Expand `for_loops_over_fallibles` lint to lint on fallibles behind references.
Extends the scope of the (warn-by-default) lint `for_loops_over_fallibles` from just `for _ in x` where `x: Option<_>/Result<_, _>` to also cover `x: &(mut) Option<_>/Result<_>`
```rs
fn main() {
// Current lints
for _ in Some(42) {}
for _ in Ok::<_, i32>(42) {}
// New lints
for _ in &Some(42) {}
for _ in &mut Some(42) {}
for _ in &Ok::<_, i32>(42) {}
for _ in &mut Ok::<_, i32>(42) {}
// Should not lint
for _ in Some(42).into_iter() {}
for _ in Some(42).iter() {}
for _ in Some(42).iter_mut() {}
for _ in Ok::<_, i32>(42).into_iter() {}
for _ in Ok::<_, i32>(42).iter() {}
for _ in Ok::<_, i32>(42).iter_mut() {}
}
```
<details><summary><code>cargo build</code> diff</summary>
```diff
diff --git a/old.out b/new.out
index 84215aa..ca195a7 100644
--- a/old.out
+++ b/new.out
`@@` -1,33 +1,93 `@@`
warning: for loop over an `Option`. This is more readably written as an `if let` statement
--> src/main.rs:3:14
|
3 | for _ in Some(42) {}
| ^^^^^^^^
|
= note: `#[warn(for_loops_over_fallibles)]` on by default
help: to check pattern in a loop use `while let`
|
3 | while let Some(_) = Some(42) {}
| ~~~~~~~~~~~~~~~ ~~~
help: consider using `if let` to clear intent
|
3 | if let Some(_) = Some(42) {}
| ~~~~~~~~~~~~ ~~~
warning: for loop over a `Result`. This is more readably written as an `if let` statement
--> src/main.rs:4:14
|
4 | for _ in Ok::<_, i32>(42) {}
| ^^^^^^^^^^^^^^^^
|
help: to check pattern in a loop use `while let`
|
4 | while let Ok(_) = Ok::<_, i32>(42) {}
| ~~~~~~~~~~~~~ ~~~
help: consider using `if let` to clear intent
|
4 | if let Ok(_) = Ok::<_, i32>(42) {}
| ~~~~~~~~~~ ~~~
-warning: `for-loops-over-fallibles` (bin "for-loops-over-fallibles") generated 2 warnings
- Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.04s
+warning: for loop over a `&Option`. This is more readably written as an `if let` statement
+ --> src/main.rs:7:14
+ |
+7 | for _ in &Some(42) {}
+ | ^^^^^^^^^
+ |
+help: to check pattern in a loop use `while let`
+ |
+7 | while let Some(_) = &Some(42) {}
+ | ~~~~~~~~~~~~~~~ ~~~
+help: consider using `if let` to clear intent
+ |
+7 | if let Some(_) = &Some(42) {}
+ | ~~~~~~~~~~~~ ~~~
+
+warning: for loop over a `&mut Option`. This is more readably written as an `if let` statement
+ --> src/main.rs:8:14
+ |
+8 | for _ in &mut Some(42) {}
+ | ^^^^^^^^^^^^^
+ |
+help: to check pattern in a loop use `while let`
+ |
+8 | while let Some(_) = &mut Some(42) {}
+ | ~~~~~~~~~~~~~~~ ~~~
+help: consider using `if let` to clear intent
+ |
+8 | if let Some(_) = &mut Some(42) {}
+ | ~~~~~~~~~~~~ ~~~
+
+warning: for loop over a `&Result`. This is more readably written as an `if let` statement
+ --> src/main.rs:9:14
+ |
+9 | for _ in &Ok::<_, i32>(42) {}
+ | ^^^^^^^^^^^^^^^^^
+ |
+help: to check pattern in a loop use `while let`
+ |
+9 | while let Ok(_) = &Ok::<_, i32>(42) {}
+ | ~~~~~~~~~~~~~ ~~~
+help: consider using `if let` to clear intent
+ |
+9 | if let Ok(_) = &Ok::<_, i32>(42) {}
+ | ~~~~~~~~~~ ~~~
+
+warning: for loop over a `&mut Result`. This is more readably written as an `if let` statement
+ --> src/main.rs:10:14
+ |
+10 | for _ in &mut Ok::<_, i32>(42) {}
+ | ^^^^^^^^^^^^^^^^^^^^^
+ |
+help: to check pattern in a loop use `while let`
+ |
+10 | while let Ok(_) = &mut Ok::<_, i32>(42) {}
+ | ~~~~~~~~~~~~~ ~~~
+help: consider using `if let` to clear intent
+ |
+10 | if let Ok(_) = &mut Ok::<_, i32>(42) {}
+ | ~~~~~~~~~~ ~~~
+
+warning: `for-loops-over-fallibles` (bin "for-loops-over-fallibles") generated 6 warnings
+ Finished `dev` profile [unoptimized + debuginfo] target(s) in 0.02s
```
</details>
-----
Question:
* ~~Currently, the article `an` is used for `&Option`, and `&mut Option` in the lint diagnostic, since that's what `Option` uses. Is this okay or should it be changed? (likewise, `a` is used for `&Result` and `&mut Result`)~~ The article `a` is used for `&Option`, `&mut Option`, `&Result`, `&mut Result` and (as before) `Result`. Only `Option` uses `an` (as before).
`@rustbot` label +A-lint
Rollup of 7 pull requests
Successful merges:
- #125043 (reference type safety invariant docs: clarification)
- #125306 (Force the inner coroutine of an async closure to `move` if the outer closure is `move` and `FnOnce`)
- #125355 (Use Backtrace::force_capture instead of Backtrace::capture in rustc_log)
- #125382 (rustdoc: rename `issue-\d+.rs` tests to have meaningful names (part 7))
- #125391 (Minor serialize/span tweaks)
- #125395 (Remove unnecessary `.md` from the documentation sidebar)
- #125399 (Stop using `to_hir_binop` in codegen)
r? `@ghost`
`@rustbot` modify labels: rollup
reference type safety invariant docs: clarification
The old text could have been read as saying that you can call a function if these requirements are upheld, which is definitely not true as they are an underapproximation of the actual safety invariant.
I removed the part about functions relaxing the requirements via their documentation... this seems incoherent with saying that it may actually be unsound to ever temporarily violate the requirement. Furthermore, a function *cannot* just relax this for its return value, that would in general be unsound. And the part about "unsafe code in a safe function may assume these invariants are ensured of arguments passed by the caller" also interacts with relaxing things: clearly, if the invariant has been relaxed, unsafe code cannot rely on it any more. There may be a place to give general guidance on what kinds of function contracts can exist, but the reference type is definitely not the right place to write that down.
I also took a clarification from https://github.com/rust-lang/rust/pull/121965 that is orthogonal to the rest of that PR.
Cc ```@joshlf``` ```@scottmcm```
miri: rename intrinsic_fallback_checks_ub to intrinsic_fallback_is_spec
Checking UB is not the only concern, we also have to make sure we are not losing out on non-determinism.
r? ``@oli-obk`` (not urgent, take your time)
offset: allow zero-byte offset on arbitrary pointers
As per prior `@rust-lang/opsem` [discussion](https://github.com/rust-lang/opsem-team/issues/10) and [FCP](https://github.com/rust-lang/unsafe-code-guidelines/issues/472#issuecomment-1793409130):
- Zero-sized reads and writes are allowed on all sufficiently aligned pointers, including the null pointer
- Inbounds-offset-by-zero is allowed on all pointers, including the null pointer
- `offset_from` on two pointers derived from the same allocation is always allowed when they have the same address
This removes surprising UB (in particular, even C++ allows "nullptr + 0", which we currently disallow), and it brings us one step closer to an important theoretical property for our semantics ("provenance monotonicity": if operations are valid on bytes without provenance, then adding provenance can't make them invalid).
The minimum LLVM we require (v17) includes https://reviews.llvm.org/D154051, so we can finally implement this.
The `offset_from` change is needed to maintain the equivalence with `offset`: if `let ptr2 = ptr1.offset(N)` is well-defined, then `ptr2.offset_from(ptr1)` should be well-defined and return N. Now consider the case where N is 0 and `ptr1` dangles: we want to still allow offset_from here.
I think we should change offset_from further, but that's a separate discussion.
Fixes https://github.com/rust-lang/rust/issues/65108
[Tracking issue](https://github.com/rust-lang/rust/issues/117945) | [T-lang summary](https://github.com/rust-lang/rust/pull/117329#issuecomment-1951981106)
Cc `@nikic`
Add opt-for-size core lib feature flag
Adds a feature flag to the core library that enables the possibility to have smaller implementations for certain algorithms.
So far, the core lib has traded performance for binary size. This is likely what most people want since they have big simd-capable machines. However, people on small machines, like embedded devices, don't enjoy the potential speedup of the bigger algorithms, but do have to pay for them. These microcontrollers often only have 16-1024kB of flash memory.
This PR is the result of some talks with project members like `@Amanieu` at RustNL.
There are some open questions of how this is eventually stabilized, but it's a similar question as with the existing `panic_immediate_abort` feature.
Speaking as someone from the embedded side, we'd rather have this unstable for a while as opposed to not having it at all. In the meantime we can try to use it and also add additional PRs to the core lib that uses the feature flag in areas where we find benefit.
Open questions from my side:
- Is this a good feature name?
- `panic_immediate_abort` is fairly verbose, so I went with something equally verbose
- It's easy to refactor later
- I've added the feature to `std` and `alloc` as well as they might benefit too. Do we agree?
- I expect these to get less usage out of the flag since most size-constraint projects don't use these libraries often.
Instead of having a single loop that works on utf-8 `char`s,
this splits the implementation into a loop that quickly skips over
printable ASCII, falling back to per-char iteration for other chunks.
Instead of writing each `char` of an escape sequence one by one,
this delegates to `Display`, which uses `write_str` internally
in order to write the whole escape sequence at once.
Re-add `From<f16> for f64`
This impl was originally added in #122470 before being removed in #123830 due to #123831. However, the issue only affects `f32` (which currently only has one `From<{float}>` impl, `From<f32>`) as `f64` already has two `From<{float}>` impls (`From<f32>` and `From<f64>`) and is also the float literal fallback type anyway. Therefore it is safe to re-add `From<f16> for f64`.
This PR also updates the FIXME link to point to the open issue #123831 rather than the closed issue #123824.
Tracking issue: #116909
`@rustbot` label +F-f16_and_f128 +T-libs-api
- `slice::sort` -> driftsort
https://github.com/Voultapher/sort-research-rs/blob/main/writeup/driftsort_introduction/text.md
- `slice::sort_unstable` -> ipnsort
https://github.com/Voultapher/sort-research-rs/blob/main/writeup/ipnsort_introduction/text.md
Replaces the sort implementations with tailor made ones that strike a
balance of run-time, compile-time and binary-size, yielding run-time and
compile-time improvements. Regressing binary-size for `slice::sort`
while improving it for `slice::sort_unstable`. All while upholding the
existing soft and hard safety guarantees, and even extending the soft
guarantees, detecting strict weak ordering violations with a high chance
and reporting it to users via a panic.
In addition the implementation of `select_nth_unstable` is also adapted
as it uses `slice::sort_unstable` internals.
Refactor examples and enhance documentation in result.rs
- Replaced `map` with `map_err` in the error handling example for correctness
- Reordered example code to improve readability and logical flow
- Added assertions to examples to demonstrate expected outcomes
Invert comparison in `uN::checked_sub`
After #124114, LLVM no longer combines the comparison and subtraction in `uN::checked_sub` when either operand is a constant (demo: https://rust.godbolt.org/z/MaeoYbsP1). The difference is more pronounced when the expression is slightly more complex (https://rust.godbolt.org/z/4rPavsYdc).
This is due to the use of `>=` here:
ee97564e3a/library/core/src/num/uint_macros.rs (L581-L593)
For constant `C`, LLVM eagerly converts `a >= C` into `a > C - 1`, but the backend can only combine `a < C` with `a - C`, not `C - 1 < a` and `a - C`: e586556e37/llvm/lib/CodeGen/CodeGenPrepare.cpp (L1697-L1742)
This PR[^1] simply inverts the `>=` into `<` to restore the LLVM magic, and somewhat align this with the implementation of `uN::overflowing_sub` from #103299.
When the result is stored as an `Option` (rather than being branched/cmoved on), the discriminant is `self >= rhs`. This PR doesn't affect the codegen (and relevant tests) of that since LLVM will negate `self < rhs` to `self >= rhs` when necessary.
[^1]: Note to `self`: My very first contribution to publicly-used code. Hopefully like what I should learn to always be, tiny and humble.
Many, many projects use `size_of` to get the size of a type. However,
it's also often equally easy to hardcode a size (e.g. `8` instead of
`size_of::<u64>()`). Minimizing friction in the use of `size_of` helps
ensure that people use it and make code more self-documenting.
The name `size_of` is unambiguous: the name alone, without any prefix or
path, is self-explanatory and unmistakeable for any other functionality.
Adding it to the prelude cannot produce any name conflicts, as any local
definition will silently shadow the one from the prelude. Thus, we don't
need to wait for a new edition prelude to add it.
Add `size_of_val`, `align_of`, and `align_of_val` as well, with similar
justification: widely useful, self-explanatory, unmistakeable for
anything else, won't produce conflicts.