`#[inline]` non-generic `pub fn`s in `rustc_target::abi` and `ty::layout`.
Mostly doing this as a perf curiosity, having spotted that `#[inline]` usage is a bit spotty.
lazily "compute" anon const default substs
Continuing the work of #83086, this implements the discussed solution for the [unused substs problem](https://github.com/rust-lang/project-const-generics/blob/master/design-docs/anon-const-substs.md#unused-substs). As of now, anonymous constants inherit all of their parents generics, even if they do not use them, e.g. in `fn foo<T, const N: usize>() -> [T; N + 1]`, the array length has `T` as a generic parameter even though it doesn't use it. These *unused substs* cause some backwards incompatible, and imo incorrect behavior, e.g. #78369.
---
We do not actually filter any generic parameters here and the `default_anon_const_substs` query still a dummy which only checks that
- we now prevent the previously existing query cycles and are able to call `predicates_of(parent)` when computing the substs of anonymous constants
- the default anon consts substs only include the typeflags we assume it does.
Implementing that filtering will be left as future work.
---
The idea of this PR is to delay the creation of the anon const substs until after we've computed `predicates_of` for the parent of the anon const. As the predicates of the parent can however contain the anon const we still have to create a `ty::Const` for it.
We do this by changing the substs field of `ty::Unevaluated` to an option and modifying accesses to instead call the method `unevaluated.substs(tcx)` which returns the substs as before. If the substs - now `substs_` - of `ty::Unevaluated` are `None`, it means that the anon const currently has its default substs, i.e. the substs it has when first constructed, which are the generic parameters it has available. To be able to call `unevaluated.substs(tcx)` in a `TypeVisitor`, we add the non-defaulted method `fn tcx_for_anon_const_substs(&self) -> Option<TyCtxt<'tcx>>`. In case `tcx_for_anon_const_substs` returns `None`, unknown anon const default substs are skipped entirely.
Even when `substs_` is `None` we still have to treat the constant as if it has its default substs. To do this, `TypeFlags` are modified so that it is clear whether they can still change when *exposing* any anon const default substs. A new flag, `HAS_UNKNOWN_DEFAULT_CONST_SUBSTS`, is added in case some default flags are missing.
The rest of this PR are some smaller changes to either not cause cycles by trying to access the default anon const substs too early or to be able to access the `tcx` in previously unused locations.
cc `@rust-lang/project-const-generics`
r? `@nikomatsakis`
Morph `layout_raw` query into `layout_of`.
Before this PR, `LayoutCx::layout_of` wrapped the `layout_raw` query, to:
* normalize the type, before attempting to compute the layout
* pass the layout to `record_layout_for_printing`, for `-Zprint-type-sizes`
Moving those two responsibilities into the query may reduce overhead (due to cached calls skipping those steps), but I want to do a perf run to know.
One of the changes I had to make was changing the return type of the query, to be able to both get out the type produced by normalizing inside the query *and* to match the signature of the old `TyCtxt::layout_of`. This change may be worse, perf-wise, so that's another reason I want to check.
r? `@nagisa` cc `@oli-obk`
Normalize projections under binders
Fixes#70243Fixes#70120Fixes#62529Fixes#87219
Issues to followup on after (probably fixed, but no test added here):
#76956#56556#79207#85636
r? `@nikomatsakis`
Use custom wrap-around type instead of RangeInclusive
Two reasons:
1. More memory is allocated than necessary for `valid_range` in `Scalar`. The range is not used as an iterator and `exhausted` is never used.
2. `contains`, `count` etc. methods in `RangeInclusive` are doing very unhelpful(and dangerous!) things when used as a wrap-around range. - In general this PR wants to limit potentially confusing methods, that have a low probability of working.
Doing a local perf run, every metric shows improvement except for instructions.
Max-rss seem to have a very consistent improvement.
Sorry - newbie here, probably doing something wrong.
This commit intends to fill out some of the remaining pieces of the
C-unwind ABI. This has a number of other changes with it though to move
this design space forward a bit. Notably contained within here is:
* On `panic=unwind`, the `extern "C"` ABI is now considered as "may
unwind". This fixes a longstanding soundness issue where if you
`panic!()` in an `extern "C"` function defined in Rust that's actually
UB because the LLVM representation for the function has the `nounwind`
attribute, but then you unwind.
* Whether or not a function unwinds now mainly considers the ABI of the
function instead of first checking the panic strategy. This fixes a
miscompile of `extern "C-unwind"` with `panic=abort` because that ABI
can still unwind.
* The aborting stub for non-unwinding ABIs with `panic=unwind` has been
reimplemented. Previously this was done as a small tweak during MIR
generation, but this has been moved to a separate and dedicated MIR
pass. This new pass will, for appropriate functions and function
calls, insert a `cleanup` landing pad for any function call that may
unwind within a function that is itself not allowed to unwind. Note
that this subtly changes some behavior from before where previously on
an unwind which was caught-to-abort it would run active destructors in
the function, and now it simply immediately aborts the process.
* The `#[unwind]` attribute has been removed and all users in tests and
such are now using `C-unwind` and `#![feature(c_unwind)]`.
I think this is largely the last piece of the RFC to implement.
Unfortunately I believe this is still not stabilizable as-is because
activating the feature gate changes the behavior of the existing `extern
"C"` ABI in a way that has no replacement. My thinking for how to enable
this is that we add support for the `C-unwind` ABI on stable Rust first,
and then after it hits stable we change the behavior of the `C` ABI.
That way anyone straddling stable/beta/nightly can switch to `C-unwind`
safely.
Replace associated item bound vars with placeholders when projecting
Fixes#76407Fixes#76826
Similar, but more limited, to #85499. This allows us to handle things like `for<'a> <T as Trait>::Assoc<'a>` but not `for<'a> <T as Trait<'a>>::Assoc`, unblocking GATs.
r? `@nikomatsakis`
Fix ICE during type layout when there's a `[type error]`
Fixes#84108.
Based on estebank's [comment], except I used `delay_span_bug` because it
should work in more cases, and I think it expresses its intent more
clearly.
r? `@estebank`
[comment]: https://github.com/rust-lang/rust/issues/84108#issuecomment-818916848
This commit implements the idea of a new ABI for the WebAssembly target,
one called `"wasm"`. This ABI is entirely of my own invention
and has no current precedent, but I think that the addition of this ABI
might help solve a number of issues with the WebAssembly targets.
When `wasm32-unknown-unknown` was first added to Rust I naively
"implemented an abi" for the target. I then went to write `wasm-bindgen`
which accidentally relied on details of this ABI. Turns out the ABI
definition didn't match C, which is causing issues for C/Rust interop.
Currently the compiler has a "wasm32 bindgen compat" ABI which is the
original implementation I added, and it's purely there for, well,
`wasm-bindgen`.
Another issue with the WebAssembly target is that it's not clear to me
when and if the default C ABI will change to account for WebAssembly's
multi-value feature (a feature that allows functions to return multiple
values). Even if this does happen, though, it seems like the C ABI will
be guided based on the performance of WebAssembly code and will likely
not match even what the current wasm-bindgen-compat ABI is today. This
leaves a hole in Rust's expressivity in binding WebAssembly where given
a particular import type, Rust may not be able to import that signature
with an updated C ABI for multi-value.
To fix these issues I had the idea of a new ABI for WebAssembly, one
called `wasm`. The definition of this ABI is "what you write
maps straight to wasm". The goal here is that whatever you write down in
the parameter list or in the return values goes straight into the
function's signature in the WebAssembly file. This special ABI is for
intentionally matching the ABI of an imported function from the
environment or exporting a function with the right signature.
With the addition of a new ABI, this enables rustc to:
* Eventually remove the "wasm-bindgen compat hack". Once this
ABI is stable wasm-bindgen can switch to using it everywhere.
Afterwards the wasm32-unknown-unknown target can have its default ABI
updated to match C.
* Expose the ability to precisely match an ABI signature for a
WebAssembly function, regardless of what the C ABI that clang chooses
turns out to be.
* Continue to evolve the definition of the default C ABI to match what
clang does on all targets, since the purpose of that ABI will be
explicitly matching C rather than generating particular function
imports/exports.
Naturally this is implemented as an unstable feature initially, but it
would be nice for this to get stabilized (if it works) in the near-ish
future to remove the wasm32-unknown-unknown incompatibility with the C
ABI. Doing this, however, requires the feature to be on stable because
wasm-bindgen works with stable Rust.