For a single impl candidate, try to unify it with error trait ref
This allows us to point out an exact type mismatch when there's only one applicable impl.
cc `@asquared31415`
r? `@estebank`
When these methods were originally written, I wasn't aware that
`newtype_index!` already supports addition with ordinary numbers, without
needing to unwrap and re-wrap.
If a BCB has more than one code region, those extra regions can now all be
stored in the same coverage statement, instead of being stored in additional
statements.
The concrete type `CoverageSpan` is no longer used outside of the `spans`
module.
This is a separate patch to avoid noise in the preceding patch that actually
encapsulates coverage spans.
By encapsulating the coverage spans in a struct, we can change the internal
representation without disturbing existing call sites. This will be useful for
grouping coverage spans by BCB.
This patch includes some changes that were originally in #115912, which avoid
the need for a particular test to deal with coverage spans at all.
(Comments/logs referring to `CoverageSpan` are updated in a subsequent patch.)
We're stabilizing `async fn` in trait (AFIT), but we have some
reservations about how people might use this in the definitions of
publicly-visible traits, so we're going to lint about that.
This is a bit of an odd lint for `rustc`. We normally don't lint just
to have people confirm that they understand how Rust works. But in
this one exceptional case, this seems like the right thing to do as
compared to the other plausible alternatives.
In this commit, we describe the nature of this odd lint.
bootstrap major change detection implementation
The use of `changelog-seen` and `bootstrap/CHANGELOG.md` has not been functional in any way for many years. We often do major/breaking changes but never update the changelog file or the `changelog-seen`. This is an alternative method for tracking major or breaking changes and informing developers when such changes occur.
Example output when bootstrap detects a major change:

Cleanup number handling in match exhaustiveness
Doing a little bit of cleanup; handling number constants was somewhat messy. In particular, this:
- evals float consts once instead of repetitively
- reduces `Constructor` from 88 bytes to 56 (`mir::Const` is big!)
The `fast_try_eval_bits` function was mostly constructed from inlining existing code but I don't fully understand it; I don't follow how consts work and are evaluated very well.