Winnow specialized impls during selection in new solver
We need to be able to winnow impls that are specialized by more specific impls in order for codegen to be able to proceed.
r? ``@lcnr``
add `ecx.probe_candidate`
Not yet changing the candidate source to an enum because that would be more involved, but this by itself should already be a significant improvement imo
r? `@BoxyUwU`
Rollup of 5 pull requests
Successful merges:
- #113192 (`assemble_candidates_after_normalizing_self_ty` docs)
- #113251 (Use scoped-tls for SMIR to map between TyCtxt and SMIR datastructures)
- #113282 (Update platform-support.md to improve ARM target descriptions)
- #113296 (add flag for enabling global cache usage for proof trees and printing proof trees on error)
- #113324 (implement `ConstEvaluatable` goals in new solver)
r? `@ghost`
`@rustbot` modify labels: rollup
implement `ConstEvaluatable` goals in new solver
this only supports stable const generics. `feature(generic_const_exprs)` needs to extend that function is non-trivial ways. Leaving this for someone else or some later date.
r? `@BoxyUwU`
add flag for enabling global cache usage for proof trees and printing proof trees on error
This adds a few new things:
- `-Zdump-solver-proof-tree=always/never/on-error`
- `always`/`never` were previosuly specifiable by whether the flag exists or not, th new flag is `on_error` which reruns obligations of fulfillment and selection errors with proof tree generation enabled and prints them out
- `-Zdump-solver-proof-tree-uses-cache`
- allows forcing global cache to be used or unused for all generated proof trees, global cache is enabled by default for `always` so that it accurately represents what happend. This flag currently would affect misc uses of `GenerateProofTree::Yes` which will be added in the future for things like diagnostics logic and rustdoc's auto_trait file. We can fix this when we start using proof tree generation for those use cases if it's desirable.
I also changed the output to go straight to stdout instead of going through `debug!` so that `-Zdump-solver-proof-tree` can be adequately used on `nightly` not just a locally built toolchain.
The idea for `on-error` is that it should hopefully make it easier to quickly figure out "why doesnt this code compile"- you just pass in `-Zdump-solver-proof-tree=on-error` and you'll only get proof trees you care about.
---
r? `@lcnr` `@compiler-errors`
`assemble_candidates_after_normalizing_self_ty` docs
I already explained that in different places a few times, should have added that explanation as a doc comment the first time I did so :3
r? `@BoxyUwU`
Add a fully fledged `Clause` type, rename old `Clause` to `ClauseKind`
Does two basic things before I put up a more delicate set of PRs (along the lines of #112714, but hopefully much cleaner) that migrate existing usages of `ty::Predicate` to `ty::Clause` (`predicates_of`/`item_bounds`/`ParamEnv::caller_bounds`).
1. Rename `Clause` to `ClauseKind`, so it's parallel with `PredicateKind`.
2. Add a new `Clause` type which is parallel to `Predicate`.
* This type exposes `Clause::kind(self) -> Binder<'tcx, ClauseKind<'tcx>>` which is parallel to `Predicate::kind` 😸
The new `Clause` type essentially acts as a newtype wrapper around `Predicate` that asserts that it is specifically a `PredicateKind::Clause`. Turns out from experimentation[^1] that this is not negative performance-wise, which is wonderful, since this a much simpler design than something that requires encoding the discriminant into the alignment bits of a predicate kind, or something else like that...
r? ``@lcnr`` or ``@oli-obk``
[^1]: https://github.com/rust-lang/rust/pull/112714#issuecomment-1595653910
Add `implement_via_object` to `rustc_deny_explicit_impl` to control object candidate assembly
Some built-in traits are special, since they are used to prove facts about the program that are important for later phases of compilation such as codegen and CTFE. For example, the `Unsize` trait is used to assert to the compiler that we are able to unsize a type into another type. It doesn't have any methods because it doesn't actually *instruct* the compiler how to do this unsizing, but this is later used (alongside an exhaustive match of combinations of unsizeable types) during codegen to generate unsize coercion code.
Due to this, these built-in traits are incompatible with the type erasure provided by object types. For example, the existence of `dyn Unsize<T>` does not mean that the compiler is able to unsize `Box<dyn Unsize<T>>` into `Box<T>`, since `Unsize` is a *witness* to the fact that a type can be unsized, and it doesn't actually encode that unsizing operation in its vtable as mentioned above.
The old trait solver gets around this fact by having complex control flow that never considers object bounds for certain built-in traits:
2f896da247/compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs (L61-L132)
However, candidate assembly in the new solver is much more lovely, and I'd hate to add this list of opt-out cases into the new solver. Instead of maintaining this complex and hard-coded control flow, instead we can make this a property of the trait via a built-in attribute. We already have such a build attribute that's applied to every single trait that we care about: `rustc_deny_explicit_impl`. This PR adds `implement_via_object` as a meta-item to that attribute that allows us to opt a trait out of object-bound candidate assembly as well.
r? `@lcnr`