This is somewhat important because LLVM enables the pass based on
target architecture, but support by the target OS also matters.
For example, XRay attributes are processed by codegen for macOS
targets, but Apple linker fails to process relocations in XRay
data sections, so the feature as a whole is not supported there
for the time being.
Various cleanups around pre-TyCtxt queries and functions
part of #105462
based on https://github.com/rust-lang/rust/pull/106776 (everything starting at [0e2b39f](0e2b39fd1f) is new in this PR)
r? `@petrochenkov`
I think this should be most of the uncontroversial part of #105462.
Add LLVM KCFI support to the Rust compiler
This PR adds LLVM Kernel Control Flow Integrity (KCFI) support to the Rust compiler. It initially provides forward-edge control flow protection for operating systems kernels for Rust-compiled code only by aggregating function pointers in groups identified by their return and parameter types. (See llvm/llvm-project@cff5bef.)
Forward-edge control flow protection for C or C++ and Rust -compiled code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code share the same virtual address space) will be provided in later work as part of this project by identifying C char and integer type uses at the time types are encoded (see Type metadata in the design document in the tracking issue #89653).
LLVM KCFI can be enabled with -Zsanitizer=kcfi.
Thank you again, `@bjorn3,` `@eddyb,` `@nagisa,` and `@ojeda,` for all the help!
This commit adds LLVM Kernel Control Flow Integrity (KCFI) support to
the Rust compiler. It initially provides forward-edge control flow
protection for operating systems kernels for Rust-compiled code only by
aggregating function pointers in groups identified by their return and
parameter types. (See llvm/llvm-project@cff5bef.)
Forward-edge control flow protection for C or C++ and Rust -compiled
code "mixed binaries" (i.e., for when C or C++ and Rust -compiled code
share the same virtual address space) will be provided in later work as
part of this project by identifying C char and integer type uses at the
time types are encoded (see Type metadata in the design document in the
tracking issue #89653).
LLVM KCFI can be enabled with -Zsanitizer=kcfi.
Co-authored-by: bjorn3 <17426603+bjorn3@users.noreply.github.com>
On type error with long types, print an abridged type and write the full
type to disk.
Print the widest possible short type while still fitting in the
terminal.
make `error_reported` check for delayed bugs
Fixes#104768
`error_reported()` was only checking if there were errors emitted, not for `delay_bug`s which can also be a source of `ErrorGuaranteed`. I assume the same is true of `lint_err_count` but i dont know
Use `as_deref` in compiler (but only where it makes sense)
This simplifies some code :3
(there are some changes that are not exacly `as_deref`, but more like "clever `Option`/`Result` method use")
improve `filesearch::get_or_default_sysroot`
`fn get_or_default_sysroot` is now improved and used in `miri` and `clippy`, and tests are still passing as they should. So we no longer need to implement custom workarounds/hacks to find sysroot in tools like miri/clippy.
Resolves https://github.com/rust-lang/rust/issues/98832
re-opened from #103581
Allow use of `-Clto=thin` with `-Ccodegen-units=1` in general
The current logic to ignore ThinLTO when `-Ccodegen-units=1` makes sense for local ThinLTO but even in this scenario, a user may still want (non-local) ThinLTO for the purpose of optimizing dependencies into the final crate which is being compiled with 1 CGU.
The previous behavior was even more confusing because if you were generating a binary (`--emit=link`), then you would get ThinLTO but if you asked for LLVM IR or bytecode, then it would silently change to using regular LTO.
With this change, we only override the defaults for local ThinLTO if you ask for a single output such as LLVM IR or bytecode and in all other cases honor the requested LTO setting.
r? `@michaelwoerister`
Track where diagnostics were created.
This implements the `-Ztrack-diagnostics` flag, which uses `#[track_caller]` to track where diagnostics are created. It is meant as a debugging tool much like `-Ztreat-err-as-bug`.
For example, the following code...
```rust
struct A;
struct B;
fn main(){
let _: A = B;
}
```
...now emits the following error message:
```
error[E0308]: mismatched types
--> src\main.rs:5:16
|
5 | let _: A = B;
| - ^ expected struct `A`, found struct `B`
| |
| expected due to this
-Ztrack-diagnostics: created at compiler\rustc_infer\src\infer\error_reporting\mod.rs:2275:31
```
The current logic to ignore ThinLTO when `-Ccodegen-units=1` makes sense
for local ThinLTO but even in this scenario, a user may still want
(non-local) ThinLTO for the purpose of optimizing dependencies into the
final crate which is being compiled with 1 CGU.
The previous behavior was even more confusing because if you were
generating a binary (`--emit=link`), then you would get ThinLTO but if
you asked for LLVM IR or bytecode, then it would silently change to
using regular LTO.
With this change, we only override the defaults for local ThinLTO if you
ask for a single output such as LLVM IR or bytecode and in all other
cases honor the requested LTO setting.
translation: doc comments with derives, subdiagnostic-less enum variants, more derive use
- Adds support for `doc` attributes in the diagnostic derives so that documentation comments don't result in the derive failing.
- Adds support for enum variants in the subdiagnostic derive to not actually correspond to an addition to a diagnostic.
- Made use of the derive in more places in the `rustc_ast_lowering`, `rustc_ast_passes`, `rustc_lint`, `rustc_session`, `rustc_infer` - taking advantage of recent additions like eager subdiagnostics, multispan suggestions, etc.
cc #100717
Add `Noted` marker struct that implements `EmissionGuarantee` so that
`emit_note` and `create_note` can be implemented for struct diagnostics.
Signed-off-by: David Wood <david.wood@huawei.com>
The compiler currently has `-Ztime` and `-Ztime-passes`. I've used
`-Ztime-passes` for years but only recently learned about `-Ztime`.
What's the difference? Let's look at the `-Zhelp` output:
```
-Z time=val -- measure time of rustc processes (default: no)
-Z time-passes=val -- measure time of each rustc pass (default: no)
```
The `-Ztime-passes` description is clear, but the `-Ztime` one is less so.
Sounds like it measures the time for the entire process?
No. The real difference is that `-Ztime-passes` prints out info about passes,
and `-Ztime` does the same, but only for a subset of those passes. More
specifically, there is a distinction in the profiling code between a "verbose
generic activity" and an "extra verbose generic activity". `-Ztime-passes`
prints both kinds, while `-Ztime` only prints the first one. (It took me
a close reading of the source code to determine this difference.)
In practice this distinction has low value. Perhaps in the past the "extra
verbose" output was more voluminous, but now that we only print stats for a
pass if it exceeds 5ms or alters the RSS, `-Ztime-passes` is less spammy. Also,
a lot of the "extra verbose" cases are for individual lint passes, and you need
to also use `-Zno-interleave-lints` to see those anyway.
Therefore, this commit removes `-Ztime` and the associated machinery. One thing
to note is that the existing "extra verbose" activities all have an extra
string argument, so the commit adds the ability to accept an extra argument to
the "verbose" activities.
In #101230, the internal diagnostic migration lints -
`diagnostic_outside_of_impl` and `untranslatable_diagnostic` - were
modified so that they wouldn't trigger on functions annotated with
`#[rustc_lint_diagnostics]`. However, this change has to make it into
the bootstrap compiler before the `#[allow]` annotations that it aims to
remove can be removed, which is possible now that #102051 has landed.
Signed-off-by: David Wood <david.wood@huawei.com>
FIX - ambiguous Diagnostic link in docs
UPDATE - rename diagnostic_items to IntoDiagnostic and AddToDiagnostic
[Gardening] FIX - formatting via `x fmt`
FIX - rebase conflicts. NOTE: Confirm wheather or not we want to handle TargetDataLayoutErrorsWrapper this way
DELETE - unneeded allow attributes in Handler method
FIX - broken test
FIX - Rebase conflict
UPDATE - rename residual _SessionDiagnostic and fix LintDiag link
This commit removes the allows rules for the SessionDiagnostic lint
that were being used in the session.rs file.
Thanks to the PR #101230 we do not need to annotate the methods with
the allow rule as they are part of the diagnostic machinery.
Suggested by the team in this Zulip Topic https://rust-lang.zulipchat.com/#narrow/stream/336883-i18n/topic/.23100717.20SessionDiagnostic.20on.20Handler
Handler already has almost all the capabilities of ParseSess when it comes to diagnostic emission, in this migration we only needed to add the ability to access source_map from the emitter in order to get a Snippet and the start_point. Not sure if this is the best way to address this gap