std::iter: document iteration over `&T` and `&mut T`
A colleague of mine is new to Rust, and mentioned that it was “slightly
confusing” to figure out what `&mut` does in iterating over `&mut foo`:
```rust
for value in &mut self.my_vec {
// ...
}
```
My colleague had read the `std::iter` docs and not found the answer
there. There is a brief section at the top about “the three forms of
iteration”, which mentions `iter_mut`, but it doesn’t cover the purpose
of `&mut coll` for a collection `coll`. This patch adds an explanatory
section to the docs. I opted to create a new section so that it can
appear after the note that `impl<I: Iterator> IntoIterator for I`, and
it’s nice for the existing “three forms of iteration” to appear near the
top.
Test Plan:
Ran `./x.py doc library/core`, and the result looked good, including
links. Manually copy-pasted the two doctests into the playground and ran
them.
wchargin-branch: doc-iter-by-reference
A colleague of mine is new to Rust, and mentioned that it was “slightly
confusing” to figure out what `&mut` does in iterating over `&mut foo`:
```rust
for value in &mut self.my_vec {
// ...
}
```
My colleague had read the `std::iter` docs and not found the answer
there. There is a brief section at the top about “the three forms of
iteration”, which mentions `iter_mut`, but it doesn’t cover the purpose
of `&mut coll` for a collection `coll`. This patch adds an explanatory
section to the docs. I opted to create a new section so that it can
appear after the note that `impl<I: Iterator> IntoIterator for I`, and
it’s nice for the existing “three forms of iteration” to appear near the
top.
Implementation note: I haven’t linkified the references to `HashSet` and
`HashMap`, since those are in `std` and these docs are in `core`;
linkifying them gave an “unresolved link” rustdoc error.
Test Plan:
Ran `./x.py doc library/core`, and the result looked good. Manually
copy-pasted the two doctests into the playground and ran them.
wchargin-branch: doc-iter-by-reference
wchargin-source: 0f35369a8a735868621166608797744e97536792
Implement advance_by, advance_back_by for iter::Chain
Part of #77404.
This PR does two things:
- implement `Chain::advance[_back]_by` in terms of `advance[_back]_by` on `self.a` and `advance[_back]_by` on `self.b`
- change `Chain::nth[_back]` to use `advance[_back]_by` on `self.a` and `nth[_back]` on `self.b`
This ensures that `Chain::nth` can take advantage of an efficient `nth` implementation on the second iterator, in case it doesn't implement `advance_by`.
cc `@scottmcm` in case you want to review this
Add Iterator::advance_by and DoubleEndedIterator::advance_back_by
This PR adds the iterator method
```rust
fn advance_by(&mut self, n: usize) -> Result<(), usize>
```
that advances the iterator by `n` elements, returning `Ok(())` if this succeeds or `Err(len)` if the length of the iterator was less than `n`.
Currently `Iterator::nth` is the method to override for efficiently advancing an iterator by multiple elements at once. `advance_by` is superior for this purpose because
- it's simpler to implement: instead of advancing the iterator and producing the next element you only need to advance the iterator
- it composes better: iterators like `Chain` and `FlatMap` can implement `advance_by` in terms of `advance_by` on their inner iterators, but they cannot implement `nth` in terms of `nth` on their inner iterators (see #60395)
- the default implementation of `nth` can trivially be implemented in terms of `advance_by` and `next`, which this PR also does
This PR also adds `DoubleEndedIterator::advance_back_by` for all the same reasons.
I'll make a tracking issue if it's decided this is worth merging. Also let me know if anything can be improved, this went through several iterations so there might very well still be room for improvement (especially in the doc comments). I've written overrides of these methods for most iterators that already override `nth`/`nth_back`, but those still need tests so I'll add them in a later PR.
cc @cuviper @scottmcm @Amanieu
Add doc alias for iterator fold
fold is known in python and javascript as reduce,
not sure about inject but it was written in doc there.
This was my first confusion when coming into rust, I somehow cannot find where is reduce, sometimes I still forget that it is known as `fold`.
It's possible for method resolution to pick this method over a lower
priority stable method, causing compilation errors. Since this method
is permanently unstable, give it a name that is very unlikely to be used
in user code.
Use ops::ControlFlow in rustc_data_structures::graph::iterate
Since I only know about this because you mentioned it,
r? @ecstatic-morse
If we're not supposed to use new `core` things in compiler for a while then feel free to close, but it felt reasonable to merge the two types since they're the same, and it might be convenient for people to use `?` in their traversal code.
(This doesn't do the type parameter swap; NoraCodes has signed up to do that one.)
I believe the documentation is currently a little misleading.
For example, in the docs for `filter()`:
> If the closure returns `false`, it will try again, and call the closure on
> the next element, seeing if it passes the test.
This kind of implies that if the closure returns true then we *don't* "try
again" and no further elements are considered. In actuality that's not the
case, every element is tried regardless of what happened with the previous
element.
This change tries to clarify that by removing the uses of "try again"
altogether.