These submodules were previously updated in python because Cargo gives a hard error if toml files
are missing from the workspace:
```
error: failed to load manifest for workspace member `/home/jnelson/rust-lang/rust/src/tools/rls`
Caused by:
failed to read `/home/jnelson/rust-lang/rust/src/tools/rls/Cargo.toml`
Caused by:
No such file or directory (os error 2)
failed to run: /home/jnelson/rust-lang/rust/build/x86_64-unknown-linux-gnu/stage0/bin/cargo build --manifest-path /home/jnelson/rust-lang/rust/src/bootstrap/Cargo.toml
```
However, bootstrap doesn't actually need to be part of the workspace.
Remove it so we can move submodule handling fully to Rust, avoiding duplicate code between Rust and Python.
Note that this does break `cargo run`; it has to be `cd src/bootstrap && cargo run` now.
Given that we're planning to make the main entrypoint a shell script (or rust binary),
I think this is a good tradeoff for reduced complexity in bootstrap.py.
Make "Assemble stage1 compiler" orders of magnitude faster (take 2)
This used to take upwards of 5 seconds for me locally. I found that the culprit was copying the downloaded LLVM shared object:
```
[22:28:03] Install "/home/jnelson/rust-lang/rust/build/x86_64-unknown-linux-gnu/ci-llvm/lib/libLLVM-14-rust-1.62.0-nightly.so" to "/home/jnelson/rust-lang/rust/build/x86_64-unknown-linux-gnu/stage1/lib/rustlib/x86_64-unknown-linux-gnu/lib/libLLVM-14-rust-1.62.0-nightly.so"
[22:28:09] c Sysroot { compiler: Compiler { stage: 1, host: x86_64-unknown-linux-gnu(x86_64-unknown-linux-gnu) } }
```
It turned out that `install()` used full copies unconditionally. Change it to try using a hard-link before falling back to copying.
- Panic if we generate a symbolic link in a tarball
- Change install to use copy internally, like in my previous PR
- Change copy to dereference symbolic links, which avoids the previous regression in #96803.
I also took the liberty of fixing `x dist llvm-tools` to work even if you don't call `x build` previously.
This used to take upwards of 5 seconds for me locally. I found that the
culprit was copying the downloaded LLVM shared object:
```
[22:28:03] Install "/home/jnelson/rust-lang/rust/build/x86_64-unknown-linux-gnu/ci-llvm/lib/libLLVM-14-rust-1.62.0-nightly.so" to "/home/jnelson/rust-lang/rust/build/x86_64-unknown-linux-gnu/stage1/lib/rustlib/x86_64-unknown-linux-gnu/lib/libLLVM-14-rust-1.62.0-nightly.so"
[22:28:09] c Sysroot { compiler: Compiler { stage: 1, host: x86_64-unknown-linux-gnu(x86_64-unknown-linux-gnu) } }
```
It turned out that `install()` used full copies unconditionally. Change
it to use `copy()` internally, which uses hard links instead when
available.
Note that this has a change in behavior: Installing a file will also
change permissions on the source, not just the destination, if hard
links are used.
To avoid changing the behavior on symlinks for existing code, I
introduce a new function `copy_internal` which only dereferences
symlinks when told to do so.
Pass all paths to `Step::run` at once when using `ShouldRun::krate`
Helps with https://github.com/rust-lang/rust/pull/95503. The goal is to run `cargo test -p rustc_data_structures -p rustc_lint_defs` instead of `cargo test -p rustc_data_structures; cargo test -p rustc_lint_defs`, which should both recompile less and avoid replaying cached warnings.
This was surprisingly complicated. The main changes are:
1. Invert the order of iteration in `StepDescription::run`.
Previously, it did something like:
```python
for path in paths:
for (step, should_run) in should_runs:
if let Some(set) = should_run.pathset_for_path(path):
step.run(builder, set)
```
That worked ok for individual paths, but didn't allow passing more than one path at a time to `Step::run`
(since `pathset_for_paths` only had one path available to it).
Change it to instead look at the intersection of `paths` and `should_run.paths`:
```python
for (step, should_run) in should_runs:
if let Some(set) = should_run.pathset_for_paths(paths):
step.run(builder, set)
```
2. Change `pathset_for_path` to take multiple pathsets.
The goal is to avoid `x test library/alloc` testing *all* library crates, instead of just alloc.
The changes here are similarly subtle, to use the intersection between the paths rather than all
paths in `should_run.paths`. I added a test for the behavior to try and make it more clear.
Note that we use pathsets instead of just paths to allow for sets with multiple aliases (*cough* `all_krates` *cough*).
See the documentation added in the next commit for more detail.
3. Change `StepDescription::run` to explicitly handle 0 paths.
Before this was implicitly handled by the `for` loop, which just didn't excute when there were no paths.
Now it needs a check, to avoid trying to run all steps (this is a problem for steps that use `default_condition`).
4. Change `RunDescription` to have a list of pathsets, rather than a single path.
5. Remove paths as they're matched
This allows checking at the end that no invalid paths are left over.
Note that if two steps matched the same path, this will no longer run both;
but that's a bug anyway.
6. Handle suite paths separately from regular sets.
Running multiple suite paths at once instead of in separate `make_run` invocations is both tricky and not particularly useful.
The respective test Steps already handle this by introspecting the original paths.
Avoid having to deal with it by moving suite handling into a seperate loop than `PathSet::Set` checks.
`@rustbot` label +A-rustbuild
This was surprisingly complicated. The main changes are:
1. Invert the order of iteration in `StepDescription::run`.
Previously, it did something like:
```python
for path in paths:
for (step, should_run) in should_runs:
if let Some(set) = should_run.pathset_for_path(path):
step.run(builder, set)
```
That worked ok for individual paths, but didn't allow passing more than one path at a time to `Step::run`
(since `pathset_for_paths` only had one path available to it).
Change it to instead look at the intersection of `paths` and `should_run.paths`:
```python
for (step, should_run) in should_runs:
if let Some(set) = should_run.pathset_for_paths(paths):
step.run(builder, set)
```
2. Change `pathset_for_path` to take multiple pathsets.
The goal is to avoid `x test library/alloc` testing *all* library crates, instead of just alloc.
The changes here are similarly subtle, to use the intersection between the paths rather than all
paths in `should_run.paths`. I added a test for the behavior to try and make it more clear.
Note that we use pathsets instead of just paths to allow for sets with multiple aliases (*cough* `all_krates` *cough*).
See the documentation added in the next commit for more detail.
3. Change `StepDescription::run` to explicitly handle 0 paths.
Before this was implicitly handled by the `for` loop, which just didn't excute when there were no paths.
Now it needs a check, to avoid trying to run all steps (this is a problem for steps that use `default_condition`).
4. Change `RunDescription` to have a list of pathsets, rather than a single path.
5. Remove paths as they're matched
This allows checking at the end that no invalid paths are left over.
Note that if two steps matched the same path, this will no longer run both;
but that's a bug anyway.
6. Handle suite paths separately from regular sets.
Running multiple suite paths at once instead of in separate `make_run` invocations is both tricky and not particularly useful.
The respective test Steps already handle this by introspecting the original paths.
Avoid having to deal with it by moving suite handling into a seperate loop than `PathSet::Set` checks.
Allow configuring where artifacts are downloaded from
Bootstrap has support for downloading prebuilt LLVM and rustc artifacts to speed up local builds, but that currently works only for users working on `rust-lang/rust`. Forks of the repository (for example Ferrocene) might have different URLs to download artifacts from, or might use a different email address on merge commits, breaking both LLVM and rustc artifact downloads.
This PR refactors bootstrap to load the download URLs and other constants from `src/stage0.json`, allowing downstream forks to tweak those values. It also future-proofs the download code to easily allow forks to add their own custom protocols (like `s3://`).
This PR is best reviewed commit-by-commit.
This simplifies the arguments to `download_component` in config.rs.
It also moves stage0.json metadata handling to `Build::new`, making it easier to download the stage0
compiler in rustbuild later if necessary.
Add build metrics to rustbuild
This PR adds a new module of rustbuild, `ci_profiler`, whose job is to gather as much information as possible about the CI build as possible and store it in a JSON file uploaded to `ci-artifacts`. Right now for each step it collects:
* Type name and debug representation of the `Step` object.
* Duration of the step (excluding child steps).
* Systemwide CPU stats for the duration of the step (both single core and all cores).
* Which child steps were executed.
This is capable of replacing both the scripts to collect CPU stats and the `[TIMING]` lines in build logs (not yet removed, until we port our tooling to use the CI profiler). The format is also extensible to be able in the future to collect more information.
r? `@Mark-Simulacrum`
Print stderr consistently
Solves https://github.com/rust-lang/rust/issues/96712
I tried to follow what I perceived as the general consensus for error messages in boostrap i.e messages that were ..
* resulting from an Err(...) =>
* literally called as "Error: ...."
* by the end of the block scope forced to run a panic! or process::exit with a guaranteed non-zero error code.
I don't know why anyone would turn this off; doing so makes builds much slower (nearly a 60x slowdown according to #49057).
Remove the option to do so, which makes bootstrap a little easier to maintain.
Bootstrap continues to allow you to manage submodules manually by setting `submodules = false`.
Make "Assemble stage1 compiler" orders of magnitude faster
This used to take upwards of 5 seconds for me locally. I found that the culprit was copying the downloaded LLVM shared object:
```
[22:28:03] Install "/home/jnelson/rust-lang/rust/build/x86_64-unknown-linux-gnu/ci-llvm/lib/libLLVM-14-rust-1.62.0-nightly.so" to "/home/jnelson/rust-lang/rust/build/x86_64-unknown-linux-gnu/stage1/lib/rustlib/x86_64-unknown-linux-gnu/lib/libLLVM-14-rust-1.62.0-nightly.so"
[22:28:09] c Sysroot { compiler: Compiler { stage: 1, host: x86_64-unknown-linux-gnu(x86_64-unknown-linux-gnu) } }
```
It turned out that `install()` used full copies unconditionally. Change it to try using a hard-link before falling back to copying.
This used to take upwards of 5 seconds for me locally. I found that the culprit was copying the downloaded LLVM shared object:
```
[22:28:03] Install "/home/jnelson/rust-lang/rust/build/x86_64-unknown-linux-gnu/ci-llvm/lib/libLLVM-14-rust-1.62.0-nightly.so" to "/home/jnelson/rust-lang/rust/build/x86_64-unknown-linux-gnu/stage1/lib/rustlib/x86_64-unknown-linux-gnu/lib/libLLVM-14-rust-1.62.0-nightly.so"
[22:28:09] c Sysroot { compiler: Compiler { stage: 1, host: x86_64-unknown-linux-gnu(x86_64-unknown-linux-gnu) } }
```
It turned out that `install()` used full copies unconditionally. Change it to try using a hard-link before falling back to copying.
This tool will generate a JSON file with statistics about each
individual step to disk. It will be used in rust-lang/rust's CI to
replace the mix of scripts and log scraping we currently have to gather
this data.
This attempts to keep the logic as close to the original python as possible.
`probably_large` has been removed, since it was always `True`, and UTF-8 paths are no longer supported when patching files for NixOS.
I can readd UTF-8 support if desired.
Note that this required making `llvm_link_shared` computed on-demand,
since we don't know whether it will be static or dynamic until we download LLVM from CI.
Always use system `python3` on MacOS
This PR includes 2 changes:
1. Always use the system Python found at `/usr/bin/python3` on MacOS
2. Removes the hard requirement on having `python` in your system path if you didn't specify alternatives. The proposed change will instead attempt to find and use in order: `python` -> `python3` -> `python2`. This change isn't strictly necessary but without any change to this check, the original issue inspiring this change will still exist.
Fixes#95204
r? ```@jyn514```
Make it possible to run `cargo test` for bootstrap
Note that this only runs bootstrap's self-tests, not compiler or library tests.
Helps with https://github.com/rust-lang/rust/issues/94829.
Fix `cargo run tidy`
When I implemented rust-only bootstrapping in https://github.com/rust-lang/rust/pull/92260,
I neglected to test stage0 tools - it turns out they were broken because
they couldn't find the sysroot of the initial bootstrap compiler.
This fixes stage0 tools by using `rustc --print sysroot` instead of assuming rustc is already in a
sysroot and hard-coding the relative directory.
Fixes https://github.com/rust-lang/rust/issues/94797 (properly, without having to change rustup).
Enable conditional checking of values in the Rust codebase
This pull-request enable conditional checking of (well known) values in the Rust codebase.
Well known values were added in https://github.com/rust-lang/rust/pull/94362. All the `target_*` values are taken from all the built-in targets which is why some extra values were needed do be added as they are not (yet ?) defined in any built-in targets.
r? `@Mark-Simulacrum`
When I implemented rust-only bootstrapping in https://github.com/rust-lang/rust/pull/92260,
I neglected to test stage0 tools - it turns out they were broken because
they couldn't find the sysroot of the initial bootstrap compiler.
This fixes stage0 tools by using `rustc --print sysroot` instead of assuming rustc is already in a
sysroot and hard-coding the relative directory.
this also fixes a bug where bootstrap would try to use the fake `rustc` binary built by bootstrap -
cargo puts it in a different directory when using `cargo run` instead of x.py
The majority of the code is only used by either rustbuild or
rustc_llvm's build script. Rust_build is compiled once for rustbuild and
once for every stage. This means that the majority of the code in this
crate is needlessly compiled multiple times. By moving only the code
actually used by the respective crates to rustbuild and rustc_llvm's
build script, this needless duplicate compilation is avoided.
Enable conditional compilation checking on the Rust codebase
This pull-request enable conditional compilation checking on every rust project build by the `bootstrap` tool.
To be more specific, this PR only enable well known names checking + extra names (bootstrap, parallel_compiler, ...).
r? `@Mark-Simulacrum`
Remove num_cpus dependency from bootstrap, build-manifest and rustc_s…
…ession
`std::threads::available_parallelism` was stabilized in rust 1.59.
r? ```````````````````````````@Mark-Simulacrum```````````````````````````
First, this reverts the `CFLAGS`/`CXXFLAGS` of #93918. Those flags are
already read by `cc` and populated into `Build` earlier on in the
process. We shouldn't be overriding that based on `CFLAGS`, since `cc`
also respects overrides like `CFLAGS_{TARGET}` and `HOST_CFLAGS`, which
we want to take into account.
Second, this adds the same capability to specify target-specific
versions of `LDFLAGS` as we have through `cc` for the `C*` flags:
https://github.com/alexcrichton/cc-rs#external-configuration-via-environment-variables
Note that this also necessitated an update to compiletest to treat
CXXFLAGS separately from CFLAGS.