interpret: support for per-byte provenance
Also factors the provenance map into its own module.
The third commit does the same for the init mask. I can move it in a separate PR if you prefer.
Fixes https://github.com/rust-lang/miri/issues/2181
r? `@oli-obk`
There's a bunch of these checks because of special handing for ZSTs in various unsafe implementations of stuff.
This lets them be `T::IS_ZST` instead of `mem::size_of::<T>() == 0` every time, making them both more readable and more terse.
*Not* proposed for stabilization at this time. Would be `pub(crate)` except `alloc` wants to use it too.
(And while it doesn't matter now, if we ever get something like 85836 making it a const can help codegen be simpler.)
mem::uninitialized: mitigate many incorrect uses of this function
Alternative to https://github.com/rust-lang/rust/pull/98966: fill memory with `0x01` rather than leaving it uninit. This is definitely bitewise valid for all `bool` and nonnull types, and also those `Option<&T>` that we started putting `noundef` on. However it is still invalid for `char` and some enums, and on references the `dereferenceable` attribute is still violated, so the generated LLVM IR still has UB -- but in fewer cases, and `dereferenceable` is hopefully less likely to cause problems than clearly incorrect range annotations.
This can make using `mem::uninitialized` a lot slower, but that function has been deprecated for years and we keep telling everyone to move to `MaybeUninit` because it is basically impossible to use `mem::uninitialized` correctly. For the cases where that hasn't helped (and all the old code out there that nobody will ever update), we can at least mitigate the effect of using this API. Note that this is *not* in any way a stable guarantee -- it is still UB to call `mem::uninitialized::<bool>()`, and Miri will call it out as such.
This is somewhat similar to https://github.com/rust-lang/rust/pull/87032, which proposed to make `uninitialized` return a buffer filled with 0x00. However
- That PR also proposed to reduce the situations in which we panic, which I don't think we should do at this time.
- The 0x01 bit pattern means that nonnull requirements are satisfied, which (due to references) is the most common validity invariant.
`@5225225` I hope I am using `cfg(sanitize)` the right way; I was not sure for which ones to test here.
Cc https://github.com/rust-lang/rust/issues/66151
Fixes https://github.com/rust-lang/rust/issues/87675
This initial implementation handles transmutations between types with specified layouts, except when references are involved.
Co-authored-by: Igor null <m1el.2027@gmail.com>
Add `core::mem::copy` to complement `core::mem::drop`.
This is useful for combinators. I didn't add `clone` since you can already
use `Clone::clone` in its place; copy has no such corresponding function.
Make non-power-of-two alignments a validity error in `Layout`
Inspired by the zulip conversation about how `Layout` should better enforce `size <= isize::MAX as usize`, this uses an N-variant enum on N-bit platforms to require at the validity level that the existing invariant of "must be a power of two" is upheld.
This was MIRI can catch it, and means there's a more-specific type for `Layout` to store than just `NonZeroUsize`.
It's left as `pub(crate)` here; a future PR could consider giving it a tracking issue for non-internal usage.
Inspired by the zulip conversation about how `Layout` should better enforce `size < isize::MAX as usize`, this uses an N-variant enum on N-bit platforms to require at the validity level that the existing invariant of "must be a power of two" is upheld.
This was MIRI can catch it, and means there's a more-specific type for `Layout` to store than just `NonZeroUsize`.
Like I previously did for `reverse`, this leaves it to LLVM to pick how to vectorize it, since it can know better the chunk size to use, compared to the "32 bytes always" approach we currently have.
It does still need logic to type-erase where appropriate, though, as while LLVM is now smart enough to vectorize over slices of things like `[u8; 4]`, it fails to do so over slices of `[u8; 3]`.
As a bonus, this also means one no longer gets the spurious `memcpy`(s?) at the end up swapping a slice of `__m256`s: <https://rust.godbolt.org/z/joofr4v8Y>
Fix may not to appropriate might not or must not
I went through and changed occurrences of `may not` to be more explicit with `might not` and `must not`.
These functions can panic for some types. This makes the panic point to
the code that calls e.g. mem::uninitialized(), instead of inside the
definition of mem::uninitialized.