard to tell
exactly which item kinds might occur. None of these unwraps fail on
the test suite. It's conceivable that some might fail on alternative
input. We can deal with those if/when they happen.
- In `trait_path` the `find_map`/`if let` is replaced with a loop, and
things end up much clearer that way.
- `named_span` no longer checks for an empty name; instead the call site
now checks for a missing identifier if necessary.
- `maybe_inline_local` doesn't need the `glob` argument, it can be
computed in-function from the `renamed` argument.
- `arbitrary_source_item_ordering::check_mod` had a big `if` statement
that was just getting the ident from the item kinds that had one. It
could be mostly replaced by a single call to the new `ItemKind::ident`
method.
- `ItemKind` grows from 56 to 64 bytes, but `Item` stays the same size,
and that's what matters, because `ItemKind` only occurs within `Item`.
Continuing the work from #137350.
Removes the unused methods: `expect_variant`, `expect_field`,
`expect_foreign_item`.
Every method gains a `hir_` prefix.
Only use implied bounds hack if bevy, and use deeply normalize in implied bounds hack
Consolidates the implied bounds computation mode into a single function, which deeply normalizes, and if it's in **compat** mode (for bevy), it extracts outlives bounds from the infcx.
Previously, we were using the implied bounds compat mode in two cases:
1. During WF, if it detects `ParamSet`
2. EVERYWHERE ELSE (lol) -- e.g. borrowck, predicate entailment, etc.
While I think this is fine, and the net effect was just that we emitted fewer diagnostics, it makes me uncomfortable that all crates were using the supposed "compat" code.
Fixes#137767
Continuing the work started in #136466.
Every method gains a `hir_` prefix, though for the ones that already
have a `par_` or `try_par_` prefix I added the `hir_` after that.
The end goal is to eliminate `Map` altogether.
I added a `hir_` prefix to all of them, that seemed simplest. The
exceptions are `module_items` which became `hir_module_free_items` because
there was already a `hir_module_items`, and `items` which became
`hir_free_items` for consistency with `hir_module_free_items`.
LTA: Actually check where-clauses for well-formedness at the def site
All of the added tests used to wrongfully pass.
r? oli-obk or types/compiler or reassign
`rustc_span::symbol` defines some things that are re-exported from
`rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some
closely related things such as `Ident` and `kw`. So you can do `use
rustc_span::{Symbol, sym}` but you have to do `use
rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good
reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`,
and changes many `rustc_span::symbol::` qualifiers in `compiler/` to
`rustc_span::`. This is a 200+ net line of code reduction, mostly
because many files with two `use rustc_span` items can be reduced to
one.
Various types can be used as method receivers, such as Rc<>, Box<> and
Arc<>. The arbitrary self types v2 work allows further types to be made
method receivers by implementing the Receiver trait.
With that in mind, it may come as a surprise to people when certain
common types do not implement Receiver and thus cannot be used as a
method receiver.
The RFC for arbitrary self types v2 therefore proposes emitting specific
lint hints for these cases:
* NonNull
* Weak
* Raw pointers
The code already emits a hint for this third case, in that it advises
folks that the `arbitrary_self_types_pointers` feature may meet their
need. This PR adds diagnostic hints for the Weak and NonNull cases.
The recently landed PR to adjust arbitrary self types was a bit
overenthusiastic, advising folks to use the new Receiver trait even
before it's been stabilized. Revert to the older wording of the lint in
such cases.
In this new version of Arbitrary Self Types, we no longer use the Deref trait
exclusively when working out which self types are valid. Instead, we follow a
chain of Receiver traits. This enables methods to be called on smart pointer
types which fundamentally cannot support Deref (for instance because they are
wrappers for pointers that don't follow Rust's aliasing rules).
This includes:
* Changes to tests appropriately
* New tests for:
* The basics of the feature
* Ensuring lifetime elision works properly
* Generic Receivers
* A copy of the method subst test enhanced with Receiver
This is really the heart of the 'arbitrary self types v2' feature, and
is the most critical commit in the current PR.
Subsequent commits are focused on:
* Detecting "shadowing" problems, where a smart pointer type can hide
methods in the pointee.
* Diagnostics and cleanup.
Naming: in this commit, the "Autoderef" type is modified so that it no
longer solely focuses on the "Deref" trait, but can now consider the
"Receiver" trait instead. Should it be renamed, to something like
"TraitFollower"? This was considered, but rejected, because
* even in the Receiver case, it still considers built-in derefs
* the name Autoderef is short and snappy.
Deeply normalize when computing implied outlives bounds
r? lcnr
Unfortunately resolving regions is still slightly scuffed (though in an unrelated way). Specifically, we should be normalizing our param-env outlives when constructing the `OutlivesEnv`; otherwise, these assumptions (dd2837ec5d/compiler/rustc_infer/src/infer/outlives/env.rs (L78)) are not constructed correctly.
Let me know if you want us to track that somewhere.
These operations are much more about lowering the HIR than about
`Const`s themselves. They fit better in hir_ty_lowering with
`lower_const_arg` (formerly `Const::from_const_arg`) and the rest.
To accomplish this, `const_evaluatable_predicates_of` had to be changed
to not use `from_anon_const` anymore. Instead of visiting the HIR and
lowering anon consts on the fly, it now visits the `rustc_middle::ty`
data structures instead and directly looks for `UnevaluatedConst`s. This
approach was proposed in:
https://github.com/rust-lang/rust/pull/131081#discussion_r1821189257
the behavior of the type system not only depends on the current
assumptions, but also the currentnphase of the compiler. This is
mostly necessary as we need to decide whether and how to reveal
opaque types. We track this via the `TypingMode`.