Parallel compilation of a program can cause unexpected event sequencing.
Inform the solver when this is true so it can skip invalid asserts, then
assert replaced solutions are equal if Some
Rollup of 9 pull requests
Successful merges:
- #129929 (`rustc_mir_transform` cleanups, round 2)
- #130022 (Dataflow/borrowck lifetime cleanups)
- #130064 (fix ICE in CMSE type validation)
- #130067 (Remove redundant check in `symlink_hard_link` test)
- #130131 (Print a helpful message if any tests were skipped for being up-to-date)
- #130137 (Fix ICE caused by missing span in a region error)
- #130153 (use verbose flag as a default value for `rust.verbose-tests`)
- #130154 (Stabilize `char::MIN`)
- #130158 (Update books)
r? `@ghost`
`@rustbot` modify labels: rollup
Distribute rustc_codegen_cranelift for Windows
With support for raw-dylib recently added to cg_clif, and inline assembly support working on Windows for quite a while now, all blockers for distributing cg_clif on Windows that I mentioned in https://github.com/rust-lang/rust/pull/81746#issuecomment-1774099637 are fixed now.
When linking macOS targets with cc, pass the `-mmacosx-version-min=.`
option to specify the desired deployment target. Also, no longer pass
`-m32`/`-m64`, these are redundant since we already pass `-arch`.
When linking with cc on other Apple targets, always pass `-target`.
(We assume for these targets that cc => clang).
The minimum that `rustc` encoded did not match the version in Clang, and
that meant that that when linking, we ended up bumping the version.
Specifically, this sets the correct deployment target of the following
simulator and Mac Catalyst targets:
- `aarch64-apple-ios-sim` from 10.0 to 14.0
- `aarch64-apple-tvos-sim` from 10.0 to 14.0
- `aarch64-apple-watchos-sim` from 5.0 to 7.0
- `aarch64-apple-ios-macabi` from 13.1 to 14.0
I have chosen to not document the simulator target versions in the
platform support docs, as it is fundamentally uninteresting; the normal
targets (e.g. `aarch64-apple-ios`, `aarch64-apple-tvos`) still have the
same deployment target as before, and that's what developers should
actually target.
in this commit, `naked_asm!` is an alias for `asm!` with one difference: `options(noreturn)` is always enabled by `naked_asm!`. That makes it future-compatible for when `naked_asm!` starts disallowing `options(noreturn)` later.
Use sysroot crates maximally in `rustc_codegen_gcc`.
This shrinks `compiler/rustc_codegen_gcc/Cargo.lock` quite a bit. The only remaining dependencies in `compiler/rustc_codegen_gcc/Cargo.lock` are `gccjit`, `lang_tester`, and `boml`, all of which aren't used in any other compiler crates.
The commit also reorders and adds comments to the `extern crate` items so they match those in miri.
r? ```@Mark-Simulacrum```
It's a very thin wrapper that pairs `MoveDataBuilder` with a `Location`,
and it has four lifetime arguments. This commit removes it by just
adding a `Location` to `MoveDataBuilder`.
There are four related dataflow structs: `MaybeInitializedPlaces`,
`MaybeUninitializedPlaces`, and `EverInitializedPlaces`,
`DefinitelyInitializedPlaces`. They all have a `&Body` and a
`&MoveData<'tcx>` field. The first three use different lifetimes for the
two fields, but the last one uses the same lifetime for both.
This commit changes the first three to use the same lifetime, removing
the need for one of the lifetimes. Other structs that also lose a
lifetime as a result of this are `LivenessContext`, `LivenessResults`,
`InitializationData`.
It then does similar things in various other structs.
Currently it constructs two vectors `calls_to_terminated` and
`cleanups_to_remove` in the main loop, and then processes them after the
main loop. But the processing can be done in the main loop, avoiding the
need for the vectors.
Correctly handle stability of `#[diagnostic]` attributes
This commit changes the way we treat the stability of attributes in the
`#[diagnostic]` namespace. Instead of relaying on ad-hoc checks to
ensure at call side that a certain attribute is really usable at that
location it centralises the logic to one place. For diagnostic
attributes comming from other crates it just skips serializing
attributes that are not stable and that do not have the corresponding
feature enabled. For attributes from the current crate we can just use
the feature information provided by `TyCtx`.
r? `@compiler-errors`